The present invention relates generally to watercraft and particularly, to canoes, rowboats, and other small water vessel. As is well known, canoes are traditionally propelled with paddles. Canoeists both propel and steer the canoe with the paddles. Since the paddling motion is to the side of the canoeist and only the arm muscles are involved, speed depends on good arm strength and an easily driven canoe. Canoeists face the bow of the canoe.
Small rowboats are typically propelled by pairs of oars that pivot in oarlocks fastened to the gunwales (upper edges) of the rowboat hulls. The oarlocks each have a vertical axis pivot that allows a rower to apply force to the oars in a substantially horizontal plane with the oar blades in the water and to lift the oars at the end of the stroke to move the oars forward for another stroke. Differential speed in rowing one or the other of the two oars in a pair provides steering. Again, arm strength is important for good speed in a typical small rowboat.
For a long time, rowers have faced the stem of the rowboat because much more energy is available from pulling than from pushing on the oar handles. Facing the stern is inconvenient, since the rower must look over his or her shoulder to see where the craft is heading and what obstructions are present.
Crew racing is a type of rowing competition using light narrow shells as the rowing craft. Shells usually have sliding seats and fixed footrests which allow the rowers to use their larger leg muscles as well as their arm muscles to drive the oars. Anywhere from one to eight rowers using either one or two oars each, propels these shells at quite high speeds. Crews in shells almost always face the stern of the craft.
The present invention is an improvement to an accessory for a canoe or rowboat disclosed in U.S. Pat. No. 5,975,004 issued to the applicant for this application. The '004 patent is incorporated by reference into this application.
The invention disclosed in the '004 patent is a rowing accessory having a frame that attaches to the gunwales of the canoe or rowboat. The frame has a suspended seat and a rowing mechanism that allows the rower to face the bow of the rowboat and still pull rather than push on the oars, which are mounted on opposite sides of the frame. The seat of the '004 patent is stationary.
A frame assembly forming a portion of a rowing accessory is to be mounted within a watercraft, to which frame assembly is attached a seat and oars. The frame assembly comprises first and second frame members each having the general shape of a winged U. First and second wing portions of each frame member extend outwardly to form outboard ends of the frame members. A track assembly has a beam attached to lower portions of the frame members at spaced apart connection points along the length of the beam. A seat assembly attaches to the beam and has a seat mounted on a mechanism allowing the seat to slide along the beam. First and second connector plates each have a first end attached at an outboard end of one wing portion of the first frame member, and a second end attached at an outboard end of one wing portion of the second frame member.
The frame assembly 10 of the present invention includes first and second frame members 14 and 15, a track assembly 16, a seat assembly 17 that smoothly slides on track assembly 16, and a telescoping footrest 31.
The design of frame assembly 10 provides a number of advantages. The position of seat assembly 17 and track assembly 16 is near the bottom of the watercraft to improve stability. Particularly in the case of a canoe 11 comprising the watercraft, positioning the seat assembly 17 near the bottom of the hull is important for good stability. Secondly, positioning the seat assembly 17 near the bottom of the hull places the rower's shoulders more nearly in line with the oar mechanisms 12 and 13, allows more comfortable force transfer from the rower to mechanisms 12 and 13.
The right and left oar mechanisms 12 and 13 positions are above the sides of the canoe 11 and extend therefrom.
Frame members 14 and 15 are preferably identical in shape and each have the form of a “winged U”. Each frame member 14, 15 may be formed from a continuous section of 1.25 in. square tube aluminum stock having a wall thickness of 0.09 in. T-5 is one type of aluminum alloy suitable for use as members 14, 15 due to the fact that T-5 alloy is relatively easy to bend and yet has substantial mechanical strength. Each frame member 14, 15 is planar, that is, will lie flat on a flat surface. The dimensions of each frame member 14, 15 allows assembly 10 to span the width of a canoe 11 or other similar watercraft, and to allow the section 14A (
The dimensions of frame members 14, 15 should place bottom portion 14A slightly above the floor of typical canoes and watercraft when the wing portions are resting on the watercraft gunnels. Thus, frame members 14, 15 support a part of the weight of frame assembly 10, and foot
Track assembly 16 includes an adjustable footrest assembly 31 having a footrest crosspiece 18 attached to a bar or tube 40. Bar 40 telescopes closely into web section 39. A knob 47 (
This means of connecting track assembly 16 to frame members 14, 15 provides significant advantages over other types of attachments. In the first place these clamps 43 allow for rapid assembly and disassembly of frame assembly 10—requiring tightening only four machine screws. Assembled, frame assembly 10 is extremely bulky, and best transported unassembled. Secondly, the clamped attachment feature allows positioning of track assembly 16 relative to oar mechanisms 12, 13 to accommodate rowers of all sizes.
Frame assembly 10 is particularly well suited for use with a forward-facing rowing system, but is also suitable for use with conventional rowing systems.
U-shaped clamps 30 secure the frame members 14 and 15 to flanges on the gunnels of canoe 11. Forward facing oar mechanism 12 mounts between the wing 35 of frame member 14 and wing 37 of frame member 15 to operate blade 22 through arm 21. Forward facing oar mechanism 13 mounts between the wing 36 of frame member 14 and wing 8 of member 15 to operate blade 27 through arm 26.
As shown in
As shown in
A rower pulls on handles 24 and 29 to operate the force conversion mechanism of each assembly, and to make the oar portions 21 and 26 move opposite to that of traditional oars, thereby making the watercraft move forward rather than backward.
As shown in
Conversion bar or link 57 connects oar arm 26 and handle arm 28. Fulcrums 54 and 53 at the ends of oar arm 26 and handle arm 28 respectively. Pivots 55 and 56 attach handle arm 28 and oar arm 26 respectively to plate 32. The end of handle arm 28 may contains a slot or additional hole (not shown) to allow changing the position of fulcrum 53 to thereby adjust oar blade speed. Each pivot point and fulcrum preferably has at least one stainless steel ball bearing or similar bearing composition.
As many changes are possible to the forward facing rowing attachment with sliding seat for a small watercraft embodiments of this invention utilizing the teachings thereof, the descriptions above, and the accompanying drawing should be interpreted in the illustrative sense only.
This is a regular application filed under 35 U.S.C. §111(a) claiming priority under 35 U.S.C. §119(e)(1), of provisional application Ser. No. 60/933,197, filed Jun. 5, 2007, and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3898950 | Martin | Aug 1975 | A |
4649852 | Piantedosi | Mar 1987 | A |
4846460 | Duke | Jul 1989 | A |
4940227 | Coffey | Jul 1990 | A |
4943051 | Haskins et al. | Jul 1990 | A |
5127859 | Rantilla | Jul 1992 | A |
5215482 | Henry | Jun 1993 | A |
5899780 | Robbins | May 1999 | A |
5975004 | Nesseth | Nov 1999 | A |
6939186 | Kuckes | Sep 2005 | B1 |
Number | Date | Country | |
---|---|---|---|
20080302293 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
60933197 | Jun 2007 | US |