This application is a related to co-pending U.S. application Ser. No. 14/225,341, titled “Distributing Service Sessions.” The disclosures of the above referenced application are hereby incorporated by reference.
Field of the Invention
The present invention relates generally to data networks, and more particularly to a network for distribution and load balancing for a virtual service.
Description of the Related Art
Service load balancers, such as server load balancers, application delivery controllers, or traffic managers, typically balance load among a plurality of servers providing network services such as Web documents, voice calls, advertisements, enterprise applications, video streaming services, file transfers, gaming, or any broadband services. A network service is associated typically with an IP address. In a typical IP network, an IP address is assigned to a network computing device. Network routers and switches are designed to forward data packets destined to the IP address to the assigned network computing device. One cannot assign the same IP address to multiple network computing devices with current network routers and switches.
When a service provider deploys a network service, the service provider needs to consider expected client demand that can change between high demand to low demand at different times. In one scenario, a software vendor provides software patches on a regular basis. Normally, a single service load balancer is capable of handling the software patch download demand. However, when the software vendor rolls out a major software update, the software vendor anticipates a dramatic increase of download demand shortly after the major software update is released. The software vendor may plan to add additional resources, such as two additional service load balancers and four more patch servers to handle the increased demand. The software vendor could use different IP addresses for the additional service load balancers. However, this would require the client devices to learn the new IP addresses before requesting the software update service.
The day after the major software update release, the software vendor may see a substantial decline of demand. The software vendor may remove the two added service load balancers and four patch servers. By doing so, the client devices which earlier learned the new IP addresses of the now-removed service load balancers can no longer use the patch service. The client devices must reacquire the IP address of the remaining service load balancer in order to use the software patch service going forward.
During the software update release, the software vendor may have a number of major customers, some of whom require sessions to be encrypted and some of whom require dedicated service load balancers. Some of the added service load balancers may be configured with large memory and processing capacity to handle large bursts of requests. Moreover, some service load balancers may be equipped with special hardware processing capabilities to handle certain services. Such hardware processing capabilities may include, but are not limited to, security processors, special digital signal processors (DSP), network processors (NP), and graphics or video processors. Additional hardware capacity, such as larger memory module, higher performance processor, multi-core processors, and better hardware system design, also affects capabilities of each service load balancer. Special software, such as content caching algorithm or encryption algorithm, may differentiate one service load balancer from another. Furthermore, differentiation of service load balancers may depend on the clients of the service sessions. For example, when access to a government service comes from certain foreign client computers, the sessions may be best served by service load balancers equipped with additional security safeguards. Another example is when access of a company document services is within the company's computers, the accesses may be recorded by specific service load balancers in order to satisfy company regulation or legal compliance.
It should be apparent from the foregoing that there is a need to provide a dynamic service network to distribute service sessions to a plurality of service load balancers according to the capacities and capabilities of the service load balancers or to satisfy particular needs of the clients of the service network.
This summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detailed Description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The present disclosure concerns methods and systems for forwarding data packets in a service network using a service-based policy. In one computer-implemented method for forwarding a data packet in a service network, the method comprises: receiving from a client device, the data packet destined to a servicing node; matching the data packet against a service address; matching the data packet against a classification rule in a forwarding policy associated with the service address, wherein the classification rule is based on a capability of a second servicing node; and upon determining that the data packet matches the service address and the packet matches the classification rule, sending to the servicing node.
The present disclosure further concerns a non-transitory computer-readable medium comprising instructions, which when executed by one or more processors, implements a method for forwarding a data packet in a service network according to the methods described herein.
In an exemplary computer-implemented method for generating a forwarding policy for a service network comprising a forwarding node and a plurality of servicing nodes, the method comprises: receiving a capability from a servicing node related to a service address; generating a plurality of classification rules based on the received capability and a second capability of another servicing node; and storing the generated classification rules in the forwarding policy.
The present disclosure further concerns a non-transitory computer-readable medium comprising instructions, which when executed by one or more processors, implements a method for method for generating a forwarding policy for a service network comprising a forwarding node and a plurality of servicing nodes according to the methods described herein.
The present disclosure also concerns a service network system for forwarding a data packet in a service network, the system comprising: a plurality of servicing nodes, wherein each of the plurality of servicing nodes is configured to: send to a network controller a capability associated to a service address; and send to the network controller a collection of statistics data related to the capability; a forwarding node, wherein the forwarding node is configured to: receive from the network controller a forwarding policy comprising a plurality of classification rules; receive a data packet; match the data packet against the service address; match the data packet against a classification rule of the forwarding policy; upon determining that the data packet matches the service address and the classification rule, send the data packet to a servicing node indicated by the classification rule; and send to the network controller a second collection of statistics data related to the forwarding policy; and the network controller, wherein the network controller is configured to: receive a plurality of capabilities from the plurality of servicing nodes; generate the plurality of classification rules based on the received plurality of capabilities; store the generated plurality of classification rules in the forwarding policy; send the forwarding policy to the forwarding node; receive the plurality of statistics data from the plurality of servicing nodes; receive the statistics data from the forwarding node; and generate a report based on the received statistics data.
Embodiments are illustrated by way of example and not by limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
The following detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show illustrations in accordance with example embodiments. These example embodiments, which are also referred to herein as “examples,” are described in enough detail to enable those skilled in the art to practice the present subject matter. The embodiments can be combined, other embodiments can be utilized, or structural, logical, and electrical changes can be made without departing from the scope of what is claimed. The following detailed description is therefore not to be taken in a limiting sense, and the scope is defined by the appended claims and their equivalents.
In some embodiments, gateway node 116 may receive data packets from service session 104 and send the data packets to forwarding node 118. When forwarding node 118 receives a service session 104 data packet, forwarding node 118 may match the service session 104 data packet against service address 106 and forwarding policy 124, which is based on capabilities and service configurations of servicing nodes in service network 114. Forwarding node 118 may forward service session 104 data packet to servicing node 120, in accordance with the forwarding policy 124. Servicing node 120 may process service session 104 data packet, select a server, such as server 108, and send service session 104 data packet to server 108.
Forwarding node 118 may receive forwarding policy 124 from network controller 126. Network controller 126 may generate forwarding policy 124 based on information capabilities and service configurations of a plurality of servicing nodes of service network 114.
In exemplary embodiments, a network node, which can be a network controller 126, a gateway node 116, a forwarding node 118, or a servicing node of service network 114, illustrated as network device 202 in
In various embodiments, service network 114 may connect to at least one client device 102. Client device 102 may be a personal computer, a laptop, a smartphone, a cell phone, a tablet, a personal digital assistant (PDA), a desktop, a notebook, a set-top box, a network connected device, a network connecting computing device, or a network element such as an Ethernet switch, a router, or any network computing device seeking a service from a server.
Service network 114 may connect to one or more servers 108, 110, and 112. The servers may be any type of server, including, but not limited to, a Web server, a video server, a music server, an e-commerce server, an enterprise application server, a news server, a mobile broadband service server, a messaging server, an email server, a game server, an app server, an Internet radio server, a storage server, a social network services server, or a network computing device providing services to a service session 104 from client 102.
Service network 114 may be configured to serve service address 106. Service address 106 may represent a network address for service session 104 between client 102 and a server. Additionally, service address 106 may include one or more of an IP address, a TCP port number, a UDP port number, a data link layer identity, a VLAN identity, a network identity, and a service identity.
In an exemplary embodiment illustrated in
Upon determining data packet 302 matches service address 106, forwarding node 118 may match data packet 302 with forwarding policy 124 to select service node 120. Forwarding node 118 may match data packet against a classification rule 304 of forwarding policy 124. Classification rule 304 may include a classification 306, a primary servicing node information 308 and a secondary servicing node information 310. Primary servicing node information 308 may indicate selecting service node 120 to forward data packet 302. Furthermore, primary servicing node information 308 may include an identity of servicing node 120, a process to modify data packet 302 prior to sending to servicing node 120, or an indication for additional processing of data packet 302. Secondary servicing node information 310 may include an indication to select servicing node 122 to send data packet 302 under some condition about primary servicing node 120. Additionally, secondary servicing node information 310 may include an indication to send to servicing node 122 as well as to primary servicing node 120. Secondary servicing node information 310 may indicate that if servicing node 120 is not available or busy, servicing node 122 may be selected as a target to receive data packet 302.
Classification 306, as illustrated in
In various embodiments, forwarding node 118 may match data packet 302 against classification 306 to determine if there is a match with classification rule 304. Forwarding node 118 may determine that there is a match between data packet 302 and classification 306, and forwarding node 118 may select servicing node 120 using primary servicing node information 308. Forwarding node 118 may apply additional processing to data packet 302 according to primary servicing node information 308. Forwarding node 118 may then send data packet 302, modified if appropriate, to servicing node 120. Additionally, forwarding node 118 may check secondary servicing node information 310 and determine if servicing node 120 matches the condition in secondary servicing node information 310. Forwarding node 118 may determine if servicing node 120 is busy or is not available, and forwarding node 118 may select servicing node 122 and send data packet 302 to servicing node 122 according to secondary servicing node information 310.
Primary servicing node information 308 or secondary servicing node information 310 may include data treatment processing relating to access control, traffic management, bandwidth management, quality of service, legal interception, security handling, tunneling, security detection, duplicating, debugging, or other data-oriented processing treatment.
Classification 306 may include a source IP address classification 402. Forwarding node 118 may obtain a source IP address of data packet 302 and match the obtained source IP address of data packet 302 against the source IP address classification 402 of classification 306. Forwarding node 118 may obtain a source port of data packet 302 and match it against the source port classification 404 of classification 306. Forwarding node 118 may obtain a destination port of data packet 302 and match it against the destination port classification 406 of classification 306. Forwarding node 118 may obtain a link layer address of data packet 302 and match it against the link layer address classification 408 of classification 306. Forwarding node 118 may obtain one or more of data pieces from data packet 302 and match the obtained data against corresponding classification data in classification 306. In various embodiments, all classification data must match data packet 302 in order to affirmatively match classification 306. In some other embodiments, it is sufficient for one or more of classification data of classification 306 to match data packet 302 for forwarding node 118 to determine if data packet 302 matches classification 306.
Forwarding node 118 may perform pre-determined calculating steps while matching data packet 302 to classification 306. Pre-determined calculating steps may include a hashing function, a bit-wise operation, a cryptographic function, a comparison, or a lookup function. Pre-determined calculating steps may also include hardware such as a Context Addressable Memory (CAM), T-CAM, FPGA, DSP, or any lookup hardware accelerator.
As aforementioned in
Network controller 126 may generate forwarding policy 502 based on capability information 504 received from servicing node 120 and optionally other servicing nodes of service network 114. Network controller 126 may include classification configuration 506. In various embodiments, network controller 126 may receive classification configuration 506 from a network administrator, a network computer, or a predetermined configuration stored in a storage module of network controller 126.
Network controller 126 may perform a plurality of steps illustrated in
In step 604, network controller 126 may determine if received capability information 504 is different from previously received capability information from servicing node 120. Received capability information 504 may replace or update any previously received capability information from servicing node 120.
In step 606, network controller 126 may calculate a credit 508 for servicing node 120 using capability information 504. Network controller 126 may obtain capability of a network application 510 from capability information 504 and calculate credit 508 using the network application 510 capability. Network controller 126 may use classification configuration 506 to calculate credit 508. Typically, the higher or better the network application 510 capability, the higher credit 508 that may be assigned. Capability information 504 may indicate an SSL encryption hardware used for network application 510. Network controller 126 may assign a credit of 2 to servicing node 120 for network application 510. Capability information 504 may indicate network application 510 may require SSL but no SSL hardware may be listed in capability information 504. Network controller 126 may assign a value of 1 to credit 508 for SSL network application 510. Network controller 126 may assign credit 508 a value of 4 if SSL hardware is available, according to classification configuration 506.
Network controller 126 may calculate a value of 3 for credit 508 if capability information 504 indicates HTTP proxy network application 510 allows a capacity of 10,000 connections. Network controller 126 may use classification configuration 506 to calculate credit 508 for HTTP proxy application.
In step 608, network controller 126 may calculate a total credit for network application 510 over a plurality of servicing nodes. Network controller 126 may calculate the total credit by adding the credits, including credit 508, for network application 510. Network controller 126 may multiply each credit with a multiplying factor according to classification configuration 506 prior to adding the credits. The total credit for network application 510 may be 32 and servicing node 120 may have credit 508 of value 3 for network application 510.
In step 610, network controller 126 may generate a plurality of classification rules associated to network application 510. Network controller 126 may generate a classification rule 304, which includes classification 306 associating to network application 510. Network application 510 may be associated to a TCP/UDP port number. Classification 306 may include a destination port number.
In various embodiments, network controller 126 may generate 32 classification rules, according to the total credit of 32 associated to network application 510. Among the 32 rules, 3 rules, according to credit 508, may indicate servicing node 120 as primary servicing node information. Network controller 126 may divide the available IP addresses into 32 partitions, one partition per classification rule. Furthermore, network controller 126 may apply a hashing function to the IP address to result in 32 different values. Network controller 126 may create 32 entries in a lookup table for the 32 classification rules. Network controller 126 may partition IP addresses using 5 bits of IP addresses, first 5 bits, last 5 bits, middle bits, or a combination of 5 bits out of a 32-bit or 128-bit IP address to form a distinct 32 different partitions for the IP addresses. Network controller 126 may generate classification rule 304 having classification 306 and primary servicing node information 308. Classification 306 may include a source IP address being one of the 32 IP address partition or a destination port number being the TCP/UDP port number of network application 510. Primary servicing node information 308 may indicate servicing node 120.
Network controller 126 may randomly assign 3 partitions for servicing node 120. Network controller 126 may assign the first 3 partitions. Network controller 126 may apply a mathematical function such as a hashing function to assign 3 partitions for the servicing node 120. Network controller 126 may select 3 entries in a created 32-entry lookup table for the classification rules.
Network controller 126 may generate all 32 classification rules according to the total 32 credits for network application 510. Alternatively, network controller 126 may generate less than 32 classification rules, perhaps by dividing into fewer number of IP address partitions. Network controller 126 may store the classification rules into forwarding policy 502.
Network controller 126 may calculate credit 508 for servicing node 120 based on a capacity, such as connection capacity, without considering association to a network application. Network controller 126 may calculate the total credit for a plurality of servicing nodes, including servicing node 120, associated to the capacity. Network controller 126 may generate a plurality of classification rules based on the capacity. Network controller 126 may store the generated classification rules based on the capacity into forwarding policy 502.
Network controller 126 may partition UDP/TCP port numbers. Network controller 126 may put into classification 306 source port number being a port number partition. Network controller 126 may partition both port numbers and IP addresses for network application 510.
Network application 510 may be associated with a plurality of port numbers, and network controller 126 may include the plurality of port numbers as destination port numbers for classification 306.
Network controller 126 may assign servicing node 120 as secondary servicing node for one or more classification rules for network application 510. Network controller 126 may use classification configuration 506 to assign a secondary servicing node. Capability information 504 may include information to assist network controller 126 to select servicing node 120 as secondary servicing node.
Network controller 126 may repeat steps 606-610 and generate a plurality of classification rules for other network applications. Network controller 126 may store the generated classification rules in forwarding policy 502.
In step 612, network controller 126 may send generated forwarding policy 502 to forwarding node 118.
In various embodiments, network controller 126 may generate forwarding policy 502 when network controller 126 receives capability information 504 from servicing node 120. Network controller 126 may also generate forwarding policy 502 after receiving capability information from a plurality of servicing nodes. In some embodiments, network controller 126 may periodically generate forwarding policy 502. Network controller 126 may generate forwarding policy 502 when it detects a change in capability information of a servicing node.
In an exemplary embodiment illustrated in
Forwarding node 704 may send forwarding data 708 to network controller 126. Forwarding data 708 may contain information related to forwarding policy 124. Forwarding data 708 may contain a number of packets processed, a number of packets processed according to individual classification rule, a plurality of classification rules, a number of service session packets forwarded to a servicing node or a plurality of servicing nodes, an amount of data traffic processed according to forwarding policy 124, or other data useful for network controller 126 to analyze forwarding policy 124. Additionally, forwarding node 118 may provide forwarding data 708 frequently, based on a schedule, triggered by an event, when there is a change related to forwarding data 708, when forwarding policy 124 is changed, or when requested by network controller 126.
Network controller 126 may receive servicing data from one or more servicing nodes, including servicing node 702, and/or forwarding data from one or more forwarding nodes, including forwarding node 704, over a period of time. These one or more servicing nodes and one or more forwarding nodes may be part of service network 114. Network controller 126 may analyze servicing data 706 and forwarding data 708 to report a trend 710. Trend 710 may relate to behavior of service network 114 or forwarding policy 124. Trend 710 may reflect one or more behaviors over a period of time, where network controller 126 receives servicing data and forwarding data over the period of time. Trend 710 may also include a chart showing data traffic for a classification rule of servicing node 702 in forwarding policy 124. Trend 710 may compare a classification rule of servicing node 702 to another classification rule of forwarding policy 124. Trend 710 may compare capability utilization of servicing node 702 and another servicing node indicated in forwarding policy 124. Trend 710 may indicate utilization of servicing node 702 or service network 114 over the period time.
Network controller 126 may generate a notification 712 based on servicing data 706 and/or forwarding data 708. Network controller 126 may generate notification 712 based on trend 710. Notification 712 may indicate a significant piece of information related to forwarding policy 124. Notification 712 may indicate servicing node 702 had a load above an expected load threshold, suggesting to a network administrator to adjust a service policy for service network 114 or to add another servicing node to service network 114. Alternatively, notification 712 may indicate servicing node 702 performs below an expected load threshold, suggesting a network administrator to adjust a service policy, to redeploy a servicing node from service network 114, or to remove servicing node 702 from service network 114. Notification 712 may indicate forwarding node 704 has an overall system load exceeding an expected load, suggesting to a network administrator to adjust a forwarding policy or classification configuration, to add additional resources to forwarding node 704 or to add another forwarding node to service network 114. Notification 712 may indicate an under-utilization of forwarding node 704.
In some embodiments, notification 712 indicates a network application capability is overloaded, suggesting adding additional hardware acceleration to the network application capability or additional servicing node for the network application. Notification 712 may suggest removing capability of a network application due to low utilization. Notification 712 may include one or more suggestions.
Network controller 126 may combine servicing data 706, servicing data from other servicing nodes, forwarding data 708, and forwarding data from other forwarding nodes into a report 714. Network controller 126 may generate report 714 based on a schedule, upon request, or when new servicing data or forwarding data is received.
Network controller 126 may receive a query 716 about servicing data 706 and/or forwarding data 708. Network controller 126 may process and respond to query 716. Furthermore, network controller 126 may store servicing data 706 and forwarding data 708 in a storage module or a database system. Network controller 126 may send servicing data 706 or forwarding data 708 to a database system and process query 716 using the database system.
Number | Name | Date | Kind |
---|---|---|---|
4403286 | Fry et al. | Sep 1983 | A |
4495570 | Kitajima et al. | Jan 1985 | A |
4577272 | Ballew et al. | Mar 1986 | A |
4720850 | Oberlander et al. | Jan 1988 | A |
4864492 | Blakely-Fogel et al. | Sep 1989 | A |
4882699 | Evensen | Nov 1989 | A |
5031089 | Liu et al. | Jul 1991 | A |
5218602 | Grant et al. | Jun 1993 | A |
5218676 | Ben-Ayed et al. | Jun 1993 | A |
5293488 | Riley et al. | Mar 1994 | A |
5341477 | Pitkin et al. | Aug 1994 | A |
5432908 | Heddes et al. | Jul 1995 | A |
5537542 | Eilert et al. | Jul 1996 | A |
5563878 | Blakeley et al. | Oct 1996 | A |
5603029 | Aman et al. | Feb 1997 | A |
5675739 | Eilert et al. | Oct 1997 | A |
5740371 | Wallis | Apr 1998 | A |
5751971 | Dobbins et al. | May 1998 | A |
5754752 | Sheh et al. | May 1998 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5774668 | Choquier et al. | Jun 1998 | A |
5796936 | Watabe et al. | Aug 1998 | A |
5812771 | Fee et al. | Sep 1998 | A |
5828847 | Gehr et al. | Oct 1998 | A |
5835724 | Smith | Nov 1998 | A |
5867636 | Walker | Feb 1999 | A |
5867661 | Bittinger et al. | Feb 1999 | A |
5875296 | Shi et al. | Feb 1999 | A |
5917997 | Bell et al. | Jun 1999 | A |
5918017 | Attanasio et al. | Jun 1999 | A |
5923854 | Bell et al. | Jul 1999 | A |
5931914 | Chiu | Aug 1999 | A |
5935207 | Logue et al. | Aug 1999 | A |
5935215 | Bell et al. | Aug 1999 | A |
5941988 | Bhagwat et al. | Aug 1999 | A |
5944794 | Okamoto et al. | Aug 1999 | A |
5946686 | Schmuck et al. | Aug 1999 | A |
5951650 | Bell et al. | Sep 1999 | A |
5951694 | Choquier et al. | Sep 1999 | A |
5958053 | Denker | Sep 1999 | A |
5995981 | Wikstrom | Nov 1999 | A |
6003069 | Cavill | Dec 1999 | A |
6006264 | Colby et al. | Dec 1999 | A |
6006269 | Phaal | Dec 1999 | A |
6031978 | Cotner et al. | Feb 2000 | A |
6041357 | Kunzelman et al. | Mar 2000 | A |
6047268 | Bartoli et al. | Apr 2000 | A |
6076108 | Courts et al. | Jun 2000 | A |
6088728 | Bellemore et al. | Jul 2000 | A |
6098093 | Bayeh et al. | Aug 2000 | A |
6104717 | Coile et al. | Aug 2000 | A |
6119174 | Borowsky et al. | Sep 2000 | A |
6128279 | O'Neil et al. | Oct 2000 | A |
6131163 | Wiegel | Oct 2000 | A |
6141759 | Braddy | Oct 2000 | A |
6185598 | Farber et al. | Feb 2001 | B1 |
6219706 | Fan et al. | Apr 2001 | B1 |
6223205 | Harchol-Balter et al. | Apr 2001 | B1 |
6223287 | Douglas et al. | Apr 2001 | B1 |
6247057 | Barrera, III | Jun 2001 | B1 |
6249820 | Dobbins et al. | Jun 2001 | B1 |
6252878 | Locklear, Jr. et al. | Jun 2001 | B1 |
6259705 | Takahashi et al. | Jul 2001 | B1 |
6262976 | McNamara | Jul 2001 | B1 |
6286039 | Van Horne et al. | Sep 2001 | B1 |
6314463 | Abbott et al. | Nov 2001 | B1 |
6317786 | Yamane et al. | Nov 2001 | B1 |
6321338 | Porras et al. | Nov 2001 | B1 |
6324177 | Howes et al. | Nov 2001 | B1 |
6330560 | Harrison et al. | Dec 2001 | B1 |
6339423 | Sampson et al. | Jan 2002 | B1 |
6353614 | Borella et al. | Mar 2002 | B1 |
6363075 | Huang et al. | Mar 2002 | B1 |
6363081 | Gase | Mar 2002 | B1 |
6374300 | Masters | Apr 2002 | B2 |
6374359 | Shrader et al. | Apr 2002 | B1 |
6381632 | Lowell | Apr 2002 | B1 |
6393475 | Leong et al. | May 2002 | B1 |
6397261 | Eldridge et al. | May 2002 | B1 |
6430622 | Aiken, Jr. et al. | Aug 2002 | B1 |
6445704 | Howes et al. | Sep 2002 | B1 |
6446225 | Robsman et al. | Sep 2002 | B1 |
6459682 | Ellesson et al. | Oct 2002 | B1 |
6490682 | Vanstone et al. | Dec 2002 | B2 |
6496866 | Attanasio et al. | Dec 2002 | B2 |
6510464 | Grantges, Jr. et al. | Jan 2003 | B1 |
6515988 | Eldridge et al. | Feb 2003 | B1 |
6542926 | Zalewski et al. | Apr 2003 | B2 |
6564215 | Hsiao et al. | May 2003 | B1 |
6567857 | Gupta et al. | May 2003 | B1 |
6578066 | Logan et al. | Jun 2003 | B1 |
6587866 | Modi et al. | Jul 2003 | B1 |
6591262 | MacLellan et al. | Jul 2003 | B1 |
6594268 | Aukia et al. | Jul 2003 | B1 |
6598167 | Devine et al. | Jul 2003 | B2 |
6606315 | Albert et al. | Aug 2003 | B1 |
6609150 | Lee et al. | Aug 2003 | B2 |
6611498 | Baker et al. | Aug 2003 | B1 |
6650641 | Albert et al. | Nov 2003 | B1 |
6657974 | Britton et al. | Dec 2003 | B1 |
6697354 | Borella et al. | Feb 2004 | B1 |
6701377 | Burmann et al. | Mar 2004 | B2 |
6704317 | Dobson | Mar 2004 | B1 |
6711618 | Danner et al. | Mar 2004 | B1 |
6714979 | Brandt et al. | Mar 2004 | B1 |
6718383 | Hebert | Apr 2004 | B1 |
6742126 | Mann et al. | May 2004 | B1 |
6745229 | Gobin et al. | Jun 2004 | B1 |
6748413 | Boumas | Jun 2004 | B1 |
6748414 | Bournas | Jun 2004 | B1 |
6760758 | Lund et al. | Jul 2004 | B1 |
6763370 | Schmeidler et al. | Jul 2004 | B1 |
6763468 | Gupta et al. | Jul 2004 | B2 |
6772333 | Brendel | Aug 2004 | B1 |
6772334 | Glawitsch | Aug 2004 | B1 |
6779017 | Lamberton et al. | Aug 2004 | B1 |
6779033 | Watson et al. | Aug 2004 | B1 |
6877095 | Allen | Apr 2005 | B1 |
6886044 | Miles et al. | Apr 2005 | B1 |
6892307 | Wood et al. | May 2005 | B1 |
6941384 | Aiken, Jr. et al. | Sep 2005 | B1 |
6952728 | Alles et al. | Oct 2005 | B1 |
6954784 | Aiken, Jr. et al. | Oct 2005 | B2 |
6963917 | Callis et al. | Nov 2005 | B1 |
6965930 | Arrowood et al. | Nov 2005 | B1 |
6996617 | Aiken, Jr. et al. | Feb 2006 | B1 |
6996631 | Aiken, Jr. et al. | Feb 2006 | B1 |
7010605 | Dharmarajan | Mar 2006 | B1 |
7013482 | Krumel | Mar 2006 | B1 |
7058600 | Combar et al. | Jun 2006 | B1 |
7058718 | Fontes et al. | Jun 2006 | B2 |
7058789 | Henderson et al. | Jun 2006 | B2 |
7069438 | Balabine et al. | Jun 2006 | B2 |
7076555 | Orman et al. | Jul 2006 | B1 |
7120697 | Aiken, Jr. et al. | Oct 2006 | B2 |
7143087 | Fairweather | Nov 2006 | B2 |
7167927 | Philbrick et al. | Jan 2007 | B2 |
7181524 | Lele | Feb 2007 | B1 |
7188181 | Squier et al. | Mar 2007 | B1 |
7218722 | Turner et al. | May 2007 | B1 |
7225249 | Barry et al. | May 2007 | B1 |
7228359 | Monteiro | Jun 2007 | B1 |
7234161 | Maufer et al. | Jun 2007 | B1 |
7236457 | Joe | Jun 2007 | B2 |
7254133 | Govindarajan et al. | Aug 2007 | B2 |
7269850 | Govindarajan et al. | Sep 2007 | B2 |
7277963 | Dolson et al. | Oct 2007 | B2 |
7301899 | Goldstone | Nov 2007 | B2 |
7308499 | Chavez | Dec 2007 | B2 |
7310686 | Uysal | Dec 2007 | B2 |
7328267 | Bashyam et al. | Feb 2008 | B1 |
7334232 | Jacobs et al. | Feb 2008 | B2 |
7337241 | Boucher et al. | Feb 2008 | B2 |
7343399 | Hayball et al. | Mar 2008 | B2 |
7349970 | Clement et al. | Mar 2008 | B2 |
7370353 | Yang | May 2008 | B2 |
7391725 | Huitema et al. | Jun 2008 | B2 |
7398317 | Chen et al. | Jul 2008 | B2 |
7423977 | Joshi | Sep 2008 | B1 |
7430611 | Aiken, Jr. et al. | Sep 2008 | B2 |
7430755 | Hughes et al. | Sep 2008 | B1 |
7463648 | Eppstein et al. | Dec 2008 | B1 |
7467202 | Savchuk | Dec 2008 | B2 |
7472190 | Robinson | Dec 2008 | B2 |
7492766 | Cabeca et al. | Feb 2009 | B2 |
7506360 | Wilkinson et al. | Mar 2009 | B1 |
7509369 | Tormasov | Mar 2009 | B1 |
7512980 | Copeland et al. | Mar 2009 | B2 |
7533409 | Keane et al. | May 2009 | B2 |
7552323 | Shay | Jun 2009 | B2 |
7584262 | Wang et al. | Sep 2009 | B1 |
7584301 | Joshi | Sep 2009 | B1 |
7590736 | Hydrie et al. | Sep 2009 | B2 |
7613193 | Swami et al. | Nov 2009 | B2 |
7613822 | Joy et al. | Nov 2009 | B2 |
7673072 | Boucher et al. | Mar 2010 | B2 |
7675854 | Chen et al. | Mar 2010 | B2 |
7703102 | Eppstein et al. | Apr 2010 | B1 |
7707295 | Szeto et al. | Apr 2010 | B1 |
7711790 | Barrett et al. | May 2010 | B1 |
7747748 | Allen | Jun 2010 | B2 |
7765328 | Bryers et al. | Jul 2010 | B2 |
7792113 | Foschiano et al. | Sep 2010 | B1 |
7808994 | Vinokour et al. | Oct 2010 | B1 |
7826487 | Mukerji et al. | Nov 2010 | B1 |
7881215 | Daigle et al. | Feb 2011 | B1 |
7948952 | Hurtta | May 2011 | B2 |
7970934 | Patel | Jun 2011 | B1 |
7983258 | Ruben et al. | Jul 2011 | B1 |
7990847 | Leroy et al. | Aug 2011 | B1 |
7991859 | Miller et al. | Aug 2011 | B1 |
8019870 | Eppstein et al. | Sep 2011 | B1 |
8032634 | Eppstein et al. | Oct 2011 | B1 |
8090866 | Bashyam et al. | Jan 2012 | B1 |
8122116 | Matsunaga et al. | Feb 2012 | B2 |
8179809 | Eppstein et al. | May 2012 | B1 |
8185651 | Moran et al. | May 2012 | B2 |
8191106 | Choyi et al. | May 2012 | B2 |
8224971 | Miller et al. | Jul 2012 | B1 |
8234650 | Eppstein et al. | Jul 2012 | B1 |
8239445 | Gage et al. | Aug 2012 | B1 |
8255644 | Sonnier et al. | Aug 2012 | B2 |
8266235 | Jalan et al. | Sep 2012 | B2 |
8296434 | Miller et al. | Oct 2012 | B1 |
8312507 | Chen et al. | Nov 2012 | B2 |
8379515 | Mukerji | Feb 2013 | B1 |
8499093 | Grosser et al. | Jul 2013 | B2 |
8539075 | Bali et al. | Sep 2013 | B2 |
8543644 | Gage et al. | Sep 2013 | B2 |
8554929 | Szeto et al. | Oct 2013 | B1 |
8560693 | Wang et al. | Oct 2013 | B1 |
8584199 | Chen et al. | Nov 2013 | B1 |
8595791 | Chen et al. | Nov 2013 | B1 |
RE44701 | Chen et al. | Jan 2014 | E |
8675488 | Sidebottom et al. | Mar 2014 | B1 |
8681610 | Mukerji | Mar 2014 | B1 |
8750164 | Casado et al. | Jun 2014 | B2 |
8782221 | Han | Jul 2014 | B2 |
8813180 | Chen et al. | Aug 2014 | B1 |
8826372 | Chen et al. | Sep 2014 | B1 |
8879427 | Krumel | Nov 2014 | B2 |
8885463 | Medved et al. | Nov 2014 | B1 |
8897154 | Jalan et al. | Nov 2014 | B2 |
8965957 | Barros | Feb 2015 | B2 |
8977749 | Han | Mar 2015 | B1 |
8990262 | Chen et al. | Mar 2015 | B2 |
9094364 | Jalan et al. | Jul 2015 | B2 |
9106561 | Jalan et al. | Aug 2015 | B2 |
9118618 | Davis | Aug 2015 | B2 |
9118620 | Davis | Aug 2015 | B1 |
9154577 | Jalan et al. | Oct 2015 | B2 |
9154584 | Han | Oct 2015 | B1 |
9215275 | Kannan et al. | Dec 2015 | B2 |
9219751 | Chen et al. | Dec 2015 | B1 |
9253152 | Chen et al. | Feb 2016 | B1 |
9270705 | Chen et al. | Feb 2016 | B1 |
9270774 | Jalan et al. | Feb 2016 | B2 |
9338225 | Jalan et al. | May 2016 | B2 |
9350744 | Chen et al. | May 2016 | B2 |
9356910 | Chen et al. | May 2016 | B2 |
9497201 | Chen et al. | Nov 2016 | B2 |
20010015812 | Sugaya | Aug 2001 | A1 |
20010049741 | Skene et al. | Dec 2001 | A1 |
20020010783 | Primak et al. | Jan 2002 | A1 |
20020032777 | Kawata et al. | Mar 2002 | A1 |
20020078164 | Reinschmidt | Jun 2002 | A1 |
20020091831 | Johnson | Jul 2002 | A1 |
20020091844 | Craft et al. | Jul 2002 | A1 |
20020103916 | Chen et al. | Aug 2002 | A1 |
20020124089 | Aiken, Jr. et al. | Sep 2002 | A1 |
20020133491 | Sim et al. | Sep 2002 | A1 |
20020138618 | Szabo | Sep 2002 | A1 |
20020141448 | Matsunaga | Oct 2002 | A1 |
20020143953 | Aiken | Oct 2002 | A1 |
20020143954 | Aiken, Jr. et al. | Oct 2002 | A1 |
20020143991 | Chow et al. | Oct 2002 | A1 |
20020166080 | Attanasio et al. | Nov 2002 | A1 |
20020178259 | Doyle et al. | Nov 2002 | A1 |
20020178265 | Aiken, Jr. et al. | Nov 2002 | A1 |
20020178268 | Aiken, Jr. et al. | Nov 2002 | A1 |
20020191575 | Kalavade et al. | Dec 2002 | A1 |
20020194335 | Maynard | Dec 2002 | A1 |
20020194350 | Lu et al. | Dec 2002 | A1 |
20020199000 | Banerjee | Dec 2002 | A1 |
20030009591 | Hayball et al. | Jan 2003 | A1 |
20030014544 | Pettey | Jan 2003 | A1 |
20030023711 | Parmar et al. | Jan 2003 | A1 |
20030023873 | Ben-Itzhak | Jan 2003 | A1 |
20030031180 | Datta | Feb 2003 | A1 |
20030035409 | Wang et al. | Feb 2003 | A1 |
20030035420 | Niu | Feb 2003 | A1 |
20030061402 | Yadav | Mar 2003 | A1 |
20030079146 | Burstein | Apr 2003 | A1 |
20030081624 | Aggarwal et al. | May 2003 | A1 |
20030091028 | Chang et al. | May 2003 | A1 |
20030131245 | Linderman | Jul 2003 | A1 |
20030135625 | Fontes et al. | Jul 2003 | A1 |
20030152078 | Henderson et al. | Aug 2003 | A1 |
20030195962 | Kikuchi et al. | Oct 2003 | A1 |
20030202536 | Foster et al. | Oct 2003 | A1 |
20040001497 | Sharma | Jan 2004 | A1 |
20040062246 | Boucher et al. | Apr 2004 | A1 |
20040073703 | Boucher et al. | Apr 2004 | A1 |
20040078419 | Ferrari et al. | Apr 2004 | A1 |
20040078480 | Boucher et al. | Apr 2004 | A1 |
20040111516 | Cain | Jun 2004 | A1 |
20040128312 | Shalabi et al. | Jul 2004 | A1 |
20040139057 | Hirata et al. | Jul 2004 | A1 |
20040139108 | Tang et al. | Jul 2004 | A1 |
20040141005 | Banatwala et al. | Jul 2004 | A1 |
20040143599 | Shalabi et al. | Jul 2004 | A1 |
20040184442 | Jones et al. | Sep 2004 | A1 |
20040187032 | Gels et al. | Sep 2004 | A1 |
20040199616 | Karhu | Oct 2004 | A1 |
20040199646 | Susai et al. | Oct 2004 | A1 |
20040202182 | Lund et al. | Oct 2004 | A1 |
20040210623 | Hydrie et al. | Oct 2004 | A1 |
20040210663 | Phillips et al. | Oct 2004 | A1 |
20040213158 | Collett et al. | Oct 2004 | A1 |
20040253956 | Collins | Dec 2004 | A1 |
20040268358 | Darling et al. | Dec 2004 | A1 |
20050005207 | Herneque | Jan 2005 | A1 |
20050009520 | Herrero et al. | Jan 2005 | A1 |
20050021848 | Jorgenson | Jan 2005 | A1 |
20050021949 | Izawa | Jan 2005 | A1 |
20050027862 | Nguyen et al. | Feb 2005 | A1 |
20050036501 | Chung et al. | Feb 2005 | A1 |
20050036511 | Baratakke et al. | Feb 2005 | A1 |
20050044270 | Grove et al. | Feb 2005 | A1 |
20050074013 | Hershey et al. | Apr 2005 | A1 |
20050080890 | Yang et al. | Apr 2005 | A1 |
20050102400 | Nakahara et al. | May 2005 | A1 |
20050125276 | Rusu | Jun 2005 | A1 |
20050141506 | Aiken, Jr. et al. | Jun 2005 | A1 |
20050163073 | Heller et al. | Jul 2005 | A1 |
20050198335 | Brown et al. | Sep 2005 | A1 |
20050213586 | Cyganski et al. | Sep 2005 | A1 |
20050240989 | Kim et al. | Oct 2005 | A1 |
20050249225 | Singhal | Nov 2005 | A1 |
20050259586 | Hafid et al. | Nov 2005 | A1 |
20060023721 | Miyake et al. | Feb 2006 | A1 |
20060036610 | Wang | Feb 2006 | A1 |
20060036733 | Fujimoto et al. | Feb 2006 | A1 |
20060064478 | Sirkin | Mar 2006 | A1 |
20060069774 | Chen et al. | Mar 2006 | A1 |
20060069804 | Miyake et al. | Mar 2006 | A1 |
20060077926 | Rune | Apr 2006 | A1 |
20060092950 | Arregoces et al. | May 2006 | A1 |
20060098645 | Walkin | May 2006 | A1 |
20060112170 | Sirkin | May 2006 | A1 |
20060168319 | Trossen | Jul 2006 | A1 |
20060187901 | Cortes et al. | Aug 2006 | A1 |
20060190997 | Mahajani et al. | Aug 2006 | A1 |
20060209789 | Gupta et al. | Sep 2006 | A1 |
20060230129 | Swami et al. | Oct 2006 | A1 |
20060233100 | Luft et al. | Oct 2006 | A1 |
20060251057 | Kwon et al. | Nov 2006 | A1 |
20060277303 | Hegde et al. | Dec 2006 | A1 |
20060280121 | Matoba | Dec 2006 | A1 |
20070019543 | Wei et al. | Jan 2007 | A1 |
20070086382 | Narayanan et al. | Apr 2007 | A1 |
20070094396 | Takano et al. | Apr 2007 | A1 |
20070118881 | Mitchell et al. | May 2007 | A1 |
20070156919 | Potti et al. | Jul 2007 | A1 |
20070165622 | O'Rourke | Jul 2007 | A1 |
20070185998 | Touitou et al. | Aug 2007 | A1 |
20070195792 | Chen et al. | Aug 2007 | A1 |
20070230337 | Igarashi et al. | Oct 2007 | A1 |
20070245090 | King et al. | Oct 2007 | A1 |
20070259673 | Willars et al. | Nov 2007 | A1 |
20070274285 | Werber | Nov 2007 | A1 |
20070283429 | Chen et al. | Dec 2007 | A1 |
20070286077 | Wu | Dec 2007 | A1 |
20070288247 | Mackay | Dec 2007 | A1 |
20070294209 | Strub et al. | Dec 2007 | A1 |
20080031263 | Ervin et al. | Feb 2008 | A1 |
20080101396 | Miyata | May 2008 | A1 |
20080109452 | Patterson | May 2008 | A1 |
20080109870 | Sherlock et al. | May 2008 | A1 |
20080134332 | Keohane et al. | Jun 2008 | A1 |
20080162679 | Maher et al. | Jul 2008 | A1 |
20080228781 | Chen et al. | Sep 2008 | A1 |
20080250099 | Shen et al. | Oct 2008 | A1 |
20080263209 | Pisharody et al. | Oct 2008 | A1 |
20080271130 | Ramamoorthy | Oct 2008 | A1 |
20080282254 | Blander et al. | Nov 2008 | A1 |
20080291911 | Lee et al. | Nov 2008 | A1 |
20080320151 | McCanne et al. | Dec 2008 | A1 |
20090037361 | Prathaban et al. | Feb 2009 | A1 |
20090049198 | Blinn et al. | Feb 2009 | A1 |
20090070470 | Bauman et al. | Mar 2009 | A1 |
20090077651 | Poeluev | Mar 2009 | A1 |
20090092124 | Singhal et al. | Apr 2009 | A1 |
20090103710 | Ding | Apr 2009 | A1 |
20090106830 | Maher | Apr 2009 | A1 |
20090138606 | Moran et al. | May 2009 | A1 |
20090138945 | Savchuk | May 2009 | A1 |
20090141634 | Rothstein et al. | Jun 2009 | A1 |
20090164614 | Christian et al. | Jun 2009 | A1 |
20090172093 | Matsubara | Jul 2009 | A1 |
20090213858 | Dolganow et al. | Aug 2009 | A1 |
20090222583 | Josefsberg et al. | Sep 2009 | A1 |
20090227228 | Hu et al. | Sep 2009 | A1 |
20090228547 | Miyaoka et al. | Sep 2009 | A1 |
20090262741 | Jungck et al. | Oct 2009 | A1 |
20090271472 | Scheifler et al. | Oct 2009 | A1 |
20090313379 | Rydnell et al. | Dec 2009 | A1 |
20100008229 | Bi et al. | Jan 2010 | A1 |
20100023621 | Ezolt et al. | Jan 2010 | A1 |
20100036952 | Hazlewood et al. | Feb 2010 | A1 |
20100054139 | Chun et al. | Mar 2010 | A1 |
20100061319 | Aso et al. | Mar 2010 | A1 |
20100064008 | Yan et al. | Mar 2010 | A1 |
20100082787 | Kommula et al. | Apr 2010 | A1 |
20100083076 | Ushiyama | Apr 2010 | A1 |
20100094985 | Abu-Samaha et al. | Apr 2010 | A1 |
20100098417 | Tse-Au | Apr 2010 | A1 |
20100106833 | Banerjee et al. | Apr 2010 | A1 |
20100106854 | Kim et al. | Apr 2010 | A1 |
20100128606 | Patel et al. | May 2010 | A1 |
20100162378 | Jayawardena et al. | Jun 2010 | A1 |
20100188975 | Raleigh | Jul 2010 | A1 |
20100210265 | Borzsei et al. | Aug 2010 | A1 |
20100217793 | Preiss | Aug 2010 | A1 |
20100217819 | Chen et al. | Aug 2010 | A1 |
20100223630 | Degenkolb et al. | Sep 2010 | A1 |
20100228819 | Wei | Sep 2010 | A1 |
20100235507 | Szeto et al. | Sep 2010 | A1 |
20100235522 | Chen et al. | Sep 2010 | A1 |
20100235880 | Chen et al. | Sep 2010 | A1 |
20100238828 | Russell | Sep 2010 | A1 |
20100265824 | Chao et al. | Oct 2010 | A1 |
20100268814 | Cross et al. | Oct 2010 | A1 |
20100293296 | Hsu et al. | Nov 2010 | A1 |
20100312740 | Clemm et al. | Dec 2010 | A1 |
20100318631 | Shukla | Dec 2010 | A1 |
20100322252 | Suganthi et al. | Dec 2010 | A1 |
20100330971 | Selitser et al. | Dec 2010 | A1 |
20100333101 | Pope et al. | Dec 2010 | A1 |
20110007652 | Bai | Jan 2011 | A1 |
20110013525 | Breslau | Jan 2011 | A1 |
20110019550 | Bryers et al. | Jan 2011 | A1 |
20110023071 | Li et al. | Jan 2011 | A1 |
20110029599 | Pulleyn et al. | Feb 2011 | A1 |
20110032941 | Quach et al. | Feb 2011 | A1 |
20110040826 | Chadzelek et al. | Feb 2011 | A1 |
20110047294 | Singh et al. | Feb 2011 | A1 |
20110060831 | Ishii et al. | Mar 2011 | A1 |
20110064083 | Borkenhagen | Mar 2011 | A1 |
20110093522 | Chen et al. | Apr 2011 | A1 |
20110099403 | Miyata et al. | Apr 2011 | A1 |
20110110294 | Valluri et al. | May 2011 | A1 |
20110145324 | Reinart et al. | Jun 2011 | A1 |
20110153834 | Bharrat | Jun 2011 | A1 |
20110178985 | San Martin Arribas et al. | Jul 2011 | A1 |
20110185073 | Jagadeeswaran et al. | Jul 2011 | A1 |
20110191773 | Pavel et al. | Aug 2011 | A1 |
20110196971 | Reguraman et al. | Aug 2011 | A1 |
20110276695 | Maldaner | Nov 2011 | A1 |
20110276982 | Nakayama et al. | Nov 2011 | A1 |
20110289496 | Steer | Nov 2011 | A1 |
20110292939 | Subramaian et al. | Dec 2011 | A1 |
20110302256 | Sureshehandra et al. | Dec 2011 | A1 |
20110307541 | Walsh et al. | Dec 2011 | A1 |
20120008495 | Shen et al. | Jan 2012 | A1 |
20120023231 | Ueno | Jan 2012 | A1 |
20120026897 | Guichard et al. | Feb 2012 | A1 |
20120030341 | Jensen et al. | Feb 2012 | A1 |
20120066371 | Patel et al. | Mar 2012 | A1 |
20120084419 | Kannan et al. | Apr 2012 | A1 |
20120084460 | McGinnity et al. | Apr 2012 | A1 |
20120106355 | Ludwig | May 2012 | A1 |
20120117571 | Davis et al. | May 2012 | A1 |
20120144014 | Natham et al. | Jun 2012 | A1 |
20120144015 | Jalan et al. | Jun 2012 | A1 |
20120151353 | Joanny | Jun 2012 | A1 |
20120155495 | Clee et al. | Jun 2012 | A1 |
20120170548 | Rajagopalan et al. | Jul 2012 | A1 |
20120173759 | Agarwal et al. | Jul 2012 | A1 |
20120179770 | Jalan et al. | Jul 2012 | A1 |
20120191839 | Maynard | Jul 2012 | A1 |
20120239792 | Banerjee et al. | Sep 2012 | A1 |
20120240185 | Kapoor et al. | Sep 2012 | A1 |
20120290727 | Tivig | Nov 2012 | A1 |
20120297046 | Raja et al. | Nov 2012 | A1 |
20120311116 | Jalan et al. | Dec 2012 | A1 |
20130007225 | Gage et al. | Jan 2013 | A1 |
20130046876 | Narayana et al. | Feb 2013 | A1 |
20130058335 | Koponen et al. | Mar 2013 | A1 |
20130074177 | Varadhan et al. | Mar 2013 | A1 |
20130083725 | Mallya et al. | Apr 2013 | A1 |
20130089099 | Pollock et al. | Apr 2013 | A1 |
20130091273 | Ly et al. | Apr 2013 | A1 |
20130100958 | Jalan et al. | Apr 2013 | A1 |
20130124713 | Feinberg et al. | May 2013 | A1 |
20130136139 | Zheng et al. | May 2013 | A1 |
20130148500 | Sonoda et al. | Jun 2013 | A1 |
20130166731 | Yamanaka et al. | Jun 2013 | A1 |
20130166762 | Jalan et al. | Jun 2013 | A1 |
20130173795 | McPherson | Jul 2013 | A1 |
20130176854 | Chisu et al. | Jul 2013 | A1 |
20130191486 | Someya et al. | Jul 2013 | A1 |
20130191548 | Boddukuri et al. | Jul 2013 | A1 |
20130198385 | Han et al. | Aug 2013 | A1 |
20130250765 | Ehsan et al. | Sep 2013 | A1 |
20130258846 | Damola | Oct 2013 | A1 |
20130262702 | Davis | Oct 2013 | A1 |
20130282791 | Kruglick | Oct 2013 | A1 |
20130311686 | Fetterman et al. | Nov 2013 | A1 |
20140012972 | Han | Jan 2014 | A1 |
20140047115 | Lipscomb et al. | Feb 2014 | A1 |
20140089500 | Sankar et al. | Mar 2014 | A1 |
20140164617 | Jalan et al. | Jun 2014 | A1 |
20140169168 | Jalan et al. | Jun 2014 | A1 |
20140207845 | Han et al. | Jul 2014 | A1 |
20140258465 | Li | Sep 2014 | A1 |
20140258536 | Chiong | Sep 2014 | A1 |
20140269728 | Jalan et al. | Sep 2014 | A1 |
20140286313 | Fu et al. | Sep 2014 | A1 |
20140298091 | Carlen et al. | Oct 2014 | A1 |
20140330977 | van Bemmel | Nov 2014 | A1 |
20140330982 | Jalan et al. | Nov 2014 | A1 |
20140334485 | Jain et al. | Nov 2014 | A1 |
20140359052 | Joachimpillai et al. | Dec 2014 | A1 |
20150039671 | Jalan et al. | Feb 2015 | A1 |
20150085650 | Cui et al. | Mar 2015 | A1 |
20150156223 | Xu et al. | Jun 2015 | A1 |
20150215436 | Kancherla | Jul 2015 | A1 |
20150237173 | Virkki et al. | Aug 2015 | A1 |
20150281104 | Golshan et al. | Oct 2015 | A1 |
20150296058 | Jalan et al. | Oct 2015 | A1 |
20150312268 | Ray | Oct 2015 | A1 |
20150333988 | Jalan et al. | Nov 2015 | A1 |
20150350048 | Sampat et al. | Dec 2015 | A1 |
20150350379 | Jalan et al. | Dec 2015 | A1 |
20150350383 | Davis | Dec 2015 | A1 |
20150381465 | Narayanan et al. | Dec 2015 | A1 |
20160014052 | Han | Jan 2016 | A1 |
20160036778 | Chen et al. | Feb 2016 | A1 |
20160042014 | Jalan et al. | Feb 2016 | A1 |
20160043901 | Sankar et al. | Feb 2016 | A1 |
20160044095 | Sankar et al. | Feb 2016 | A1 |
20160050233 | Chen et al. | Feb 2016 | A1 |
20160088074 | Kannan et al. | Mar 2016 | A1 |
20160105395 | Chen et al. | Apr 2016 | A1 |
20160105446 | Chen et al. | Apr 2016 | A1 |
20160119382 | Chen et al. | Apr 2016 | A1 |
20160139910 | Ramanathan et al. | May 2016 | A1 |
20160156708 | Jalan et al. | Jun 2016 | A1 |
20160173579 | Jalan et al. | Jun 2016 | A1 |
20160261642 | Chen et al. | Sep 2016 | A1 |
20170041350 | Chen et al. | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
1372662 | Oct 2002 | CN |
1449618 | Oct 2003 | CN |
1473300 | Feb 2004 | CN |
1529460 | Sep 2004 | CN |
1575582 | Feb 2005 | CN |
1714545 | Dec 2005 | CN |
1725702 | Jan 2006 | CN |
1910869 | Feb 2007 | CN |
101004740 | Jul 2007 | CN |
101094225 | Dec 2007 | CN |
101163336 | Apr 2008 | CN |
101169785 | Apr 2008 | CN |
101189598 | May 2008 | CN |
101193089 | Jun 2008 | CN |
101247349 | Aug 2008 | CN |
101261644 | Sep 2008 | CN |
101495993 | Jul 2009 | CN |
101567818 | Oct 2009 | CN |
101878663 | Nov 2010 | CN |
102104548 | Jun 2011 | CN |
102143075 | Aug 2011 | CN |
102546590 | Jul 2012 | CN |
102571742 | Jul 2012 | CN |
102577252 | Jul 2012 | CN |
102918801 | Feb 2013 | CN |
103365654 | Oct 2013 | CN |
103533018 | Jan 2014 | CN |
103944954 | Jul 2014 | CN |
104040990 | Sep 2014 | CN |
104067569 | Sep 2014 | CN |
104106241 | Oct 2014 | CN |
104137491 | Nov 2014 | CN |
104796396 | Jul 2015 | CN |
102577252 | Mar 2016 | CN |
102918801 | May 2016 | CN |
0648038 | Apr 1995 | EP |
1209876 | May 2002 | EP |
1770915 | Apr 2007 | EP |
1885096 | Feb 2008 | EP |
02296313 | Mar 2011 | EP |
2577910 | Apr 2013 | EP |
2622795 | Aug 2013 | EP |
2647174 | Oct 2013 | EP |
2760170 | Jul 2014 | EP |
2772026 | Sep 2014 | EP |
2901308 | Aug 2015 | EP |
2760170 | Dec 2015 | EP |
1182560 | Nov 2013 | HK |
1183569 | Dec 2013 | HK |
1183996 | Jan 2014 | HK |
1188498 | May 2014 | HK |
1189438 | Jun 2014 | HK |
1198565 | May 2015 | HK |
1198848 | Jun 2015 | HK |
1199153 | Jun 2015 | HK |
1199779 | Jul 2015 | HK |
1200617 | Aug 2015 | HK |
H09-097233 | Apr 1997 | JP |
1999096128 | Apr 1999 | JP |
H11-338836 | Oct 1999 | JP |
2000276432 | Oct 2000 | JP |
2000307634 | Nov 2000 | JP |
2001051859 | Feb 2001 | JP |
2001298449 | Oct 2001 | JP |
2002091936 | Mar 2002 | JP |
2003141068 | May 2003 | JP |
2003186776 | Jul 2003 | JP |
2005141441 | Jun 2005 | JP |
2006332825 | Dec 2006 | JP |
2008040718 | Feb 2008 | JP |
2009500731 | Jan 2009 | JP |
2013528330 | May 2011 | JP |
2014504484 | Feb 2014 | JP |
2014143686 | Aug 2014 | JP |
2015507380 | Mar 2015 | JP |
5855663 | Dec 2015 | JP |
5906263 | Mar 2016 | JP |
5913609 | Apr 2016 | JP |
5946189 | Jun 2016 | JP |
10-0830413 | May 2008 | KR |
20130096624 | Aug 2013 | KR |
101576585 | Dec 2015 | KR |
0113228 | Feb 2001 | WO |
2001014990 | Mar 2001 | WO |
WO2001045349 | Jun 2001 | WO |
2003103237 | Dec 2003 | WO |
WO2004084085 | Sep 2004 | WO |
WO2006098033 | Sep 2006 | WO |
2008053954 | May 2008 | WO |
WO2008078593 | Jul 2008 | WO |
2011049770 | Apr 2011 | WO |
WO2011079381 | Jul 2011 | WO |
2011149796 | Dec 2011 | WO |
2012050747 | Apr 2012 | WO |
2012075237 | Jun 2012 | WO |
WO2012083264 | Jun 2012 | WO |
WO2012097015 | Jul 2012 | WO |
2013070391 | May 2013 | WO |
2013081952 | Jun 2013 | WO |
2013096019 | Jun 2013 | WO |
2013112492 | Aug 2013 | WO |
WO2014031046 | Feb 2014 | WO |
2014052099 | Apr 2014 | WO |
2014088741 | Jun 2014 | WO |
2014093829 | Jun 2014 | WO |
WO2014138483 | Sep 2014 | WO |
WO2014144837 | Sep 2014 | WO |
WO2014179753 | Nov 2014 | WO |
WO2015153020 | Oct 2015 | WO |
Entry |
---|
Spatscheck et al., “Optimizing TCP Forwarder Performance”, IEEE/ACM Transactions on Networking, vol. 8, No. 2, Apr. 2000. |
Kjaer et al. “Resource allocation and disturbance rejection in web servers using SLAs and virtualized servers”, IEEE Transactions on Network and Service Management, IEEE, US, vol. 6, No. 4, Dec. 1, 2009. |
Sharifian et al. “An approximation-based load-balancing algorithm with admission control for cluster web servers with dynamic workloads”, the Journal of Supercomputing, Kluwer Academic Publishers, BO, vol. 53, No. 3, Jul. 3, 2009. |
Cardellini et al., “Dynamic Load Balancing on Web-server Systems”, IEEE Internet Computing, vol. 3, No. 3, pp. 28-39, May-Jun. 1999. |
Hunt et al. NetDispatcher: A TCP Connection Router, IBM Research Report RC 20853 May 19, 1997. |
Yamamoto et al., “Performance Evaluation of Window Size in Proxy-based TCP for Multi-hop Wireless Networks,” IPSJ SIG Technical Reports, May 15, 2008, vol. 2008, No. 44, pp. 109-114. |
Abe et al., “Adaptive Split Connection Schemes in Advanced Relay Nodes,” IEICE Technical Report, Feb. 22, 2010, vol. 109, No. 438, pp. 25-30. |
Gite, Vivek, “Linux Tune Network Stack (Buffers Size) to Increase Networking Performance,” accessed Apr. 13, 2016 at URL: <<http://www.cyberciti.biz/faq/linux-tcp-tuning/>>, Jul. 8, 2009, 24 pages. |
“tcp—TCP Protocol”, Linux Programmer's Manual, accessed Apr. 13, 2016 at URL: <<https://www.freebsd.org/cgi/man.cgi?query=tcp&apropos=0&sektion=7&manpath=SuSE+Linux%2Fi386+11.0&format=asci>>, Nov. 25, 2007, 11 pages. |
Cardellini, et al., “Dynamic Load Balancing on Web-Server Systems”, IEEE Internet Computing, 1999, vol. 3(3), pp. 28-29. |
Samar, V., “Single Sign-On Using Cookies for Web Applications,” IEEE 8th International Workshop, 1999, pp. 158-163. |
Apostolopoulos, G. et al., “Design, Implementation and Performance of a Content-Based Switch,” INFOCOM 2000, Nineteenth Annual Joint Conference of the IEEE Computer and Communication Societies, IEEE, Mar. 2000, pp. 1117-1136, vol. 3. |
Koike et al., “Transport Middleware for Network-Based Control,” IEICE Technical Report, Jun. 22, 2000, vol. 100, No. 53, pp. 13-18. |
Number | Date | Country | |
---|---|---|---|
20150281087 A1 | Oct 2015 | US |