Forwarding data packets using a service-based forwarding policy

Information

  • Patent Grant
  • 9942152
  • Patent Number
    9,942,152
  • Date Filed
    Tuesday, March 25, 2014
    10 years ago
  • Date Issued
    Tuesday, April 10, 2018
    6 years ago
Abstract
Methods and systems are provided for forwarding data packets in a service network using a service-based policy. A gateway node may receive data packets from a service session and send the data packets for a forwarding node. The forwarding node may match the service session data packet against a service address and forwarding policy, the forwarding policy being based on capabilities and service configurations of the servicing nodes in the service network. Forwarding node may then forward the service session data packet to a servicing node in accordance with the forwarding policy, and send the service session data packet to a server for processing.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a related to co-pending U.S. application Ser. No. 14/225,341, titled “Distributing Service Sessions.” The disclosures of the above referenced application are hereby incorporated by reference.


BACKGROUND OF THE INVENTION

Field of the Invention


The present invention relates generally to data networks, and more particularly to a network for distribution and load balancing for a virtual service.


Description of the Related Art


Service load balancers, such as server load balancers, application delivery controllers, or traffic managers, typically balance load among a plurality of servers providing network services such as Web documents, voice calls, advertisements, enterprise applications, video streaming services, file transfers, gaming, or any broadband services. A network service is associated typically with an IP address. In a typical IP network, an IP address is assigned to a network computing device. Network routers and switches are designed to forward data packets destined to the IP address to the assigned network computing device. One cannot assign the same IP address to multiple network computing devices with current network routers and switches.


When a service provider deploys a network service, the service provider needs to consider expected client demand that can change between high demand to low demand at different times. In one scenario, a software vendor provides software patches on a regular basis. Normally, a single service load balancer is capable of handling the software patch download demand. However, when the software vendor rolls out a major software update, the software vendor anticipates a dramatic increase of download demand shortly after the major software update is released. The software vendor may plan to add additional resources, such as two additional service load balancers and four more patch servers to handle the increased demand. The software vendor could use different IP addresses for the additional service load balancers. However, this would require the client devices to learn the new IP addresses before requesting the software update service.


The day after the major software update release, the software vendor may see a substantial decline of demand. The software vendor may remove the two added service load balancers and four patch servers. By doing so, the client devices which earlier learned the new IP addresses of the now-removed service load balancers can no longer use the patch service. The client devices must reacquire the IP address of the remaining service load balancer in order to use the software patch service going forward.


During the software update release, the software vendor may have a number of major customers, some of whom require sessions to be encrypted and some of whom require dedicated service load balancers. Some of the added service load balancers may be configured with large memory and processing capacity to handle large bursts of requests. Moreover, some service load balancers may be equipped with special hardware processing capabilities to handle certain services. Such hardware processing capabilities may include, but are not limited to, security processors, special digital signal processors (DSP), network processors (NP), and graphics or video processors. Additional hardware capacity, such as larger memory module, higher performance processor, multi-core processors, and better hardware system design, also affects capabilities of each service load balancer. Special software, such as content caching algorithm or encryption algorithm, may differentiate one service load balancer from another. Furthermore, differentiation of service load balancers may depend on the clients of the service sessions. For example, when access to a government service comes from certain foreign client computers, the sessions may be best served by service load balancers equipped with additional security safeguards. Another example is when access of a company document services is within the company's computers, the accesses may be recorded by specific service load balancers in order to satisfy company regulation or legal compliance.


It should be apparent from the foregoing that there is a need to provide a dynamic service network to distribute service sessions to a plurality of service load balancers according to the capacities and capabilities of the service load balancers or to satisfy particular needs of the clients of the service network.


SUMMARY

This summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detailed Description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.


The present disclosure concerns methods and systems for forwarding data packets in a service network using a service-based policy. In one computer-implemented method for forwarding a data packet in a service network, the method comprises: receiving from a client device, the data packet destined to a servicing node; matching the data packet against a service address; matching the data packet against a classification rule in a forwarding policy associated with the service address, wherein the classification rule is based on a capability of a second servicing node; and upon determining that the data packet matches the service address and the packet matches the classification rule, sending to the servicing node.


The present disclosure further concerns a non-transitory computer-readable medium comprising instructions, which when executed by one or more processors, implements a method for forwarding a data packet in a service network according to the methods described herein.


In an exemplary computer-implemented method for generating a forwarding policy for a service network comprising a forwarding node and a plurality of servicing nodes, the method comprises: receiving a capability from a servicing node related to a service address; generating a plurality of classification rules based on the received capability and a second capability of another servicing node; and storing the generated classification rules in the forwarding policy.


The present disclosure further concerns a non-transitory computer-readable medium comprising instructions, which when executed by one or more processors, implements a method for method for generating a forwarding policy for a service network comprising a forwarding node and a plurality of servicing nodes according to the methods described herein.


The present disclosure also concerns a service network system for forwarding a data packet in a service network, the system comprising: a plurality of servicing nodes, wherein each of the plurality of servicing nodes is configured to: send to a network controller a capability associated to a service address; and send to the network controller a collection of statistics data related to the capability; a forwarding node, wherein the forwarding node is configured to: receive from the network controller a forwarding policy comprising a plurality of classification rules; receive a data packet; match the data packet against the service address; match the data packet against a classification rule of the forwarding policy; upon determining that the data packet matches the service address and the classification rule, send the data packet to a servicing node indicated by the classification rule; and send to the network controller a second collection of statistics data related to the forwarding policy; and the network controller, wherein the network controller is configured to: receive a plurality of capabilities from the plurality of servicing nodes; generate the plurality of classification rules based on the received plurality of capabilities; store the generated plurality of classification rules in the forwarding policy; send the forwarding policy to the forwarding node; receive the plurality of statistics data from the plurality of servicing nodes; receive the statistics data from the forwarding node; and generate a report based on the received statistics data.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example and not by limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1 illustrates an exemplary embodiment of a service data network distributing a service session based on a forwarding policy.



FIG. 2 illustrates an exemplary embodiment of a network device.



FIG. 3 illustrates an exemplary embodiment of a forwarding network node using a forwarding policy.



FIG. 4 illustrates an exemplary embodiment of a classification.



FIG. 5 illustrates an exemplary embodiment of a network controller to generate a forwarding policy.



FIG. 6 illustrates an exemplary method to generate a forwarding policy.



FIG. 7 illustrates an exemplary embodiment of a network controller to generate reports for a service network.





DETAILED DESCRIPTION

The following detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show illustrations in accordance with example embodiments. These example embodiments, which are also referred to herein as “examples,” are described in enough detail to enable those skilled in the art to practice the present subject matter. The embodiments can be combined, other embodiments can be utilized, or structural, logical, and electrical changes can be made without departing from the scope of what is claimed. The following detailed description is therefore not to be taken in a limiting sense, and the scope is defined by the appended claims and their equivalents.



FIG. 1 illustrates an exemplary embodiment of a data network handling data packets of a service session using a service-based forwarding policy. Client 102 conducts a service session 104 for a service address 106 with server 108. In one embodiment, data packets of service session 104 are processed by service network 114 prior to being delivered to server 108. Service network 114 may include a plurality of network nodes such as a gateway node 116, a forwarding node 118, or one or more servicing nodes 120 and 122. Service network 114 may serve service address 106.


In some embodiments, gateway node 116 may receive data packets from service session 104 and send the data packets to forwarding node 118. When forwarding node 118 receives a service session 104 data packet, forwarding node 118 may match the service session 104 data packet against service address 106 and forwarding policy 124, which is based on capabilities and service configurations of servicing nodes in service network 114. Forwarding node 118 may forward service session 104 data packet to servicing node 120, in accordance with the forwarding policy 124. Servicing node 120 may process service session 104 data packet, select a server, such as server 108, and send service session 104 data packet to server 108.


Forwarding node 118 may receive forwarding policy 124 from network controller 126. Network controller 126 may generate forwarding policy 124 based on information capabilities and service configurations of a plurality of servicing nodes of service network 114.


In exemplary embodiments, a network node, which can be a network controller 126, a gateway node 116, a forwarding node 118, or a servicing node of service network 114, illustrated as network device 202 in FIG. 2, may include a processor module 204, a network module 206, and a computer storage module 208. Processor module 204 may include one or more processors which may be a micro-processor, an Intel processor, an AMD processor, a MIPS processor, an ARM-based processor, a RISC processor, or any other type of processor. Processor module 204 may include one or more processor cores embedded in a processor. Additionally, processor module 204 may include one or more embedded processors or embedded processing elements in a Field Programmable Gate Array (FPGA), an Application Specific Integrated Circuit (ASIC), or Digital Signal Processor (DSP). In some embodiments, network module 206 may include a network interface such as Ethernet, optical network interface, a wireless network interface, T1/T3 interface, or a WAN or LAN interface. Furthermore, network module 206 may include a network processor. Computer storage module 208 may include RAM, DRAM, SRAM, SDRAM, or memory utilized by processor module 204 or network module 206. Computer storage module 208 may store data utilized by processor module 204. Computer storage module 208 may include a hard disk drive, a solid state drive, an external disk, a DVD, a CD, or a readable external disk. Additionally, computer storage module 208 may store one or more computer programming instructions, which when executed by processor module 204 or network module 206, implement one or more of the functionalities of the present invention. Network device 202 may also include an input/output (I/O) module 210 which may include a keyboard, a keypad, a mouse, a gesture-based input sensor, a microphone, a physical or sensory input peripheral, a display, a speaker, or a physical or sensory output peripheral.


In various embodiments, service network 114 may connect to at least one client device 102. Client device 102 may be a personal computer, a laptop, a smartphone, a cell phone, a tablet, a personal digital assistant (PDA), a desktop, a notebook, a set-top box, a network connected device, a network connecting computing device, or a network element such as an Ethernet switch, a router, or any network computing device seeking a service from a server.


Service network 114 may connect to one or more servers 108, 110, and 112. The servers may be any type of server, including, but not limited to, a Web server, a video server, a music server, an e-commerce server, an enterprise application server, a news server, a mobile broadband service server, a messaging server, an email server, a game server, an app server, an Internet radio server, a storage server, a social network services server, or a network computing device providing services to a service session 104 from client 102.


Service network 114 may be configured to serve service address 106. Service address 106 may represent a network address for service session 104 between client 102 and a server. Additionally, service address 106 may include one or more of an IP address, a TCP port number, a UDP port number, a data link layer identity, a VLAN identity, a network identity, and a service identity.


In an exemplary embodiment illustrated in FIG. 3, forwarding node 118 may receive data packet 302 of service session 104. Forwarding node 118 may match data packet 302 against service address 106. Data packet 302 may contain service address 106 as a destination network address. Forwarding node 118 may obtain a destination network address of data packet 302 and match the obtained network address against service address 106. In some embodiments, data packet 302 contains service address 106 in its payload. Forwarding node 118 may obtain a payload of data packet 302 and match the obtained payload against service address 106.


Upon determining data packet 302 matches service address 106, forwarding node 118 may match data packet 302 with forwarding policy 124 to select service node 120. Forwarding node 118 may match data packet against a classification rule 304 of forwarding policy 124. Classification rule 304 may include a classification 306, a primary servicing node information 308 and a secondary servicing node information 310. Primary servicing node information 308 may indicate selecting service node 120 to forward data packet 302. Furthermore, primary servicing node information 308 may include an identity of servicing node 120, a process to modify data packet 302 prior to sending to servicing node 120, or an indication for additional processing of data packet 302. Secondary servicing node information 310 may include an indication to select servicing node 122 to send data packet 302 under some condition about primary servicing node 120. Additionally, secondary servicing node information 310 may include an indication to send to servicing node 122 as well as to primary servicing node 120. Secondary servicing node information 310 may indicate that if servicing node 120 is not available or busy, servicing node 122 may be selected as a target to receive data packet 302.


Classification 306, as illustrated in FIG. 4, may include one or more of a source IP address classification 402, a source port classification 404, a destination port classification 406, or a link layer address classification 408. Source IP address classification 402 may include one or more IP addresses, one or more IP address ranges, one or more IP addresses with network masks, or an indication of a matching process applied to a source IP address. Source port classification 404 may include one or more TCP/UDP ports or one or more port ranges. Destination port classification 406 may include one or more TCP/UDP ports or one or more port ranges. Link layer address classification 408 may include one or more of a link layer address, a VLAN identity, a label, a tag, or a MPLS tag. Classification 306 may include additional classification types such as a cookie classification, a user identity classification, a content classification, a pattern, a string, or other forms of classification.


In various embodiments, forwarding node 118 may match data packet 302 against classification 306 to determine if there is a match with classification rule 304. Forwarding node 118 may determine that there is a match between data packet 302 and classification 306, and forwarding node 118 may select servicing node 120 using primary servicing node information 308. Forwarding node 118 may apply additional processing to data packet 302 according to primary servicing node information 308. Forwarding node 118 may then send data packet 302, modified if appropriate, to servicing node 120. Additionally, forwarding node 118 may check secondary servicing node information 310 and determine if servicing node 120 matches the condition in secondary servicing node information 310. Forwarding node 118 may determine if servicing node 120 is busy or is not available, and forwarding node 118 may select servicing node 122 and send data packet 302 to servicing node 122 according to secondary servicing node information 310.


Primary servicing node information 308 or secondary servicing node information 310 may include data treatment processing relating to access control, traffic management, bandwidth management, quality of service, legal interception, security handling, tunneling, security detection, duplicating, debugging, or other data-oriented processing treatment.


Classification 306 may include a source IP address classification 402. Forwarding node 118 may obtain a source IP address of data packet 302 and match the obtained source IP address of data packet 302 against the source IP address classification 402 of classification 306. Forwarding node 118 may obtain a source port of data packet 302 and match it against the source port classification 404 of classification 306. Forwarding node 118 may obtain a destination port of data packet 302 and match it against the destination port classification 406 of classification 306. Forwarding node 118 may obtain a link layer address of data packet 302 and match it against the link layer address classification 408 of classification 306. Forwarding node 118 may obtain one or more of data pieces from data packet 302 and match the obtained data against corresponding classification data in classification 306. In various embodiments, all classification data must match data packet 302 in order to affirmatively match classification 306. In some other embodiments, it is sufficient for one or more of classification data of classification 306 to match data packet 302 for forwarding node 118 to determine if data packet 302 matches classification 306.


Forwarding node 118 may perform pre-determined calculating steps while matching data packet 302 to classification 306. Pre-determined calculating steps may include a hashing function, a bit-wise operation, a cryptographic function, a comparison, or a lookup function. Pre-determined calculating steps may also include hardware such as a Context Addressable Memory (CAM), T-CAM, FPGA, DSP, or any lookup hardware accelerator.


As aforementioned in FIG. 1, forwarding node 118 may receive forwarding policy 124 from network controller 126. In an exemplary embodiment illustrated in FIG. 5, network controller 126 may generate forwarding policy 502 and send forwarding policy 502 to forwarding node 118. In various embodiments, forwarding node 118 may update or replace forwarding policy 124 with received forwarding policy 502.


Network controller 126 may generate forwarding policy 502 based on capability information 504 received from servicing node 120 and optionally other servicing nodes of service network 114. Network controller 126 may include classification configuration 506. In various embodiments, network controller 126 may receive classification configuration 506 from a network administrator, a network computer, or a predetermined configuration stored in a storage module of network controller 126.


Network controller 126 may perform a plurality of steps illustrated in FIG. 6 in conjunction with FIG. 5 to generate forwarding policy 502. In step 602, network controller 126 receives capability information 504 from service nodes. Capability information 504 may include various capabilities regarding the service nodes and capacities for the capabilities. Example capacities and capabilities of capability information 504 may include connection capacity, memory capacity, network applications, capabilities and capacities for the network applications, and hardware acceleration capabilities and capacities. Hardware acceleration of servicing node 120 may include encryption hardware, network processor, FPGA, ASIC, network packet streaming engine, video codec, DSP, data de-duplication hardware accelerator, deep packet inspection hardware accelerator, graphics processor, or other hardware accelerator designed to speed up network packet or network application processing. Network applications of servicing node 120 may include HTTP proxy, TCP proxy, security detection or prevention application, legal interception, deep packet inspection, web browser proxy, content caching, WAN optimization, video streaming optimization, email optimization, content delivery network application, or other network-based service application to assist service application served by a server. Capability information 504 may be categorized into capability and capacity for one or more network applications.


In step 604, network controller 126 may determine if received capability information 504 is different from previously received capability information from servicing node 120. Received capability information 504 may replace or update any previously received capability information from servicing node 120.


In step 606, network controller 126 may calculate a credit 508 for servicing node 120 using capability information 504. Network controller 126 may obtain capability of a network application 510 from capability information 504 and calculate credit 508 using the network application 510 capability. Network controller 126 may use classification configuration 506 to calculate credit 508. Typically, the higher or better the network application 510 capability, the higher credit 508 that may be assigned. Capability information 504 may indicate an SSL encryption hardware used for network application 510. Network controller 126 may assign a credit of 2 to servicing node 120 for network application 510. Capability information 504 may indicate network application 510 may require SSL but no SSL hardware may be listed in capability information 504. Network controller 126 may assign a value of 1 to credit 508 for SSL network application 510. Network controller 126 may assign credit 508 a value of 4 if SSL hardware is available, according to classification configuration 506.


Network controller 126 may calculate a value of 3 for credit 508 if capability information 504 indicates HTTP proxy network application 510 allows a capacity of 10,000 connections. Network controller 126 may use classification configuration 506 to calculate credit 508 for HTTP proxy application.


In step 608, network controller 126 may calculate a total credit for network application 510 over a plurality of servicing nodes. Network controller 126 may calculate the total credit by adding the credits, including credit 508, for network application 510. Network controller 126 may multiply each credit with a multiplying factor according to classification configuration 506 prior to adding the credits. The total credit for network application 510 may be 32 and servicing node 120 may have credit 508 of value 3 for network application 510.


In step 610, network controller 126 may generate a plurality of classification rules associated to network application 510. Network controller 126 may generate a classification rule 304, which includes classification 306 associating to network application 510. Network application 510 may be associated to a TCP/UDP port number. Classification 306 may include a destination port number.


In various embodiments, network controller 126 may generate 32 classification rules, according to the total credit of 32 associated to network application 510. Among the 32 rules, 3 rules, according to credit 508, may indicate servicing node 120 as primary servicing node information. Network controller 126 may divide the available IP addresses into 32 partitions, one partition per classification rule. Furthermore, network controller 126 may apply a hashing function to the IP address to result in 32 different values. Network controller 126 may create 32 entries in a lookup table for the 32 classification rules. Network controller 126 may partition IP addresses using 5 bits of IP addresses, first 5 bits, last 5 bits, middle bits, or a combination of 5 bits out of a 32-bit or 128-bit IP address to form a distinct 32 different partitions for the IP addresses. Network controller 126 may generate classification rule 304 having classification 306 and primary servicing node information 308. Classification 306 may include a source IP address being one of the 32 IP address partition or a destination port number being the TCP/UDP port number of network application 510. Primary servicing node information 308 may indicate servicing node 120.


Network controller 126 may randomly assign 3 partitions for servicing node 120. Network controller 126 may assign the first 3 partitions. Network controller 126 may apply a mathematical function such as a hashing function to assign 3 partitions for the servicing node 120. Network controller 126 may select 3 entries in a created 32-entry lookup table for the classification rules.


Network controller 126 may generate all 32 classification rules according to the total 32 credits for network application 510. Alternatively, network controller 126 may generate less than 32 classification rules, perhaps by dividing into fewer number of IP address partitions. Network controller 126 may store the classification rules into forwarding policy 502.


Network controller 126 may calculate credit 508 for servicing node 120 based on a capacity, such as connection capacity, without considering association to a network application. Network controller 126 may calculate the total credit for a plurality of servicing nodes, including servicing node 120, associated to the capacity. Network controller 126 may generate a plurality of classification rules based on the capacity. Network controller 126 may store the generated classification rules based on the capacity into forwarding policy 502.


Network controller 126 may partition UDP/TCP port numbers. Network controller 126 may put into classification 306 source port number being a port number partition. Network controller 126 may partition both port numbers and IP addresses for network application 510.


Network application 510 may be associated with a plurality of port numbers, and network controller 126 may include the plurality of port numbers as destination port numbers for classification 306.


Network controller 126 may assign servicing node 120 as secondary servicing node for one or more classification rules for network application 510. Network controller 126 may use classification configuration 506 to assign a secondary servicing node. Capability information 504 may include information to assist network controller 126 to select servicing node 120 as secondary servicing node.


Network controller 126 may repeat steps 606-610 and generate a plurality of classification rules for other network applications. Network controller 126 may store the generated classification rules in forwarding policy 502.


In step 612, network controller 126 may send generated forwarding policy 502 to forwarding node 118.


In various embodiments, network controller 126 may generate forwarding policy 502 when network controller 126 receives capability information 504 from servicing node 120. Network controller 126 may also generate forwarding policy 502 after receiving capability information from a plurality of servicing nodes. In some embodiments, network controller 126 may periodically generate forwarding policy 502. Network controller 126 may generate forwarding policy 502 when it detects a change in capability information of a servicing node.


In an exemplary embodiment illustrated in FIG. 7, network controller 126 may collect statistics data from servicing node 702 and forwarding node 7042. Servicing node 702 may send servicing data 706 to network controller 126. Servicing data 706 may contain information related to service sessions and data packets servicing node 702 receives from one or more forwarding nodes. Servicing data 706 may contain a number of active service sessions or connections, a number of completed service sessions, a number of pending connections, an amount of data packet or traffic processed, a percentage of system utilization, a quantity representing utilization of capacities of servicing node 702, a plurality of quantities of durations of service sessions, averages, or other useful data regarding servicing node 702. Servicing node 702 may send servicing data 706 when network controller 126 requests the data. Servicing node 702 may provide servicing data 706 frequently, based on a schedule, triggered by an event, or when there is a change relating to servicing data 706.


Forwarding node 704 may send forwarding data 708 to network controller 126. Forwarding data 708 may contain information related to forwarding policy 124. Forwarding data 708 may contain a number of packets processed, a number of packets processed according to individual classification rule, a plurality of classification rules, a number of service session packets forwarded to a servicing node or a plurality of servicing nodes, an amount of data traffic processed according to forwarding policy 124, or other data useful for network controller 126 to analyze forwarding policy 124. Additionally, forwarding node 118 may provide forwarding data 708 frequently, based on a schedule, triggered by an event, when there is a change related to forwarding data 708, when forwarding policy 124 is changed, or when requested by network controller 126.


Network controller 126 may receive servicing data from one or more servicing nodes, including servicing node 702, and/or forwarding data from one or more forwarding nodes, including forwarding node 704, over a period of time. These one or more servicing nodes and one or more forwarding nodes may be part of service network 114. Network controller 126 may analyze servicing data 706 and forwarding data 708 to report a trend 710. Trend 710 may relate to behavior of service network 114 or forwarding policy 124. Trend 710 may reflect one or more behaviors over a period of time, where network controller 126 receives servicing data and forwarding data over the period of time. Trend 710 may also include a chart showing data traffic for a classification rule of servicing node 702 in forwarding policy 124. Trend 710 may compare a classification rule of servicing node 702 to another classification rule of forwarding policy 124. Trend 710 may compare capability utilization of servicing node 702 and another servicing node indicated in forwarding policy 124. Trend 710 may indicate utilization of servicing node 702 or service network 114 over the period time.


Network controller 126 may generate a notification 712 based on servicing data 706 and/or forwarding data 708. Network controller 126 may generate notification 712 based on trend 710. Notification 712 may indicate a significant piece of information related to forwarding policy 124. Notification 712 may indicate servicing node 702 had a load above an expected load threshold, suggesting to a network administrator to adjust a service policy for service network 114 or to add another servicing node to service network 114. Alternatively, notification 712 may indicate servicing node 702 performs below an expected load threshold, suggesting a network administrator to adjust a service policy, to redeploy a servicing node from service network 114, or to remove servicing node 702 from service network 114. Notification 712 may indicate forwarding node 704 has an overall system load exceeding an expected load, suggesting to a network administrator to adjust a forwarding policy or classification configuration, to add additional resources to forwarding node 704 or to add another forwarding node to service network 114. Notification 712 may indicate an under-utilization of forwarding node 704.


In some embodiments, notification 712 indicates a network application capability is overloaded, suggesting adding additional hardware acceleration to the network application capability or additional servicing node for the network application. Notification 712 may suggest removing capability of a network application due to low utilization. Notification 712 may include one or more suggestions.


Network controller 126 may combine servicing data 706, servicing data from other servicing nodes, forwarding data 708, and forwarding data from other forwarding nodes into a report 714. Network controller 126 may generate report 714 based on a schedule, upon request, or when new servicing data or forwarding data is received.


Network controller 126 may receive a query 716 about servicing data 706 and/or forwarding data 708. Network controller 126 may process and respond to query 716. Furthermore, network controller 126 may store servicing data 706 and forwarding data 708 in a storage module or a database system. Network controller 126 may send servicing data 706 or forwarding data 708 to a database system and process query 716 using the database system.

Claims
  • 1. A computer-implemented method for forwarding a data packet in a service network, comprising: sending, to a network controller, a capability of a first servicing node associated with a service address;sending, to the network controller, a collection of statistics data related to the capability;receiving an updated forwarding policy;receiving, from a client device of a plurality of client devices, the data packet having the service address associated with the first servicing node, the first servicing node selectively forwarding data packets to a first plurality of servers;identifying a classification rule of the updated forwarding policy using the service address, the classification rule including first information associated with the first servicing node and second information associated with a second servicing node, the second servicing node selectively forwarding other data packets to a second plurality of servers, the second information comprising a condition for forwarding the data packet to the second servicing node, the condition being associated with a capability of the first servicing node;identifying, using the updated forwarding policy, based on the first information associated with the first servicing node, that the condition comprised in the second information is satisfied;based on the condition, the first information, and the second information, determining the data packet is to be sent to the second servicing node;sending the data packet to the second servicing node; andproviding to the network controller a second collection of statistics data related to the forwarding policy.
  • 2. The computer-implemented method of claim 1, wherein the secondary servicing node information includes an indication to forward the data packet to the second servicing node when a condition of the first servicing node is satisfied.
  • 3. The computer-implemented method of claim 2, wherein the classification rule further comprises one or more of: a source IP address, a source port number, a destination port number, and a link layer address.
  • 4. The computer-implemented method of claim 2, wherein the identifying further comprises one or more of: a hashing function, a bit-wise operation, a cryptographic function, a comparison, or a lookup function, and extracting a part of a network address of the data packet.
  • 5. The computer-implemented method of claim 1, wherein the first information and second information each further include a respective capability, the respective capabilities each comprising one or more of: a network application availability, a network application capability, a network application capacity, a connection capacity, a hardware module, a hardware processing acceleration, and a hardware based encryption processor module.
  • 6. The computer-implemented method of claim 1, wherein the updated forwarding policy is received from the network controller, wherein the network controller gets a present capability of at least one of the first servicing node and the second servicing node.
  • 7. A non-transitory computer-readable medium comprising computer readable code, which when executed by one or more processors, implements a method for forwarding a data packet in a service network, the method comprising: sending to a network controller a capability of a first servicing node associated with a service address;sending to the network controller a collection of statistics data related to the capability;receiving an updated forwarding policy;receiving, from a client device of a plurality of client devices, the data packet having the service address associated with the first servicing node, the first servicing node selectively forwarding data packets to a first plurality of servers;identifying a classification rule of the updated forwarding policy using the service address, the classification rule including first information associated with the first servicing node and second information associated with a second servicing node, the second servicing node selectively forwarding other data packets to a second plurality of servers, the second information comprising a condition for forwarding the data packet to the second servicing node, the condition being associated with a capability of the first servicing node;identifying, using the updated forwarding policy, based on the first information associated with the first servicing node, that the condition comprised in the second information is satisfied;based on the condition, the first information, and the second information, determining the data packet is to be sent to the second servicing node;sending the data packet to the second servicing node; andproviding to the network controller a second collection of statistics data related to the forwarding policy.
  • 8. A computer-implemented method for generating a forwarding policy for a service network comprising a forwarding node and a plurality of servicing nodes, the method comprising: receiving a capability from a servicing node associated with a service address, the service address associated with a servicing node of the plurality of servicing nodes, wherein the capability of the servicing node comprises one or more of: a network application availability, a network application capability, a network application capacity, a connection capacity, a hardware module, a hardware processing acceleration, and a hardware based encryption processor module;determining a condition for forwarding a data packet having the service address associated with the servicing node to another servicing node, the condition being associated with the capability of a first servicing node;generating a forwarding policy using the received capability and a second capability of another servicing node, the forwarding policy comprising a plurality of classification rules, wherein the generating the forwarding policy includes:generating first information associated with the servicing node and second information associated with an another second servicing node, the first information including at least an identity of the servicing node and an indication to forward the data packet to the servicing node, and the second information including an identity of the another servicing node and an indication to forward the data packet to the another servicing node when the condition associated with the servicing node is satisfied; andstoring the first information and the second information to the plurality of classification rules;storing the generated forwarding policy;sending the forwarding policy to the forwarding node, wherein the forwarding policy applies the forwarding policy to a received data packet;receiving statistical data from the forwarding node relating to the forwarding policy; andgenerating a report based on the received statistical data.
  • 9. The computer-implemented method of claim 8, wherein the plurality of classification rules comprises a first one or more classification rules for the servicing node and a second one or more classification rules for the second servicing node.
  • 10. The computer-implemented method of claim 8, further comprising generating a report based on the received statistical data.
  • 11. The computer-implemented method of claim 8, further comprising: receiving an updated capability of the servicing node;generating an updated plurality of classification rules based on the updated capability; andupdating the forwarding policy with the updated plurality of classification rules.
  • 12. The computer-implemented method of claim 8, wherein each of the plurality of classification rule comprises a classification and an indication to the servicing node or the second servicing node.
  • 13. The computer-implemented method of claim 12, wherein the classification comprises one or more of: a source IP address, a source port number, a destination port number, and a link layer address.
  • 14. The computer-implemented method of claim 13, wherein storing the forwarding policy comprises sending the forwarding policy to a forwarding node, wherein the forwarding policy applies the forwarding policy to matching a received data packet against a classification of the plurality of classification rules in the forwarding policy.
  • 15. The computer-implemented method of claim 8, wherein the generating is further based on the received statistics data and a second statistics data from the second servicing node.
  • 16. The computer-implemented method of claim 15, wherein the generating further comprises comparing the received statistics data and the second statistics data.
  • 17. The computer-implemented method of claim 15, wherein the generating further comprises comparing the received statistics data, the second statistics data and the plurality of classification rules.
  • 18. A non-transitory computer-readable medium comprising computer readable code, which when executed by one or more processors, implements a method for generating a forwarding policy for a service network comprising a forwarding node and a plurality of servicing nodes, the method comprising: receiving a capability from a servicing node associated with a service address, the service address associated with a servicing node of the plurality of servicing nodes, wherein the capability of the servicing node comprises one or more of: a network application availability, a network application capability, a network application capacity, a connection capacity, a hardware module, a hardware processing acceleration, and a hardware based encryption processor module;determining a condition for forwarding a data packet having the service address associated with the servicing node to another servicing node, the condition being associated with the capability of a first servicing node;generating a forwarding policy using the received capability and a second capability of another servicing node, the forwarding policy comprising a plurality of classification rules, wherein generating the forwarding policy includes:generating first information associated with the servicing node and second information associated with an another second servicing node, the first information including at least an identity of the servicing node and an indication to forward the data packet to the servicing node, and the second information including an identity of the another servicing node and an indication to forward the data packet to the another servicing node when the condition associated with the servicing node is satisfied; andstoring the first information and the second information to the plurality of classification rules;storing the generated forwarding policy;sending the forwarding policy to a forwarding node, wherein the forwarding policy applies the forwarding policy to a received data packet;receiving statistical data from the forwarding node relating to the forwarding policy; andgenerating a report based on the received statistical data.
  • 19. A service network system for forwarding a data packet in a service network, comprising: a plurality of servicing nodes, wherein each of the plurality of servicing nodes is configured to: send to a network controller a capability of a servicing node associated with a service address; andsend to the network controller a collection of statistics data related to the capability;a forwarding node, the forwarding node being configured to: receive from the network controller an updated forwarding policy comprising a plurality of classification rules;receive a data packet, the data packet having a first service address associated with a first servicing node, the first servicing node selectively forwarding data packets to a first plurality of servers;identify a classification rule of the plurality of classification rules using the service address, the classification rule including first information associated with the first servicing node and second information associated with a second servicing node, the second servicing node selectively forwarding other data packets to a second plurality of servers, the second information comprising a condition for forwarding the data packet to the second servicing node, the condition being associated with a capability of the first servicing node;identify, using the updated forwarding policy, based on the first information associated with the first servicing node, that the condition comprised in the second information is satisfied;based on the condition, the first information, and the second information, determine the data packet is to be sent to the second servicing node;send the data packet to the second servicing node; andprovide to the network controller a second collection of statistics data related to the forwarding policy; andthe network controller, the network controller being configured to: receive a plurality of capabilities from the plurality of servicing nodes;generate the plurality of classification rules based on the received plurality of capabilities;store the generated plurality of classification rules in the forwarding policy;send the forwarding policy to the forwarding node;receive the plurality of statistics data from the plurality of servicing nodes;receive the statistics data from the forwarding node; andgenerate a report based on the received statistics data.
  • 20. The computer-implemented method of claim 1, wherein the determining uses a characteristic of the client device, the characteristic of the client comprising at least one of specification of encrypted sessions and specification of a particular servicing node of a plurality of servicing nodes.
  • 21. The computer-implemented method of claim 5, wherein the respective capabilities each further comprise at least one of a security processor, digital signal processor, network processor, and graphics or video processor.
  • 22. The computer-implemented method of claim 5, wherein the respective capabilities each further comprise at least one of content caching and encryption.
  • 23. The computer-implemented method of claim 5, wherein the respective capabilities each further comprise recording access.
US Referenced Citations (532)
Number Name Date Kind
4403286 Fry et al. Sep 1983 A
4495570 Kitajima et al. Jan 1985 A
4577272 Ballew et al. Mar 1986 A
4720850 Oberlander et al. Jan 1988 A
4864492 Blakely-Fogel et al. Sep 1989 A
4882699 Evensen Nov 1989 A
5031089 Liu et al. Jul 1991 A
5218602 Grant et al. Jun 1993 A
5218676 Ben-Ayed et al. Jun 1993 A
5293488 Riley et al. Mar 1994 A
5341477 Pitkin et al. Aug 1994 A
5432908 Heddes et al. Jul 1995 A
5537542 Eilert et al. Jul 1996 A
5563878 Blakeley et al. Oct 1996 A
5603029 Aman et al. Feb 1997 A
5675739 Eilert et al. Oct 1997 A
5740371 Wallis Apr 1998 A
5751971 Dobbins et al. May 1998 A
5754752 Sheh et al. May 1998 A
5774660 Brendel et al. Jun 1998 A
5774668 Choquier et al. Jun 1998 A
5796936 Watabe et al. Aug 1998 A
5812771 Fee et al. Sep 1998 A
5828847 Gehr et al. Oct 1998 A
5835724 Smith Nov 1998 A
5867636 Walker Feb 1999 A
5867661 Bittinger et al. Feb 1999 A
5875296 Shi et al. Feb 1999 A
5917997 Bell et al. Jun 1999 A
5918017 Attanasio et al. Jun 1999 A
5923854 Bell et al. Jul 1999 A
5931914 Chiu Aug 1999 A
5935207 Logue et al. Aug 1999 A
5935215 Bell et al. Aug 1999 A
5941988 Bhagwat et al. Aug 1999 A
5944794 Okamoto et al. Aug 1999 A
5946686 Schmuck et al. Aug 1999 A
5951650 Bell et al. Sep 1999 A
5951694 Choquier et al. Sep 1999 A
5958053 Denker Sep 1999 A
5995981 Wikstrom Nov 1999 A
6003069 Cavill Dec 1999 A
6006264 Colby et al. Dec 1999 A
6006269 Phaal Dec 1999 A
6031978 Cotner et al. Feb 2000 A
6041357 Kunzelman et al. Mar 2000 A
6047268 Bartoli et al. Apr 2000 A
6076108 Courts et al. Jun 2000 A
6088728 Bellemore et al. Jul 2000 A
6098093 Bayeh et al. Aug 2000 A
6104717 Coile et al. Aug 2000 A
6119174 Borowsky et al. Sep 2000 A
6128279 O'Neil et al. Oct 2000 A
6131163 Wiegel Oct 2000 A
6141759 Braddy Oct 2000 A
6185598 Farber et al. Feb 2001 B1
6219706 Fan et al. Apr 2001 B1
6223205 Harchol-Balter et al. Apr 2001 B1
6223287 Douglas et al. Apr 2001 B1
6247057 Barrera, III Jun 2001 B1
6249820 Dobbins et al. Jun 2001 B1
6252878 Locklear, Jr. et al. Jun 2001 B1
6259705 Takahashi et al. Jul 2001 B1
6262976 McNamara Jul 2001 B1
6286039 Van Horne et al. Sep 2001 B1
6314463 Abbott et al. Nov 2001 B1
6317786 Yamane et al. Nov 2001 B1
6321338 Porras et al. Nov 2001 B1
6324177 Howes et al. Nov 2001 B1
6330560 Harrison et al. Dec 2001 B1
6339423 Sampson et al. Jan 2002 B1
6353614 Borella et al. Mar 2002 B1
6363075 Huang et al. Mar 2002 B1
6363081 Gase Mar 2002 B1
6374300 Masters Apr 2002 B2
6374359 Shrader et al. Apr 2002 B1
6381632 Lowell Apr 2002 B1
6393475 Leong et al. May 2002 B1
6397261 Eldridge et al. May 2002 B1
6430622 Aiken, Jr. et al. Aug 2002 B1
6445704 Howes et al. Sep 2002 B1
6446225 Robsman et al. Sep 2002 B1
6459682 Ellesson et al. Oct 2002 B1
6490682 Vanstone et al. Dec 2002 B2
6496866 Attanasio et al. Dec 2002 B2
6510464 Grantges, Jr. et al. Jan 2003 B1
6515988 Eldridge et al. Feb 2003 B1
6542926 Zalewski et al. Apr 2003 B2
6564215 Hsiao et al. May 2003 B1
6567857 Gupta et al. May 2003 B1
6578066 Logan et al. Jun 2003 B1
6587866 Modi et al. Jul 2003 B1
6591262 MacLellan et al. Jul 2003 B1
6594268 Aukia et al. Jul 2003 B1
6598167 Devine et al. Jul 2003 B2
6606315 Albert et al. Aug 2003 B1
6609150 Lee et al. Aug 2003 B2
6611498 Baker et al. Aug 2003 B1
6650641 Albert et al. Nov 2003 B1
6657974 Britton et al. Dec 2003 B1
6697354 Borella et al. Feb 2004 B1
6701377 Burmann et al. Mar 2004 B2
6704317 Dobson Mar 2004 B1
6711618 Danner et al. Mar 2004 B1
6714979 Brandt et al. Mar 2004 B1
6718383 Hebert Apr 2004 B1
6742126 Mann et al. May 2004 B1
6745229 Gobin et al. Jun 2004 B1
6748413 Boumas Jun 2004 B1
6748414 Bournas Jun 2004 B1
6760758 Lund et al. Jul 2004 B1
6763370 Schmeidler et al. Jul 2004 B1
6763468 Gupta et al. Jul 2004 B2
6772333 Brendel Aug 2004 B1
6772334 Glawitsch Aug 2004 B1
6779017 Lamberton et al. Aug 2004 B1
6779033 Watson et al. Aug 2004 B1
6877095 Allen Apr 2005 B1
6886044 Miles et al. Apr 2005 B1
6892307 Wood et al. May 2005 B1
6941384 Aiken, Jr. et al. Sep 2005 B1
6952728 Alles et al. Oct 2005 B1
6954784 Aiken, Jr. et al. Oct 2005 B2
6963917 Callis et al. Nov 2005 B1
6965930 Arrowood et al. Nov 2005 B1
6996617 Aiken, Jr. et al. Feb 2006 B1
6996631 Aiken, Jr. et al. Feb 2006 B1
7010605 Dharmarajan Mar 2006 B1
7013482 Krumel Mar 2006 B1
7058600 Combar et al. Jun 2006 B1
7058718 Fontes et al. Jun 2006 B2
7058789 Henderson et al. Jun 2006 B2
7069438 Balabine et al. Jun 2006 B2
7076555 Orman et al. Jul 2006 B1
7120697 Aiken, Jr. et al. Oct 2006 B2
7143087 Fairweather Nov 2006 B2
7167927 Philbrick et al. Jan 2007 B2
7181524 Lele Feb 2007 B1
7188181 Squier et al. Mar 2007 B1
7218722 Turner et al. May 2007 B1
7225249 Barry et al. May 2007 B1
7228359 Monteiro Jun 2007 B1
7234161 Maufer et al. Jun 2007 B1
7236457 Joe Jun 2007 B2
7254133 Govindarajan et al. Aug 2007 B2
7269850 Govindarajan et al. Sep 2007 B2
7277963 Dolson et al. Oct 2007 B2
7301899 Goldstone Nov 2007 B2
7308499 Chavez Dec 2007 B2
7310686 Uysal Dec 2007 B2
7328267 Bashyam et al. Feb 2008 B1
7334232 Jacobs et al. Feb 2008 B2
7337241 Boucher et al. Feb 2008 B2
7343399 Hayball et al. Mar 2008 B2
7349970 Clement et al. Mar 2008 B2
7370353 Yang May 2008 B2
7391725 Huitema et al. Jun 2008 B2
7398317 Chen et al. Jul 2008 B2
7423977 Joshi Sep 2008 B1
7430611 Aiken, Jr. et al. Sep 2008 B2
7430755 Hughes et al. Sep 2008 B1
7463648 Eppstein et al. Dec 2008 B1
7467202 Savchuk Dec 2008 B2
7472190 Robinson Dec 2008 B2
7492766 Cabeca et al. Feb 2009 B2
7506360 Wilkinson et al. Mar 2009 B1
7509369 Tormasov Mar 2009 B1
7512980 Copeland et al. Mar 2009 B2
7533409 Keane et al. May 2009 B2
7552323 Shay Jun 2009 B2
7584262 Wang et al. Sep 2009 B1
7584301 Joshi Sep 2009 B1
7590736 Hydrie et al. Sep 2009 B2
7613193 Swami et al. Nov 2009 B2
7613822 Joy et al. Nov 2009 B2
7673072 Boucher et al. Mar 2010 B2
7675854 Chen et al. Mar 2010 B2
7703102 Eppstein et al. Apr 2010 B1
7707295 Szeto et al. Apr 2010 B1
7711790 Barrett et al. May 2010 B1
7747748 Allen Jun 2010 B2
7765328 Bryers et al. Jul 2010 B2
7792113 Foschiano et al. Sep 2010 B1
7808994 Vinokour et al. Oct 2010 B1
7826487 Mukerji et al. Nov 2010 B1
7881215 Daigle et al. Feb 2011 B1
7948952 Hurtta May 2011 B2
7970934 Patel Jun 2011 B1
7983258 Ruben et al. Jul 2011 B1
7990847 Leroy et al. Aug 2011 B1
7991859 Miller et al. Aug 2011 B1
8019870 Eppstein et al. Sep 2011 B1
8032634 Eppstein et al. Oct 2011 B1
8090866 Bashyam et al. Jan 2012 B1
8122116 Matsunaga et al. Feb 2012 B2
8179809 Eppstein et al. May 2012 B1
8185651 Moran et al. May 2012 B2
8191106 Choyi et al. May 2012 B2
8224971 Miller et al. Jul 2012 B1
8234650 Eppstein et al. Jul 2012 B1
8239445 Gage et al. Aug 2012 B1
8255644 Sonnier et al. Aug 2012 B2
8266235 Jalan et al. Sep 2012 B2
8296434 Miller et al. Oct 2012 B1
8312507 Chen et al. Nov 2012 B2
8379515 Mukerji Feb 2013 B1
8499093 Grosser et al. Jul 2013 B2
8539075 Bali et al. Sep 2013 B2
8543644 Gage et al. Sep 2013 B2
8554929 Szeto et al. Oct 2013 B1
8560693 Wang et al. Oct 2013 B1
8584199 Chen et al. Nov 2013 B1
8595791 Chen et al. Nov 2013 B1
RE44701 Chen et al. Jan 2014 E
8675488 Sidebottom et al. Mar 2014 B1
8681610 Mukerji Mar 2014 B1
8750164 Casado et al. Jun 2014 B2
8782221 Han Jul 2014 B2
8813180 Chen et al. Aug 2014 B1
8826372 Chen et al. Sep 2014 B1
8879427 Krumel Nov 2014 B2
8885463 Medved et al. Nov 2014 B1
8897154 Jalan et al. Nov 2014 B2
8965957 Barros Feb 2015 B2
8977749 Han Mar 2015 B1
8990262 Chen et al. Mar 2015 B2
9094364 Jalan et al. Jul 2015 B2
9106561 Jalan et al. Aug 2015 B2
9118618 Davis Aug 2015 B2
9118620 Davis Aug 2015 B1
9154577 Jalan et al. Oct 2015 B2
9154584 Han Oct 2015 B1
9215275 Kannan et al. Dec 2015 B2
9219751 Chen et al. Dec 2015 B1
9253152 Chen et al. Feb 2016 B1
9270705 Chen et al. Feb 2016 B1
9270774 Jalan et al. Feb 2016 B2
9338225 Jalan et al. May 2016 B2
9350744 Chen et al. May 2016 B2
9356910 Chen et al. May 2016 B2
9497201 Chen et al. Nov 2016 B2
20010015812 Sugaya Aug 2001 A1
20010049741 Skene et al. Dec 2001 A1
20020010783 Primak et al. Jan 2002 A1
20020032777 Kawata et al. Mar 2002 A1
20020078164 Reinschmidt Jun 2002 A1
20020091831 Johnson Jul 2002 A1
20020091844 Craft et al. Jul 2002 A1
20020103916 Chen et al. Aug 2002 A1
20020124089 Aiken, Jr. et al. Sep 2002 A1
20020133491 Sim et al. Sep 2002 A1
20020138618 Szabo Sep 2002 A1
20020141448 Matsunaga Oct 2002 A1
20020143953 Aiken Oct 2002 A1
20020143954 Aiken, Jr. et al. Oct 2002 A1
20020143991 Chow et al. Oct 2002 A1
20020166080 Attanasio et al. Nov 2002 A1
20020178259 Doyle et al. Nov 2002 A1
20020178265 Aiken, Jr. et al. Nov 2002 A1
20020178268 Aiken, Jr. et al. Nov 2002 A1
20020191575 Kalavade et al. Dec 2002 A1
20020194335 Maynard Dec 2002 A1
20020194350 Lu et al. Dec 2002 A1
20020199000 Banerjee Dec 2002 A1
20030009591 Hayball et al. Jan 2003 A1
20030014544 Pettey Jan 2003 A1
20030023711 Parmar et al. Jan 2003 A1
20030023873 Ben-Itzhak Jan 2003 A1
20030031180 Datta Feb 2003 A1
20030035409 Wang et al. Feb 2003 A1
20030035420 Niu Feb 2003 A1
20030061402 Yadav Mar 2003 A1
20030079146 Burstein Apr 2003 A1
20030081624 Aggarwal et al. May 2003 A1
20030091028 Chang et al. May 2003 A1
20030131245 Linderman Jul 2003 A1
20030135625 Fontes et al. Jul 2003 A1
20030152078 Henderson et al. Aug 2003 A1
20030195962 Kikuchi et al. Oct 2003 A1
20030202536 Foster et al. Oct 2003 A1
20040001497 Sharma Jan 2004 A1
20040062246 Boucher et al. Apr 2004 A1
20040073703 Boucher et al. Apr 2004 A1
20040078419 Ferrari et al. Apr 2004 A1
20040078480 Boucher et al. Apr 2004 A1
20040111516 Cain Jun 2004 A1
20040128312 Shalabi et al. Jul 2004 A1
20040139057 Hirata et al. Jul 2004 A1
20040139108 Tang et al. Jul 2004 A1
20040141005 Banatwala et al. Jul 2004 A1
20040143599 Shalabi et al. Jul 2004 A1
20040184442 Jones et al. Sep 2004 A1
20040187032 Gels et al. Sep 2004 A1
20040199616 Karhu Oct 2004 A1
20040199646 Susai et al. Oct 2004 A1
20040202182 Lund et al. Oct 2004 A1
20040210623 Hydrie et al. Oct 2004 A1
20040210663 Phillips et al. Oct 2004 A1
20040213158 Collett et al. Oct 2004 A1
20040253956 Collins Dec 2004 A1
20040268358 Darling et al. Dec 2004 A1
20050005207 Herneque Jan 2005 A1
20050009520 Herrero et al. Jan 2005 A1
20050021848 Jorgenson Jan 2005 A1
20050021949 Izawa Jan 2005 A1
20050027862 Nguyen et al. Feb 2005 A1
20050036501 Chung et al. Feb 2005 A1
20050036511 Baratakke et al. Feb 2005 A1
20050044270 Grove et al. Feb 2005 A1
20050074013 Hershey et al. Apr 2005 A1
20050080890 Yang et al. Apr 2005 A1
20050102400 Nakahara et al. May 2005 A1
20050125276 Rusu Jun 2005 A1
20050141506 Aiken, Jr. et al. Jun 2005 A1
20050163073 Heller et al. Jul 2005 A1
20050198335 Brown et al. Sep 2005 A1
20050213586 Cyganski et al. Sep 2005 A1
20050240989 Kim et al. Oct 2005 A1
20050249225 Singhal Nov 2005 A1
20050259586 Hafid et al. Nov 2005 A1
20060023721 Miyake et al. Feb 2006 A1
20060036610 Wang Feb 2006 A1
20060036733 Fujimoto et al. Feb 2006 A1
20060064478 Sirkin Mar 2006 A1
20060069774 Chen et al. Mar 2006 A1
20060069804 Miyake et al. Mar 2006 A1
20060077926 Rune Apr 2006 A1
20060092950 Arregoces et al. May 2006 A1
20060098645 Walkin May 2006 A1
20060112170 Sirkin May 2006 A1
20060168319 Trossen Jul 2006 A1
20060187901 Cortes et al. Aug 2006 A1
20060190997 Mahajani et al. Aug 2006 A1
20060209789 Gupta et al. Sep 2006 A1
20060230129 Swami et al. Oct 2006 A1
20060233100 Luft et al. Oct 2006 A1
20060251057 Kwon et al. Nov 2006 A1
20060277303 Hegde et al. Dec 2006 A1
20060280121 Matoba Dec 2006 A1
20070019543 Wei et al. Jan 2007 A1
20070086382 Narayanan et al. Apr 2007 A1
20070094396 Takano et al. Apr 2007 A1
20070118881 Mitchell et al. May 2007 A1
20070156919 Potti et al. Jul 2007 A1
20070165622 O'Rourke Jul 2007 A1
20070185998 Touitou et al. Aug 2007 A1
20070195792 Chen et al. Aug 2007 A1
20070230337 Igarashi et al. Oct 2007 A1
20070245090 King et al. Oct 2007 A1
20070259673 Willars et al. Nov 2007 A1
20070274285 Werber Nov 2007 A1
20070283429 Chen et al. Dec 2007 A1
20070286077 Wu Dec 2007 A1
20070288247 Mackay Dec 2007 A1
20070294209 Strub et al. Dec 2007 A1
20080031263 Ervin et al. Feb 2008 A1
20080101396 Miyata May 2008 A1
20080109452 Patterson May 2008 A1
20080109870 Sherlock et al. May 2008 A1
20080134332 Keohane et al. Jun 2008 A1
20080162679 Maher et al. Jul 2008 A1
20080228781 Chen et al. Sep 2008 A1
20080250099 Shen et al. Oct 2008 A1
20080263209 Pisharody et al. Oct 2008 A1
20080271130 Ramamoorthy Oct 2008 A1
20080282254 Blander et al. Nov 2008 A1
20080291911 Lee et al. Nov 2008 A1
20080320151 McCanne et al. Dec 2008 A1
20090037361 Prathaban et al. Feb 2009 A1
20090049198 Blinn et al. Feb 2009 A1
20090070470 Bauman et al. Mar 2009 A1
20090077651 Poeluev Mar 2009 A1
20090092124 Singhal et al. Apr 2009 A1
20090103710 Ding Apr 2009 A1
20090106830 Maher Apr 2009 A1
20090138606 Moran et al. May 2009 A1
20090138945 Savchuk May 2009 A1
20090141634 Rothstein et al. Jun 2009 A1
20090164614 Christian et al. Jun 2009 A1
20090172093 Matsubara Jul 2009 A1
20090213858 Dolganow et al. Aug 2009 A1
20090222583 Josefsberg et al. Sep 2009 A1
20090227228 Hu et al. Sep 2009 A1
20090228547 Miyaoka et al. Sep 2009 A1
20090262741 Jungck et al. Oct 2009 A1
20090271472 Scheifler et al. Oct 2009 A1
20090313379 Rydnell et al. Dec 2009 A1
20100008229 Bi et al. Jan 2010 A1
20100023621 Ezolt et al. Jan 2010 A1
20100036952 Hazlewood et al. Feb 2010 A1
20100054139 Chun et al. Mar 2010 A1
20100061319 Aso et al. Mar 2010 A1
20100064008 Yan et al. Mar 2010 A1
20100082787 Kommula et al. Apr 2010 A1
20100083076 Ushiyama Apr 2010 A1
20100094985 Abu-Samaha et al. Apr 2010 A1
20100098417 Tse-Au Apr 2010 A1
20100106833 Banerjee et al. Apr 2010 A1
20100106854 Kim et al. Apr 2010 A1
20100128606 Patel et al. May 2010 A1
20100162378 Jayawardena et al. Jun 2010 A1
20100188975 Raleigh Jul 2010 A1
20100210265 Borzsei et al. Aug 2010 A1
20100217793 Preiss Aug 2010 A1
20100217819 Chen et al. Aug 2010 A1
20100223630 Degenkolb et al. Sep 2010 A1
20100228819 Wei Sep 2010 A1
20100235507 Szeto et al. Sep 2010 A1
20100235522 Chen et al. Sep 2010 A1
20100235880 Chen et al. Sep 2010 A1
20100238828 Russell Sep 2010 A1
20100265824 Chao et al. Oct 2010 A1
20100268814 Cross et al. Oct 2010 A1
20100293296 Hsu et al. Nov 2010 A1
20100312740 Clemm et al. Dec 2010 A1
20100318631 Shukla Dec 2010 A1
20100322252 Suganthi et al. Dec 2010 A1
20100330971 Selitser et al. Dec 2010 A1
20100333101 Pope et al. Dec 2010 A1
20110007652 Bai Jan 2011 A1
20110013525 Breslau Jan 2011 A1
20110019550 Bryers et al. Jan 2011 A1
20110023071 Li et al. Jan 2011 A1
20110029599 Pulleyn et al. Feb 2011 A1
20110032941 Quach et al. Feb 2011 A1
20110040826 Chadzelek et al. Feb 2011 A1
20110047294 Singh et al. Feb 2011 A1
20110060831 Ishii et al. Mar 2011 A1
20110064083 Borkenhagen Mar 2011 A1
20110093522 Chen et al. Apr 2011 A1
20110099403 Miyata et al. Apr 2011 A1
20110110294 Valluri et al. May 2011 A1
20110145324 Reinart et al. Jun 2011 A1
20110153834 Bharrat Jun 2011 A1
20110178985 San Martin Arribas et al. Jul 2011 A1
20110185073 Jagadeeswaran et al. Jul 2011 A1
20110191773 Pavel et al. Aug 2011 A1
20110196971 Reguraman et al. Aug 2011 A1
20110276695 Maldaner Nov 2011 A1
20110276982 Nakayama et al. Nov 2011 A1
20110289496 Steer Nov 2011 A1
20110292939 Subramaian et al. Dec 2011 A1
20110302256 Sureshehandra et al. Dec 2011 A1
20110307541 Walsh et al. Dec 2011 A1
20120008495 Shen et al. Jan 2012 A1
20120023231 Ueno Jan 2012 A1
20120026897 Guichard et al. Feb 2012 A1
20120030341 Jensen et al. Feb 2012 A1
20120066371 Patel et al. Mar 2012 A1
20120084419 Kannan et al. Apr 2012 A1
20120084460 McGinnity et al. Apr 2012 A1
20120106355 Ludwig May 2012 A1
20120117571 Davis et al. May 2012 A1
20120144014 Natham et al. Jun 2012 A1
20120144015 Jalan et al. Jun 2012 A1
20120151353 Joanny Jun 2012 A1
20120155495 Clee et al. Jun 2012 A1
20120170548 Rajagopalan et al. Jul 2012 A1
20120173759 Agarwal et al. Jul 2012 A1
20120179770 Jalan et al. Jul 2012 A1
20120191839 Maynard Jul 2012 A1
20120239792 Banerjee et al. Sep 2012 A1
20120240185 Kapoor et al. Sep 2012 A1
20120290727 Tivig Nov 2012 A1
20120297046 Raja et al. Nov 2012 A1
20120311116 Jalan et al. Dec 2012 A1
20130007225 Gage et al. Jan 2013 A1
20130046876 Narayana et al. Feb 2013 A1
20130058335 Koponen et al. Mar 2013 A1
20130074177 Varadhan et al. Mar 2013 A1
20130083725 Mallya et al. Apr 2013 A1
20130089099 Pollock et al. Apr 2013 A1
20130091273 Ly et al. Apr 2013 A1
20130100958 Jalan et al. Apr 2013 A1
20130124713 Feinberg et al. May 2013 A1
20130136139 Zheng et al. May 2013 A1
20130148500 Sonoda et al. Jun 2013 A1
20130166731 Yamanaka et al. Jun 2013 A1
20130166762 Jalan et al. Jun 2013 A1
20130173795 McPherson Jul 2013 A1
20130176854 Chisu et al. Jul 2013 A1
20130191486 Someya et al. Jul 2013 A1
20130191548 Boddukuri et al. Jul 2013 A1
20130198385 Han et al. Aug 2013 A1
20130250765 Ehsan et al. Sep 2013 A1
20130258846 Damola Oct 2013 A1
20130262702 Davis Oct 2013 A1
20130282791 Kruglick Oct 2013 A1
20130311686 Fetterman et al. Nov 2013 A1
20140012972 Han Jan 2014 A1
20140047115 Lipscomb et al. Feb 2014 A1
20140089500 Sankar et al. Mar 2014 A1
20140164617 Jalan et al. Jun 2014 A1
20140169168 Jalan et al. Jun 2014 A1
20140207845 Han et al. Jul 2014 A1
20140258465 Li Sep 2014 A1
20140258536 Chiong Sep 2014 A1
20140269728 Jalan et al. Sep 2014 A1
20140286313 Fu et al. Sep 2014 A1
20140298091 Carlen et al. Oct 2014 A1
20140330977 van Bemmel Nov 2014 A1
20140330982 Jalan et al. Nov 2014 A1
20140334485 Jain et al. Nov 2014 A1
20140359052 Joachimpillai et al. Dec 2014 A1
20150039671 Jalan et al. Feb 2015 A1
20150085650 Cui et al. Mar 2015 A1
20150156223 Xu et al. Jun 2015 A1
20150215436 Kancherla Jul 2015 A1
20150237173 Virkki et al. Aug 2015 A1
20150281104 Golshan et al. Oct 2015 A1
20150296058 Jalan et al. Oct 2015 A1
20150312268 Ray Oct 2015 A1
20150333988 Jalan et al. Nov 2015 A1
20150350048 Sampat et al. Dec 2015 A1
20150350379 Jalan et al. Dec 2015 A1
20150350383 Davis Dec 2015 A1
20150381465 Narayanan et al. Dec 2015 A1
20160014052 Han Jan 2016 A1
20160036778 Chen et al. Feb 2016 A1
20160042014 Jalan et al. Feb 2016 A1
20160043901 Sankar et al. Feb 2016 A1
20160044095 Sankar et al. Feb 2016 A1
20160050233 Chen et al. Feb 2016 A1
20160088074 Kannan et al. Mar 2016 A1
20160105395 Chen et al. Apr 2016 A1
20160105446 Chen et al. Apr 2016 A1
20160119382 Chen et al. Apr 2016 A1
20160139910 Ramanathan et al. May 2016 A1
20160156708 Jalan et al. Jun 2016 A1
20160173579 Jalan et al. Jun 2016 A1
20160261642 Chen et al. Sep 2016 A1
20170041350 Chen et al. Feb 2017 A1
Foreign Referenced Citations (109)
Number Date Country
1372662 Oct 2002 CN
1449618 Oct 2003 CN
1473300 Feb 2004 CN
1529460 Sep 2004 CN
1575582 Feb 2005 CN
1714545 Dec 2005 CN
1725702 Jan 2006 CN
1910869 Feb 2007 CN
101004740 Jul 2007 CN
101094225 Dec 2007 CN
101163336 Apr 2008 CN
101169785 Apr 2008 CN
101189598 May 2008 CN
101193089 Jun 2008 CN
101247349 Aug 2008 CN
101261644 Sep 2008 CN
101495993 Jul 2009 CN
101567818 Oct 2009 CN
101878663 Nov 2010 CN
102104548 Jun 2011 CN
102143075 Aug 2011 CN
102546590 Jul 2012 CN
102571742 Jul 2012 CN
102577252 Jul 2012 CN
102918801 Feb 2013 CN
103365654 Oct 2013 CN
103533018 Jan 2014 CN
103944954 Jul 2014 CN
104040990 Sep 2014 CN
104067569 Sep 2014 CN
104106241 Oct 2014 CN
104137491 Nov 2014 CN
104796396 Jul 2015 CN
102577252 Mar 2016 CN
102918801 May 2016 CN
0648038 Apr 1995 EP
1209876 May 2002 EP
1770915 Apr 2007 EP
1885096 Feb 2008 EP
02296313 Mar 2011 EP
2577910 Apr 2013 EP
2622795 Aug 2013 EP
2647174 Oct 2013 EP
2760170 Jul 2014 EP
2772026 Sep 2014 EP
2901308 Aug 2015 EP
2760170 Dec 2015 EP
1182560 Nov 2013 HK
1183569 Dec 2013 HK
1183996 Jan 2014 HK
1188498 May 2014 HK
1189438 Jun 2014 HK
1198565 May 2015 HK
1198848 Jun 2015 HK
1199153 Jun 2015 HK
1199779 Jul 2015 HK
1200617 Aug 2015 HK
H09-097233 Apr 1997 JP
1999096128 Apr 1999 JP
H11-338836 Oct 1999 JP
2000276432 Oct 2000 JP
2000307634 Nov 2000 JP
2001051859 Feb 2001 JP
2001298449 Oct 2001 JP
2002091936 Mar 2002 JP
2003141068 May 2003 JP
2003186776 Jul 2003 JP
2005141441 Jun 2005 JP
2006332825 Dec 2006 JP
2008040718 Feb 2008 JP
2009500731 Jan 2009 JP
2013528330 May 2011 JP
2014504484 Feb 2014 JP
2014143686 Aug 2014 JP
2015507380 Mar 2015 JP
5855663 Dec 2015 JP
5906263 Mar 2016 JP
5913609 Apr 2016 JP
5946189 Jun 2016 JP
10-0830413 May 2008 KR
20130096624 Aug 2013 KR
101576585 Dec 2015 KR
0113228 Feb 2001 WO
2001014990 Mar 2001 WO
WO2001045349 Jun 2001 WO
2003103237 Dec 2003 WO
WO2004084085 Sep 2004 WO
WO2006098033 Sep 2006 WO
2008053954 May 2008 WO
WO2008078593 Jul 2008 WO
2011049770 Apr 2011 WO
WO2011079381 Jul 2011 WO
2011149796 Dec 2011 WO
2012050747 Apr 2012 WO
2012075237 Jun 2012 WO
WO2012083264 Jun 2012 WO
WO2012097015 Jul 2012 WO
2013070391 May 2013 WO
2013081952 Jun 2013 WO
2013096019 Jun 2013 WO
2013112492 Aug 2013 WO
WO2014031046 Feb 2014 WO
2014052099 Apr 2014 WO
2014088741 Jun 2014 WO
2014093829 Jun 2014 WO
WO2014138483 Sep 2014 WO
WO2014144837 Sep 2014 WO
WO2014179753 Nov 2014 WO
WO2015153020 Oct 2015 WO
Non-Patent Literature Citations (13)
Entry
Spatscheck et al., “Optimizing TCP Forwarder Performance”, IEEE/ACM Transactions on Networking, vol. 8, No. 2, Apr. 2000.
Kjaer et al. “Resource allocation and disturbance rejection in web servers using SLAs and virtualized servers”, IEEE Transactions on Network and Service Management, IEEE, US, vol. 6, No. 4, Dec. 1, 2009.
Sharifian et al. “An approximation-based load-balancing algorithm with admission control for cluster web servers with dynamic workloads”, the Journal of Supercomputing, Kluwer Academic Publishers, BO, vol. 53, No. 3, Jul. 3, 2009.
Cardellini et al., “Dynamic Load Balancing on Web-server Systems”, IEEE Internet Computing, vol. 3, No. 3, pp. 28-39, May-Jun. 1999.
Hunt et al. NetDispatcher: A TCP Connection Router, IBM Research Report RC 20853 May 19, 1997.
Yamamoto et al., “Performance Evaluation of Window Size in Proxy-based TCP for Multi-hop Wireless Networks,” IPSJ SIG Technical Reports, May 15, 2008, vol. 2008, No. 44, pp. 109-114.
Abe et al., “Adaptive Split Connection Schemes in Advanced Relay Nodes,” IEICE Technical Report, Feb. 22, 2010, vol. 109, No. 438, pp. 25-30.
Gite, Vivek, “Linux Tune Network Stack (Buffers Size) to Increase Networking Performance,” accessed Apr. 13, 2016 at URL: <<http://www.cyberciti.biz/faq/linux-tcp-tuning/>>, Jul. 8, 2009, 24 pages.
“tcp—TCP Protocol”, Linux Programmer's Manual, accessed Apr. 13, 2016 at URL: <<https://www.freebsd.org/cgi/man.cgi?query=tcp&apropos=0&sektion=7&manpath=SuSE+Linux%2Fi386+11.0&format=asci>>, Nov. 25, 2007, 11 pages.
Cardellini, et al., “Dynamic Load Balancing on Web-Server Systems”, IEEE Internet Computing, 1999, vol. 3(3), pp. 28-29.
Samar, V., “Single Sign-On Using Cookies for Web Applications,” IEEE 8th International Workshop, 1999, pp. 158-163.
Apostolopoulos, G. et al., “Design, Implementation and Performance of a Content-Based Switch,” INFOCOM 2000, Nineteenth Annual Joint Conference of the IEEE Computer and Communication Societies, IEEE, Mar. 2000, pp. 1117-1136, vol. 3.
Koike et al., “Transport Middleware for Network-Based Control,” IEICE Technical Report, Jun. 22, 2000, vol. 100, No. 53, pp. 13-18.
Related Publications (1)
Number Date Country
20150281087 A1 Oct 2015 US