This invention relates generally to refrigerated beverage and food service merchandisers and, more particularly, to a foul resistant condenser coil therefor.
It is long been the practice to sell soda and other soft drinks by way of vending machines or coin operated refrigerated containers for dispensing single bottles of beverages. These machines are generally stand alone machines that are plugged into standard outlets and include their own individual refrigeration circuit with both evaporator and condenser coils.
This self serve approach has now been expanded to include other types of “plug in” beverage and food merchandisers that are located in convenience stores, delicatessens, supermarkets and other retail establishments.
In such stores, cold beverages, such as soft drinks, beer, wine coolers, etc. are commonly displayed in refrigerated merchandisers for self-service purchase by customers. Conventional merchandisers of this type usually comprise a refrigerated, insulated enclosure defining a refrigerated product display cabinet and having one or more glass doors. The beverage product, typically in cans or bottles, single or in six-packs, is stored on shelves within the refrigerated display cabinet. To purchase a beverage, the customer opens one of the doors and reaches into the refrigerated cabinet to retrieve the desired product from the shelf.
Beverage merchandisers of this type necessarily include a refrigeration system for providing the cooled environment within the refrigerated display cabinet. Such refrigeration systems include an evaporator coil housed within the insulated enclosure defining the refrigerated display cabinet and a condenser coil and compressor housed in a compartment separate from and exteriorly of the insulated enclosure. Cold liquid refrigerant is circulated through the evaporator coil to cool the air within the refrigerated display cabinet. As a result of heat transfer between the air and the refrigerant passing in heat exchange relationship in the evaporator coil, the liquid refrigerant evaporates and leaves the evaporator coil as a vapor. The vapor phase refrigerant is then compressed in the compressor coil to a high pressure, as well as being heated to a higher temperature as a result of the compression process. The hot, high pressure vapor is then circulated through the condenser coil wherein it passes in heat exchange relationship with ambient air drawn or blown across through the condenser coil by a fan disposed in operative association with the condenser coil. As a result, the refrigerant is cooled and condensed back to the liquid phase and then passed through an expansion device which reduces both the pressure and the temperature of the liquid refrigerant before it is circulated back to the evaporator coil.
In conventional practice, the condenser coil comprises a plurality of round tubes with parallel fins extending between tubes across the flow path of the ambient air stream being drawn or blown through the condenser coil. A fan, disposed in operative association with the condenser coil, passes ambient air from the local environment through the condenser coil. U.S. Pat. No. 3,462,966 discloses a refrigerated glass door merchandiser having a condenser coil with staggered rows of finned tubes and an associated fan disposed upstream of the condenser coil that blows air across the condenser tubes. U.S. Pat. No. 4,977,754 discloses a refrigerated glass door merchandiser having a condenser coil with in-line finned tube rows and an associated fan disposed downstream of the condenser that draws air across the condenser tubes.
One problem that occurs with such self-contained merchandisers is that they are often in area that is heavily trafficked by people that tend to track in debris and dirt from the outside. This, in turn, tends to expose the condenser coil, which is necessarily exposed to the flow of air in the immediate vicinity, to be susceptible to airside fouling. With such fouling, the accumulation of dust, dirt and oils impede refrigeration performance. As the condenser coil fouls, the compressor refrigerant pressure rises, which leads to system inefficiencies and possibly compressor failure. Further, such products are often used in locations where periodic cleaning is not likely to occur.
The usual structure for such a condenser coil is a tube and fin design wherein a plurality of serpentine tubes with refrigerant flowing therein are surrounded by orthogonally extending fins over which the cooling air is made to flow by way of a fan. Generally, the greater the tube and fin densities, the more efficient the performance of the coil in cooling the refrigerant. However, the greater the tube and fin densities, the more susceptible it is to being fouled by the accumulation of dirt and fiber.
This problem has been addressed in one form by the elimination of fins and relying on conventional tubes as set forth in U.S. Pat. No. 6,851,271, assigned to the assignee of the present application and incorporated herein by reference. A further approach has been to selectively stagger the successive rows of tubes in relation to the direction of airflow as described in U.S. Patent Application No. (PCT/US03/12468), Continuation In Part Application of Provisional Application Ser. No. 60/376,486 filed on Apr. 30, 2002, assigned to the assignee of the present application and incorporated herein by reference.
U.S. Pat. No. 6,988,538 discloses a fin-and-tube condenser coil for use in connection with retail store refrigeration systems wherein the condenser coil includes a plurality of parallel flat microchannel tubes having zig-zag fins extending between adjacent flat tubes. The fin density ranges from slightly less than 12 fins per inch to slightly more than 24 fins per inch. The high fin density is possible because the condenser coil is generally position outside the store, such as on the roof-top, where the condenser coil is not exposed to a high level of dust and debris.
U.S. Pat. No. 6,912,864 discloses a refrigerated display merchandiser having a fin-and-tube evaporator formed of a plurality of parallel, flat microchannel tubes having V-shaped fins extending between adjacent flat tubes. The fin density ranges from as low as 6 fins per inch to as high as 25 fins per inch. The high fin density is possible because the evaporator coil is positioned internally within the rear air duct of the refrigerated merchandiser and therefore not exposed to a high level of dust and debris
In one aspect of the invention, a refrigerated merchandiser is provided having a condenser coil connected in refrigerant flow communication with an evaporator coil disposed in operative association with the display cabinet of the refrigerated merchandiser, wherein the condenser coil has a plurality of refrigerant carrying members aligned in generally parallel relationship and a plurality of fins connected in heat transfer relationship with and extending between adjacent members of the plurality of refrigerant carrying members, the plurality of fins being spaced apart at a spacing of at least 0.4 inches between adjacent fins. In one embodiment, the fins are spaced apart at a spacing of at least 0.6 inches. In another embodiment, the fins are spaced apart at a spacing in the range of 0.4 to 0.8 inches. In a further embodiment, the fins are spaced apart at a spacing in the range of 0.7 to 0.8 inches.
In one embodiment of the invention, the condenser coil has a plurality of fins extending generally orthogonally relative to said plurality of refrigerant carrying members and being disposed in generally parallel relationship. In another embodiment, the condenser coil has a plurality of generally V-fins being spaced apart at a spacing of at least 0.4 inches between adjacent fins as measured from apex to apex.
In one embodiment of the invention, the plurality of refrigerant carrying members of the condenser coil are flat tubes aligned in generally parallel relationship with each tube having a plurality of longitudinally extending channels that are fluidly connected at a first end to receive refrigerant flow from an inlet header and at a second end to discharge refrigerant flow to an outlet header. In another embodiment of the invention, the plurality of refrigerant carrying members is a serpentine tube having a plurality of flat tube segments aligned in generally parallel relationship with adjacent tube members being interconnected at their respective ends to form a serpentine refrigerant flow path. The serpentine tube has a plurality of longitudinally extending channels that are fluidly connected at a first end to receive refrigerant flow from an inlet header and at a second end to discharge refrigerant flow to an outlet header.
In another aspect of the invention, a refrigerated merchandiser is provided having a condenser coil connected in refrigerant flow communication with an evaporator coil disposed in operative association with the display cabinet of the refrigerated merchandiser, wherein the condenser coil includes at least one serpentine shaped refrigerant tube having a plurality of flat segments aligned in generally parallel relationship, the plurality of flat segments being spaced apart at a spacing of at least 0.4 inches between adjacent flat segments. Each of the flat tube segments of the serpentine shaped refrigerant tube may include a plurality of longitudinally extending channels providing a corresponding plurality of refrigerant flow passages, which may be minichannel or microchannel flow passages. In one embodiment, the flat tube segments are spaced apart at a spacing of at least 0.6 inches between adjacent flat segments. In another embodiment, flat tube segments are spaced apart at a spacing of at least 0.4 to 0.8 inches between adjacent flat segments. In a further embodiment, the flat tube segments are spaced apart at a spacing of at least 0.6 inches between adjacent flat segments.
In one aspect of the invention, a refrigerated merchandiser is provided having a condenser coil connected in refrigerant flow communication with an evaporator coil disposed in operative association with the display cabinet of the refrigerated merchandiser, wherein the condenser coil has a plurality of refrigerant carrying members aligned in generally parallel relationship and a plurality of fins connected in heat transfer relationship with and extending between adjacent members of the plurality of refrigerant carrying members in a zig-zag arrangement, that is a generally V-shaped pattern, with the plurality of fins being spaced apart at a dimension, w, as measured from apex to apex, of at least about 0.4 inches. In one embodiment, the fins are spaced apart at a spacing of at least 0.6 inches. In another embodiment, the fins are spaced apart at a spacing in the range of about 0.4 to about 0.8 inches.
In another aspect of the invention, a refrigerated merchandiser is provided having a condenser coil connected in refrigerant flow communication with an evaporator coil disposed in operative association with the display cabinet of the refrigerated merchandiser, wherein the condenser coil has a plurality of refrigerant carrying members aligned in generally parallel relationship and a plurality of fins connected in heat transfer relationship with and extending between adjacent members of the plurality of refrigerant carrying members in a zig-zag arrangement, that is a generally V-shaped pattern, with the plurality of fins being spaced apart at a dimension, w, as measured from apex to apex, in range of from about ⅓ inches to about ½ inches.
In another aspect of the invention, a refrigerated merchandiser is provided having a condenser coil connected in refrigerant flow communication with an evaporator coil disposed in operative association with the display cabinet of the refrigerated merchandiser, wherein the condenser coil has a plurality of flat, multichannel refrigerant carrying tubes aligned in generally parallel relationship and a plurality of fins connected in heat transfer relationship with and extending between adjacent members of the plurality of refrigerant carrying members in a zig-zag arrangement, that is a generally V-shaped pattern, with the plurality of fins being spaced apart at a dimension, w, as measured from apex to apex, of at least 0.25 inches.
For a further understanding of the invention, reference will be made to the following detailed description of the invention which is to be read in connection with the accompanying drawings.
a is an enlarged elevation view of a one-inch length segment of a conventional round tube, parallel fin condenser having a fin density of 4 fins per inch illustrating a characteristic fouling pattern thereof.
b is an enlarged elevation view of a one-inch length segment of an exemplary embodiment of a flat tube, V-shaped fin pattern condenser in accord with invention having a fin density of 4 fins per inch illustrating a characteristic fouling pattern thereof.
c is an enlarged elevation view of a one-inch length segment of an exemplary embodiment of a flat tube, V-shaped fin pattern condenser in accord with invention having a fin density of 5 fins per inch illustrating a characteristic fouling pattern thereof.
d is an enlarged elevation view of a one-inch length segment of an exemplary embodiment of a flat tube, V-shaped fin pattern condenser in accord with invention having a fin density of 6 fins per inch illustrating a characteristic fouling pattern thereof.
e is an enlarged elevation view of a one-inch length segment of an exemplary embodiment of a flat tube, V-shaped fin pattern condenser in accord with invention having a fin density of 8 fins per inch illustrating a characteristic fouling pattern thereof.
Referring now to
The refrigerated display cabinet 25 is defined by an insulated rear wall 22 of the enclosure 20, a pair of insulated side walls 24 of the enclosure 20, an insulated top wall 26 of the enclosure 20, an insulated bottom wall 28 of the enclosure 20 and an insulated front wall 34 of the enclosure 20. Heat insulation 36 (shown by the looping line) is provided in the walls defining the refrigerated display cabinet 25. Beverage product 100, such as for example individual cans or bottles or six packs thereof, are displayed on shelves 70 mounted in a conventional manner within the refrigerated display cabinet 25, such as for example in accord with the next-to-purchase manner shown in U.S. Pat. No. 4,977,754, the entire disclosure of which is hereby incorporated by reference. The insulated enclosure 20 has an access opening 35 in the front wall 34 that opens to the refrigerated display cabinet 25. If desired, a door 32, as shown in the illustrated embodiment, or more than one door, may be provided to cover the access opening 35. It is to be understood however that the present invention is also applicable to beverage merchandisers having an open access without a door. To access the beverage product for purchase, a customer need only open the door 32 and reach into the refrigerated display cabinet 25 to select the desired beverage.
An evaporator coil 80 is provided within the refrigerated display cabinet 25, for example near the top wall 26. An evaporator fan and motor 82, as illustrated in
Refrigerant is circulated in a conventional manner between the evaporator 80 and the condenser 50 by means of the compressor 40 through refrigeration lines forming a refrigeration circuit (not shown) interconnecting the compressor 40, the condenser coil 50 and the evaporator coil 80 in refrigerant flow communication. As noted before, cold liquid refrigerant is circulated through the evaporator coil 80 to cool the air within the refrigerated display cabinet 25. As a result of heat transfer between the air and the refrigerant passing in heat exchange relationship in the evaporator coil 80, the liquid refrigerant evaporates and leaves the evaporator as a vapor. The vapor phase refrigerant is then compressed in the compressor 40 to a high pressure, as well as being heated to a higher temperature as a result of the compression process. The hot, high pressure vapor is then circulated through the condenser coil 50 wherein it passes in heat exchange relationship with ambient air drawn or blown across through the condenser coil 50 by the condenser fan 60.
Referring now to
In order to increase the heat exchange capacity of the coil 110, a plurality of fins 118 may be placed between adjacent microchannel tube pairs. These fins are preferably aligned orthogonally to the microchannel tube 111 and parallel with the direction of airflow through the microchannel condenser coil 110. The lateral spacing between adjacent fins is the dimension “W”.
One advantage offered by the microchannel tube 111 over the conventional round tubes in a condenser coil is that of obtaining more surface area per unit volume. That is, generally, a plurality of small tubes will provide more external surface area than a single large tube. This can be understood by comparison of a single ⅜ inch (8 millimeter) tube with a 5 millimeter tube. The external surface area-to-volume ratio of the 5 millimeter tube is 0.4, which is substantially greater than that for a 8 millimeter tube, which is 0.25.
One disadvantage to the use of a greater number of smaller tubes rather than fewer larger tubes is that it is generally more expensive to implement. However, the techniques that have been developed for manufacturing microchannel tubes with a plurality of channels has evolved to the extent that they are now economical as compared with the manufacturer and implementation of round tubes in a heat exchanger coil. Another advantage of the microchannel tubes is that they are more streamlined so as to result in a lower pressure drop and lower noise level. That is, there is much less resistance to the air flowing over the relatively narrow microchannels than there is to the air flowing over relatively large round tubes.
Considering now the problem of air side fouling which results from the accumulation of dust, dirt and oils between adjacent tubes and/or adjacent fins of a condenser coil, the applicants have recognized that such a fouling starts with the bridging of an elongate fiber between adjacent tubes or between adjacent fins. That is, most small particles will pass through the passages of a coil unless a passage is somewhat blocked by the lodging of a fiber therein. When a bridging fiber is lodged between adjacent fins or adjacent tubes, then small particles tend to collect on that fiber with the build up eventually resulting in a fouling of the passageway. In order to prevent or reduce the occurrence of fouling, it is therefore necessary to understand the manner in which the bridging effect is influenced by the structural configuration of the coil. With that in mind, the applicants have conducted experimental tests to determine how the variation in the spacing of the tubes and the spacing of the fins can affect the tendency of fouling to occur. The results are shown in
A field analysis was conducted to determine the types of material that were most likely to cause fouling in the condenser coil, and it was found that cotton fibers were the predominant cause of the foulings and that fouling is generally started by the bridging of an elongate fiber between adjacent fin or between adjacent tubes. Accordingly, experimental analysis was conducted to determine the fouling tendencies of a condenser coil in an environment of cotton fibers as the spacing of the fins is selectively varied. A number of heat exchangers, each being of a standard design with round tubes and plate fins of a specific spacing were exposed to an environment of natural cotton fibers and tested for their relative tendencies to foul. A heat exchanger having seven fins per inch, or a fin spacing of 0.14 inches between adjacent fins, was arbitrarily assigned a fouling goodness parameter (FGP) of 1. This is shown at point A on the graph of
As the fin spacing is increased, the associated increase in FGP is substantially linear to point B where the spacing is 0.40 inches and the FGP is 1.5. At point C, the relationship is still close to linear wherein the spacing is point 0.50 inches with an associated FGP of 2, which means that the heat exchanger is twice as “good” as compared to the heat exchanger at Point A in regards to fouling.
As the front spacing is increased beyond the 0.50 spacing, it will be seen that the FGP begins to increase substantially beyond the linear relationship, and at a spacing of 0.75 inches as shown at point B, it approaches an asymptotic relationship. Thus, it can be concluded that ideally, the fin spacing should be maintained at 0.75 inches or greater if the maximum FGP is desired. At those higher spacing parameters, however, it will be recognized that the exposed surface area is reduced and therefore the heat exchange capability is also reduced. Accordingly, it may be desirable to maintain sufficient fin spacing so as to obtain a sufficiently high FGP while, at the same time, maintaining sufficient density to provide a desired amount of surface area. For example, at point E, a sufficiently high FGP of 6 is obtained with a fin spacing of 0.70 inches between adjacent fins.
Although the experiential data as discussed hereinabove relates to fin spacing on round tube heat exchangers, the applicants believe that the same performance characteristics will be true of fin spacing with a microchannel tubing heat exchanger as shown in
In the
With the complete elimination of fins as shown in
With the elimination of the fins as discussed hereinabove, another effect that must be considered is that with the resulting reduced heat exchange surface area, and with an associated increase in the density of the microchannel tubes, will there be still sufficient heat exchange surface area to obtain the necessary performance? Presuming that, because of the performance characteristics discussed hereinabove, the spacing L between adjacent microchannels tubes is maintained at around 0.75 inches, the resulting number of microchannel tubes may not be sufficient to bring about the desired amount of heat exchange. One approach for overcoming this problem is shown in
It will, of course, be understood that multiple rows of tubes can be placed in such a staggered relationship such that the third row would most likely be aligned with the first row and a fourth row would be most aligned with a second row and so forth. Again, the fouling goodness parameter would not significantly change since the controlling parameter would still be the distance L between tubes in any single row.
Referring now to
In the embodiment depicted in
In the embodiment depicted in
The condensers of the invention depicted in
Referring now to
Referring now to
In the embodiment depicted in
As illustrated in
In general, to provide a satisfactory fouling goodness parameter in a high fouling inducing environment, the flat heat transfer tube condenser of the invention will have heat transfer fins extending between adjacent tubes in a zig-zag or generally V-shaped pattern at a spacing, w, as measured from apex to apex, in the range of ⅓ inches to ½ inches or greater. In an embodiment, the generally V-shaped fins are spaced apart at a distance of at least about 0.4 inches apex to apex. In an embodiment, the generally V-shaped fins are spaced apart at a distance in the range of 0.4 to 0.8 inches apex to apex. In another embodiment, the generally V-shaped fins are spaced apart at a distance of at least 0.6 inches apex to apex. In applications subject to a somewhat lesser fouling environment, the generally V-shaped fins may be spaced apart at a distance of as little as ¼ inches apex to apex.
As noted hereinbefore, the multichannel tubes 111 and 130 have a plurality of parallel channels extending the length thereof to provide multiple refrigerant flow passages therethrough. The channels may be of circular or non-circular cross-section. In condenser coils for refrigerated merchandisers, the individual channels typically would have a hydraulic diameter, defined as 4 times the flow area divided by the perimeter, of about 1 millimeter to about two millimeters, but may have a hydraulic diameter as large as about 5 millimeters and as small as about 200 microns.
While the present invention has been particular shown and described with reference to preferred and alternate embodiments as illustrated in the drawings, it will be understood by one skilled in the art that various changes in detail may be effective therein without departing from the true spirit and scope of the invention as defined by the claims.
This application claims priority from and the benefit of and is a continuation-in-part of co-pending U.S. patent application Ser. No. 11/255,426, filed Oct. 21, 2005, entitled FOUL-RESISTANT CONDENSER USING MICROCHANNEL TUBING, and published on Jul. 6, 2006, as U.S. Patent Publication No. 2006-0144076A1, which is a continuation-in-part of co-pending U.S. patent application Ser. No. 10/835,031, filed Apr. 29, 2004, entitled FOUL-RESISTANT CONDENSER USING MICROCHANNEL TUBING, now U.S. Pat. No. 7,000,415.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US06/34889 | 9/7/2006 | WO | 00 | 4/8/2008 |
Number | Date | Country | |
---|---|---|---|
Parent | 11255426 | Oct 2005 | US |
Child | 12089537 | US |