The invention relates to a foundation for a wind power plant with a first pedestal-like section, cast substantially from concrete at the erection site having at least one tower fastening element located therein, and cast into on site, on which a tower of the wind power plant is arrangeable, and to which the tower of the wind power plant is can be connectable, and with a second substantially horizontally extending section as a flat foundation body, the second section being arranged in connection with the first section, and the second section of the foundation consisting substantially at least of three prefabricated horizontal elements, preferably made from reinforced concrete.
Furthermore, the invention relates to a method for erecting a foundation for a wind power plant.
Foundations for wind power plants are configured substantially as cast-in-place concrete foundations. For this purpose, a pit is excavated at the erection location, and is provided with a granular subbase. Subsequently, the formwork and the reinforcement are erected, and it is filled completely with concrete on site. Here, a flat body is possibly erected with a pedestal; see, for example, US 20160369520 A1. In addition to the expenditure on transport as a result of the delivery of the concrete, the formwork and the reinforcement, this is highly intensive in terms of work and time on site. Quality control is also complicated and/or also associated with problems depending on weather conditions. Furthermore, the dismantling after the end of the service life of the wind power plant is expensive and highly complicated.
Furthermore, there is in principle demand for foundations of wind power plants to be erected from prefabricated elements, whereby the abovementioned problems might be reduced or eliminated. It is in principle advantageous that, in the case of prefabrication, the components can be produced in a standardized manner under defined conditions. The outlay on work on site is also reduced. For this purpose, various approaches have been described in the prior art.
For example, WO 2008/036934 A2 discloses a combination of prefabricated elements and classic formwork/reinforcement construction. EP 22563387 A1 discloses a foundation for a wind power plant. A foundation is erected from prefabricated concrete parts on site after a corresponding delivery. It comprises a flat section and a pedestal-like section. The ribs have horizontally projecting anchor elements which, in the assembled state, extend radially into the center of the foundation. Slabs are provided below and above the anchors. The cast-in-place concrete is introduced into the cavity which is formed in this way, in order to connect the anchors to one another and to form a central body. As a result, the abovementioned disadvantages are reduced only insignificantly.
It is therefore an object of the invention to overcome the abovementioned disadvantages and to make it possible for foundations for wind power plants, in particular for wind power plants with concrete towers, to be erected economically from prefabricated elements.
With regard to the foundation, the object according to the invention is achieved by virtue of the fact that the at least three horizontal elements each have at least one base section with a reinforcing element extending substantially vertically thereon, in that the horizontal elements are arrangeable in a manner which is dependent on the parameters of the tower to be erected, in particular the tower radius, and in that there is in each case a spacing between the horizontal elements.
With regard to the method, the object according to the invention is achieved by way of the steps:
arranging of at least one tower fastening element in a pedestal section of the foundation, arranging of at least three horizontal elements, prefabricated substantially from concrete, radially around the tower fastening element, with the result that in each case at least one connecting element which exits from the horizontal element protrudes into the pedestal section, the horizontal elements being arranged in such a way that there is in each case a spacing between horizontal elements,
introducing of reinforcements into the pedestal section,
erecting of formwork for spatially delimiting the pedestal section, and introducing of cast-in-place concrete into the formwork.
As a result, the abovementioned foundations can be simplified considerably with regard to assembly and material complexity. In particular, it is possible to erect foundations for different tower radii by way of one horizontal element type, by the horizontal elements being correspondingly displaced in parallel, the horizontal elements remaining identical in construction.
A further teaching of the invention provides that the spacing is covered with at least one covering element. It has been shown that, as a result, an increase in the load can be achieved in a simple way by way of introducing of soil onto the upper side of the foundation.
A further teaching of the invention provides that the first section has reinforcements which are cast on site. They are preferably at least partially prefabricated. As a result, a pedestal which satisfies the necessary static requirements can be produced in a simple way.
A further teaching of the invention provides that the at least three horizontal elements have at least one connecting element exiting from its side facing toward the first section, and being cast on site into the first section. As a result, a corresponding simple and secure connection of the horizontal elements to the pedestal is produced in a simple way.
A further teaching of the invention provides that the at least one tower fastening element is an anchor cage.
In the following text, the invention will be described in greater detail on the basis of exemplary embodiments in conjunction with a drawing, in which:
In
The first section 11 is configured as a pedestal 20. An anchor cage 60 (see
The second section 12 is of flat configuration. As an alternative, however, it can also be realized in a star shape.
A reinforcing wall 26 is arranged at a right angle on the base plate 23, the height of which reinforcing wall 26 decreases, for example, from the inner end 24 toward the outer end 27 of the base plate 23. An upwardly open cavity 28 is formed between two adjacent reinforcing walls 26, into which cavity 28 backfill ground 104 can be introduced, as a result of which a load can be applied to the second section 12 of the foundation 10.
Connecting elements 29 (here, preferably in the form of reinforcement bars) are provided at the inner end 24 of the horizontal element, which connecting elements 29 exit from the base plate and/or from the reinforcing wall 24 and, in the assembled state, protrude into the pedestal, for example in the direction of the anchor cage, and form a durable connection with the concrete of the pedestal 20.
The spacings B are preferably covered by way of covering plates 30, 31, 32, in order to achieve a surface which is, as it were, continuous below the cavity 28. As a result, the load action of the ground 104 is reinforced.
As
The foundation 10 is erected in a foundation pit 100, for example on a granular subbase 102, by at least one tower fastening element/anchor cage 60 being arranged in the pedestal section 11 of the foundation 10. The horizontal elements 22 are arranged radially around the tower fastening element 60, such that in each case at least one connecting element 29 which exits from the horizontal element 22 protrudes into the pedestal section 11 or the tower fastening element 60, the horizontal elements 22 being arranged in such a way that there is in each case a spacing B between the horizontal elements 22. Furthermore, reinforcements are introduced into the pedestal section 11. They can already be pre-manufactured, for example, and can be introduced as elements (not shown). Furthermore, formwork is provided which delimits the pedestal section spatially. The cast-in-place concrete is then introduced into the formwork into this space. The spacings B are closed by way of covering elements 30, 31, 32 toward the cavity 28. After hardening of the concrete, for example, the formwork is removed. Backfill ground 104 is then introduced as a load into the cavity 28. Subsequently, the tower of the wind power plant can be erected on the pedestal 20 in conjunction with the tower fastening element 60.
List of Designations
Number | Date | Country | Kind |
---|---|---|---|
10 2019 126 558.4 | Oct 2019 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/077693 | 10/2/2020 | WO |