Foundation structure for building, and construction method therefor

Information

  • Patent Grant
  • 10954647
  • Patent Number
    10,954,647
  • Date Filed
    Tuesday, April 17, 2018
    6 years ago
  • Date Issued
    Tuesday, March 23, 2021
    3 years ago
  • Inventors
  • Original Assignees
    • TAKEUCHI CONSTRUCTION CO., LTD.
  • Examiners
    • Maestri; Patrick J
    • Sadlon; Joseph J.
    Agents
    • Innovation Capital Law Group, LLP
    • Lin; Vic
Abstract
A building foundation structure includes a ground improved body obtained by improving a surface layer ground, and foundation concrete placed on the ground improved body. A bottom surface of a foundation concrete located below a building pillar has a four-or-more-sided polygonal shape smaller than the plan shape of the foundation concrete, and a part of the lower surface of the foundation concrete other than the bottom surface is a slope surface connecting the bottom surface and the plan shape. Since the stress from the foundation is transferred to the lower ground in its broader range, the stress transferred to the lower ground can be reduced. In addition, since the placing amount of the foundation concrete is reduced, the construction cost can be reduced.
Description
TECHNICAL FIELD

The present invention relates to: a building foundation structure including a ground improved body obtained by improving a surface layer ground, and foundation concrete placed on the ground improved body; and a construction method therefor.


BACKGROUND ART

There has been known a building foundation structure including a ground improved body obtained by improving a surface layer ground, and foundation concrete placed on the ground improved body (see, for example, Patent Literatures 1 and 2).


Such a building foundation structure has features that: construction cost is reduced with a simple structure; a support force of the entire foundation can be improved while differential settlement can be suppressed; and liquefaction of sediment at the time of an earthquake is effectively inhibited by a ground covering effect, for example.


In such a building foundation structure, generally, the shape of a lower surface of foundation concrete located below a building pillar is a square, and the shape of the foundation concrete is a rectangular parallelepiped (square prism) (see, for example, an engagement projection 7a in FIG. 5 of Patent Literature 1, and FIG. 1 of Patent Literature 2).


CITATION LIST
Patent Literature

[PTL 1] Japanese Patent No. 3608568


[PTL 2] Japanese Patent No. 5494880


SUMMARY OF THE INVENTION
Problems to be Solved by the Invention

The present inventor has conducted thorough studies for further improvement in the building foundation structure having the above features, and has conceived of revising the shape of the lower surface of the foundation concrete located below the building pillar. Then, various studies for the shape have been conducted.


As a result, the shape that achieves both of reduction in stress transferred to a lower ground and reduction in construction cost by reducing the placing amount of the foundation concrete has been figured out, and further, a parameter study has been conducted, thus arriving at completion of the present invention.


An object to be achieved by the present invention is to, in a building foundation structure including a ground improved body obtained by improving a surface layer ground, and foundation concrete placed on the ground improved body, reduce stress transferred to a lower ground, and reduce construction cost by reducing the placing amount of the foundation concrete.


Solution to the Problems

To achieve the above object, a building foundation structure according to the present invention includes a ground improved body obtained by improving a surface layer ground, and foundation concrete placed on the ground improved body. The foundation concrete located below a building pillar has a bottom surface having a four-or-more-sided polygonal shape smaller than a plan shape of the foundation concrete. The foundation concrete has a lower surface including the bottom surface, a part of the lower surface other than the bottom surface being a slope surface connecting the bottom surface and the plan shape. (claim 1).


Here, it is preferable that a slope angle of the slope surface from a horizontal plane is not less than 20° and not greater than 40° (claim 2).


According to the above building foundation structure, the bottom surface of the foundation concrete located below the building pillar is formed in a four-or-more-sided polygonal shape smaller than the plan shape of the foundation concrete, and a part of the lower surface of the foundation concrete other than the bottom surface is formed to be slope surfaces connecting the bottom surface of the foundation concrete and the plan shape of the foundation concrete, whereby the range in which stress is transferred from the foundation to the lower ground is broadened, and thus stress transferred to the lower ground can be reduced.


In addition, since the foundation concrete located below the building pillar has the shape mentioned above, the volume thereof becomes smaller as compared to the shape of conventional foundation concrete. Therefore, the placing amount of foundation concrete can be reduced, and thus construction cost can be reduced.


In particular, when the slope angle of the slope surface from the horizontal surface is set to be not less than 20° and not greater than 40°, the reduction rate of stress transferred to the lower ground and the reduction rate of the placing amount of the foundation concrete are increased.


To achieve the above object, a construction method for a building foundation structure according to the present invention is a construction method for a building foundation structure that includes a ground improved body obtained by improving a surface layer ground, and foundation concrete placed on the ground improved body, The construction method includes: a ground improvement step; a foundation excavation step; and a foundation placing step. The ground improvement step is a step of backfilling soil obtained by digging a surface layer ground down, mixing and stirring the soil while adding and mixing a solidification material, and then performing compaction to form the ground improved body. The foundation excavation step includes a step of excavating an upper part of the ground improved body located below an above-ground part of a building pillar, into a polygonal prism shape with a four-or-more-sided base, to form an upper excavated portion, and a step of excavating a part below the upper excavated portion, so as to form a bottom surface having a four-or-more-sided polygonal shape smaller than a plan shape of the upper excavated portion, and form a slope surface connecting the bottom surface and a lower end of the upper excavated portion, thus forming a lower excavated portion. The foundation placing step is a step of placing leveling concrete into the lower excavated portion, performing foundation reinforcing bar arrangement in the upper excavated portion and the lower excavated portion, and placing the foundation concrete.


Here, it is preferable that a slope angle of the slope surface from a horizontal plane is not less than 20° and not greater than 40°.


According to the above construction method for the building foundation structure, in the foundation excavation step, the ground improved body formed in the ground improvement step is excavated to form the upper excavated portion having a polygonal prism shape with a four-or-more-sided base, and form, below the upper excavated portion, the lower excavated portion that has a bottom surface having a four-or-more-sided polygonal shape smaller than the plan shape of the upper excavated portion, and a slope surface connecting the bottom surface and the lower end of the upper excavated portion. Thus, when the polygonal prism shape is a square prism shape, i.e., the plan shape is a square, and the shape of the bottom surface is a square, for example, the shape of the lower surface of the foundation concrete placed in the foundation placing step becomes a reverse quadrangular frustum.


Therefore, in the building foundation structure constructed by the above construction method, the range in which stress is transferred from the foundation concrete to the lower ground is broadened, and thus stress transferred to the lower ground can be reduced.


In addition, since the foundation concrete located below the building pillar has the above shape, the volume thereof becomes smaller as compared to the shape of conventional foundation concrete. Therefore, the placing amount of foundation concrete can be reduced, and thus construction cost can be reduced.


In particular, at the time of forming the lower excavated portion in the foundation excavation step, the slope angle of the slope surface from the horizontal surface is set to be not less than 20° and not greater than 40°. With this configuration, the reduction rate of stress transferred to the lower ground and the reduction rate of the placing amount of the foundation concrete are increased.


Advantageous Effects of the Invention

As described above, the building foundation structure and the construction method therefor according to the present invention can reduce stress transferred to the lower ground, and reduce construction cost by reducing the placing amount of the foundation concrete.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a building foundation structure according to embodiment 1 of the present invention, where FIG. 1A is a plan view and FIG. 1B is a sectional view taken along arrows X-X in FIG. 1A.



FIG. 2 is an enlarged view of a major part in FIG. 1B.



FIG. 3 shows a state in which, in a foundation excavation step, an upper excavated portion and a lower excavated portion are formed in a ground improved body formed in a ground improvement step, where FIG. 3A is a plan view and FIG. 3B is a sectional view.



FIG. 4 shows a finite-element-method (FEM) analysis model of ground (hereinafter referred to as “ground FEM analysis model”), where FIG. 4A is a plan view and FIG. 4B is a sectional view.



FIG. 5 shows a shape in the case where a slope angle α is 0° (Comparative example) in FIG. 4, where FIG. 5A is a plan view and FIG. 5B is a sectional view.



FIG. 6 is a graph showing change in a ground contact pressure underneath (at point D) the improved body with the slope angle α.



FIG. 7 is a graph showing change in a concrete amount with the slope angle α.



FIG. 8 shows foundation concrete in a building foundation structure according to embodiment 2 of the present invention, where FIG. 8A is a perspective view as seen from below, and FIG. 8B is a plan view of a ground FEM analysis model similar to FIG. 4A and FIG. 4B.



FIG. 9 shows foundation concrete in a building foundation structure according to embodiment 3 of the present invention, where FIG. 9A is a perspective view as seen from below, and FIG. 9B is a plan view of a ground FEM analysis model similar to FIG. 4A and FIG. 4B.



FIG. 10 shows foundation concrete in a building foundation structure according to embodiment 4 of the present invention, where FIG. 10A is a perspective view as seen from below, and FIG. 10B is a plan view of a ground FEM analysis model similar to FIG. 4A and FIG. 4B.





DESCRIPTION OF EMBODIMENTS

Hereinafter, embodiments according to the present invention will be described with reference to the drawings.


A building foundation structure 1 according to the present invention includes a ground improved body 2 obtained by improving a surface layer ground G, and foundation concrete 3 placed on the ground improved body 2.


A bottom surface BS1 of the foundation concrete 3 located below a building pillar 4 is formed in a four-or-more-sided polygonal shape smaller than the plan shape of the foundation concrete 3. A part of the lower surface of the foundation concrete 3 other than the bottom surface BS1 is formed to be slope surfaces connecting the bottom surface BS1 and the plan shape of the foundation concrete 3.


Embodiment 1

A plan view in FIG. 1A, FIG. 1B which is a sectional view along arrows X-X in FIG. 1A, and a major part enlarged sectional view in FIG. 2 show a building foundation structure 1 according to embodiment 1 of the present invention.


The building foundation structure 1 includes a ground improved body 2 obtained by improving a surface layer ground G, and foundation concrete 3 placed on the ground improved body 2.


The plan shape of the foundation concrete 3 is a square, and a bottom surface BS1 of the foundation concrete 3 is a square smaller than the plan shape of the foundation concrete 3.


A part of the lower surface of the foundation concrete 3 other than the bottom surface BS1 is formed to be slope surfaces S1 that connect the bottom surface BS1 and the plan shape of the foundation concrete 3 as shown in FIG. 2. In the present embodiment, the shape of the lower surface of the foundation concrete 3 is a reverse quadrangular frustum.


The building foundation structure 1 according to the present embodiment is individual footing. However, continuous footing or mat foundation may be employed.


Next, an example of a construction process for the building foundation 1 will be described.


<Ground Improvement Step>


(Dig-Down Step)


The surface layer ground G below a ground level GL shown in FIG. 1B and FIG. 2 is dug down in a desired shape by, for example, plowing using a backhoe.


(Primary Improvement Step)


Next, a primary improvement step is performed as follows. A backhoe, for example, to which a mixing fork is mounted as an attachment, is used to perform excavation on the ground into a square shape which corresponds to the lower-part shape of the ground improved body 2. Then, mixing and stirring are performed while a solidification material such as a cement-based solidification material is added and mixed, and compaction is performed by a heavy machine and a roller, etc., to form the lower part of the ground improved body 2.


(Secondary Improvement Step)


Next, a secondary improvement step is performed as follows. The soil obtained by digging in the dig-down step is backfilled to the upper side of the lower part of the ground improved body 2 by a backhoe or the like. Then, a backhoe, for example, to which a mixing fork is mounted as an attachment, is used for excavating the surface layer ground G from the ground level GL into the upper-part shape of the ground improved body 2. Then, mixing and stirring are performed while a solidification material is added and mixed, and compaction is performed by a heavy machine and a roller, etc., to form the upper part of the ground improved body 2.


<Foundation Excavation Step>


(Upper excavated portion forming step)


Next, with respect to the ground improved body 2 formed in the ground improvement step, as shown in a plan view in FIG. 3A and a sectional view in FIG. 3B, the upper part of the ground improved body 2 located below the above-ground part of each steel pillar 4 shown in FIG. 1A, FIG. 1B, and FIG. 2 is excavated to a predetermined depth into a rectangular parallelepiped shape in a range of a transverse width B1 and a longitudinal width W1 shown in FIG. 3A, by a backhoe or the like, to form an upper excavated portion 2A.


(Lower Excavated Portion Forming Step)


Next, a part below the upper excavated portion 2A is excavated into a reverse quadrangular frustum so that a bottom surface BS2 has a square shape, and thus a lower excavated portion 2B is formed.


For example, the lower excavated portion 2B is formed by performing excavation to a predetermined depth into a rectangular parallelepiped shape in a range of a transverse width B2 and a longitudinal width W2 shown in FIG. 3A, by a backhoe or the like, and then performing excavation so as to form slope surfaces S2 in a reverse quadrangular frustum shape shown in FIG. 3B.


<Foundation Placing Step>


Then, leveling concrete 6 shown in FIG. 2 is placed into the lower excavated portion 2B.


Next, a pedestal anchor bolt for fixing the steel pillar 4 is fixed to the leveling concrete 6, foundation reinforcing bar arrangement is performed in the upper excavated portion 2A and the lower excavated portion 2B, and foundation concrete 3 is placed.


An upper part 3A (range of height H1 in FIG. 2) of the foundation concrete 3 is formed in a rectangular parallelepiped shape, and a lower part 3B (range of height H2 in FIG. 2) of the foundation concrete 3 is formed in a reverse quadrangular frustum shape.


Next, the steel pillar 4 is installed and floor concrete 5 is placed.


Through the above process, construction of the building foundation (understructure) 1 shown in FIG. 1A and FIG. 1B is completed.


<Confirmation of Effects Through Numerical Analysis>


Next, numerical analysis performed for confirming effects will be described.


(Analysis Method)


Numerical analysis is performed on an analysis model shown in the plan view in FIG. 4A and the sectional view in FIG. 4B, using ground finite element method (FEM) analysis software.


Setting is made as follows: improvement width L=2.5 m, foundation height H=0.8 m, and foundation transverse width B1=foundation longitudinal width W1=3.0 m.


A load applied to the foundation 3 is set to 900 kN, and a distributed load w of 2,500 kN/m2 is applied to an area with a transverse-direction range a and a longitudinal-direction range b (a=b=0.6 m).


Evaluation items are principal stresses (kN/m2) at points A to C underneath the foundation concrete 3, a ground contact pressure (kN/m2) at a point D underneath the ground improved body 2, and a concrete amount (m3) which is the volume of the foundation concrete 3, as shown in FIG. 4B).


(Examples and Comparative Example)


Analysis is performed while a slope angle α of the slope surfaces S1, S2 (side surface of reverse truncated cone) from a horizontal plane is changed as α=0°, 10°, 20°, 30°, 40°, 45°. The case of α=0° is defined as Comparative example, and the cases of α=10°, 20°, 30°, 40°, 45° are defined as Examples 1 to 5, respectively.


An analysis model in the case of α=0° in Comparative example has a shape shown in a plan view in FIG. 5A and a sectional view in FIG. 5B.


(Parameters)


With respect to α=10°, 20°, 30°, 40°, 45°, the transverse width B2 of the foundation bottom surface, the longitudinal width W2 of the foundation bottom surface, the height H1 of the rectangular parallelepiped part, and the height H2 of the reverse quadrangular frustum part are set as shown in Table 1.


(Analysis Result)


Table 1 shows a result of analysis for the evaluation items.



FIG. 6 shows change in the ground contact pressure (“Ground contact pressure underneath improved body”) at the point D underneath the ground improved body 2 with respect to the slope angle α of the slope surfaces S1, S2 (side surface of reverse truncated cone) from the horizontal plane, and FIG. 7 shows change in the volume (“Concrete amount”) of the foundation concrete 3 with respect to the slope angle.











TABLE 1









Parameter/evaluation item











Foundation
Ground contact






















concrete









Principal stress
pressure




“Plan shape”









underneath foundation
underneath











Comparative
(magnitude rela-
concrete
improved body
Concrete






















example/
tion) “Bottom
α
L
H
B1
W1
B2
W2
H1
H2
Point A
Point B
Point C
Point D
amount












Example 1
surface shape”
(°)
(m)
(kN/m2)
(m3)


























Comparative
FIG.
Square =
0
2.5
0.8
3.0
3.0




42.00
60.00
541.0
22.04
7.2


example
5
Square


Example 1
FIG.
Square >
10




1.0
1.0
0.62
0.18
43.40
64.00
510.0
21.26
6.3


Example 2
4
Square
20




1.0
1.0
0.4
0.4
51.00
65.39
491.6
20.70
5.2


Example 3


30




1.0
1.0
0.2
0.6
53.09
75.04
479.9
20.23
4.2


Example 4


40




1.6
1.6
0.2
0.6
50.10
75.90
428.1
20.27
4.9


Example 5


45




1.8
1.8
0.2
0.6
46.00
75.50
449.0
20.31
5.3









From the graph in FIG. 6, it is found that the ground contact pressure underneath the improved body is smaller in Examples 1 to 5 having some slope angles α than in Comparative example having no slope angle α (α=0°).


The reason is considered as follows. In Examples, the shape of the lower surface of the foundation concrete 3 located below the building pillar 4 is a reverse quadrangular frustum. Therefore, the range in which stress is transferred from the foundation concrete 3 to the lower ground is broadened, and thus stress transferred to the lower ground can be reduced.


Then, it is found that the ground contact pressure underneath the improved body decreases as the slope angle α is increased, and the ground contact pressure underneath the improved body becomes further smaller in a range of 20°≤α≤40° and is minimized in the vicinity of α=30°.


For example, the ground contact pressure underneath the improved body in Example 3 (α=30°) is smaller by about 8% than the ground contact pressure underneath the improved body in Comparative example (α=0°).


In addition, from the graph in FIG. 7, it is found that the concrete amount is smaller in Examples 1 to 5 having some slope angles α than in Comparative example having no slope angle α (α=0°).


The reason is as follows. In Examples, the shape of the lower surface of the foundation concrete 3 located below the building pillar 4 is a reverse quadrangular frustum. Therefore, the volume of the foundation concrete is smaller in Examples (FIG. 4B) than in Comparative example (FIG. 5B).


Then, it is found that the concrete amount decreases as the slope angle α is increased, and the concrete amount becomes further smaller in a range of 20°≤α≤40° and is minimized in the vicinity of α=30°.


For example, the concrete amount in Example 3 (α=30°) is smaller by about 42% than the concrete amount in Comparative example (α=0°).


From the above analysis result, it is found that setting the slope angle α of the slope surfaces S1, S2 (side surface of reverse truncated cone) from the horizontal plane in a range not less than 20° and not greater than 40° is preferable because the reduction rate of the stress transferred to the lower ground and the reduction rate of the placing amount of the foundation concrete are increased, and in particular, setting the slope angle α to about 30° is more preferable because the reduction rate of the stress transferred to the lower ground and the reduction rate of the placing amount of the foundation concrete are maximized.


Hereinafter, regarding modifications of the plan shape of the foundation concrete 3 and the shape of the bottom surface BS1 of the foundation concrete 3, these shapes and ground FEM analysis results will be described.


Embodiment 2

Foundation concrete 3 in a building foundation structure according to embodiment 2 of the present invention is shown in a perspective view in FIG. 8A and a plan view of a ground FEM analysis model in FIG. 8B.


The plan shape of the foundation concrete 3 and the shape of the bottom surface BS1 are regular octagons.


The shape of the upper part 3A of the foundation concrete 3 is a regular octagonal prism, and the shape of the lower surface of the foundation concrete 3 corresponding to the lower part 3B of the foundation concrete 3 is a reverse octagonal frustum.


Embodiment 3

Foundation concrete 3 in a building foundation structure according to embodiment 3 of the present invention is shown in a perspective view in FIG. 9A and a plan view of a ground FEM analysis model in FIG. 9B.


The plan shape of the foundation concrete 3 is a regular octagon, and the shape of the bottom surface BS1 is a square.


The shape of the upper part 3A of the foundation concrete 3 is a regular octagonal prism, and a part of the lower surface of the foundation concrete 3 other than the square-shaped bottom surface BS1 is formed to be slope surfaces connecting the lower end (regular-octagonal plan shape) of the upper part 3A of the foundation concrete 3 and the square-shaped bottom surface BS1.


Embodiment 4

Foundation concrete 3 in a building foundation structure according to embodiment 4 of the present invention is shown in a perspective view in FIG. 10A and a plan view of a ground FEM analysis model in FIG. 10B.


The plan shape of the foundation concrete 3 is a regular hexadecagon, and the shape of the bottom surface BS1 is a square.


The shape of the upper part 3A of the foundation concrete 3 is a regular hexadecagonal prism, and a part of the lower surface of the foundation concrete 3 other than the square-shaped bottom surface BS1 is formed to be slope surfaces connecting the lower end (regular-hexadecagonal plan shape) of the upper part 3A of the foundation concrete 3 and the square-shaped bottom surface BS1.


<Result of Ground FEM Analysis>


In embodiments 2 to 4, numerical analysis was performed using ground FEM analysis software, regarding analysis models similar to the analysis model shown in the plan view in FIG. 4A and the sectional view in FIG. 4B in embodiment 1.


Embodiments 2 to 4 are defined as Examples 6 to 8, and these Examples, in which the slope angle α of the slope surfaces S1, S2 from the horizontal surface is set as α=30°, are shown in Table 2, together with Comparative example and Example 3.


As in Table 1, evaluation items are principal stresses (kN/m2) at the points A to C underneath the foundation concrete 3, a ground contact pressure (kN/m2) at the point D underneath the ground improved body 2, and a concrete amount (m3) which is the volume of the foundation concrete 3, as shown in FIG. 4B.


From Table 2, it is found that the ground contact pressures underneath the improved bodies in embodiments 2 to 4 (Examples 6 to 8) are smaller by about 6 to 7% than the ground contact pressure underneath the improved body in Comparative example (α=0°).


In addition, it is found that the concrete amounts in embodiments 2 to 4 (Examples 6 to 8) are smaller by about 36 to 39% than the concrete amount in Comparative example (α=) 0°.


As described above, the bottom surface BS1 of the foundation concrete 3 located below the building pillar 4 is formed in a four-or-more-sided polygonal shape smaller than the plan shape of the foundation concrete 3, and a part of the lower surface of the foundation concrete 3 other than the bottom surface BS1 is formed to be slope surfaces connecting the bottom surface BS1 of the foundation concrete 3 and the plan shape of the foundation concrete 3, whereby the stress from the foundation is transferred to the lower ground in its broader range, and thus stress transferred to the lower ground can be reduced.


In addition, since the foundation concrete 3 located below the building pillar 4 has the above shape, the volume thereof becomes smaller as compared to the shape of conventional foundation concrete 3 as shown in FIG. 5. Therefore, the placing amount of foundation concrete can be reduced, and thus construction cost can be reduced.











TABLE 2









Parameter/evaluation item











Foundation
Ground contact






















concrete









Principal stress
pressure




“Plan shape”









underneath foundation
underneath











Comparative
(magnitude rela-
concrete
improved body
Concrete






















example/
tion) “Bottom
α
L
H
B1
W1
B2
W2
H1
H2
Point A
Point B
Point C
Point D
amount












Example
surface shape”
(°)
(m)
(kN/m2)
(m3)


























Comparative
FIG.
Square =
0
2.5
0.8
3.0
3.0




42.00
60.00
541.0
22.04
7.2


example
5
Square


Example 3
FIG.
Square >
30




1.0
1.0
0.2
0.6
53.09
75.04
479.9
20.23
4.2



4
Square


Example 6
FIG.
Regular



3.4
3.4
1.1
1.1


52.99
74.34
303.4
20.67
4.4



8
octagon >




Regular




octagon


Example 7
FIG.
Regular









53.08
70.15
337.5
20.53
4.6



9
octagon >




Square


Example 8
FIG.
Regular









53.91
70.72
328.0
20.68
4.4



10
hexadecagon >




Square









The description of the above embodiments is in all aspects illustrative and not restrictive. Various improvements and modifications can be made without departing from the scope of the present invention.


DESCRIPTION OF THE REFERENCE CHARACTERS






    • 1 building foundation structure


    • 2 ground improved body


    • 2A upper excavated portion


    • 2B lower excavated portion


    • 3 foundation concrete


    • 3A upper part


    • 3B lower part


    • 4 steel pillar


    • 5 floor concrete


    • 6 leveling concrete

    • B1 foundation transverse width

    • B2 transverse width of foundation bottom surface

    • BS1, BS2 bottom surface

    • G surface layer ground

    • GL ground level

    • H foundation height

    • H1 height of rectangular parallelepiped part

    • H2 height of reverse quadrangular frustum part

    • L improvement width

    • S1, S2 slope surface

    • W1 foundation longitudinal width

    • W2 longitudinal width of foundation bottom surface

    • a transverse-direction range in which equally distributed load acts

    • b longitudinal-direction range in which equally distributed load acts

    • α slope angle of slope surface from horizontal plane

    • w equally distributed load




Claims
  • 1. A construction method for a building foundation structure that includes a ground improved body obtained by improving a surface layer ground, and foundation concrete placed on the ground improved body, the construction method comprising: a ground improvement step;a foundation excavation step; anda foundation placing step, whereinthe ground improvement step is a step of backfilling soil obtained by digging a surface layer ground down, mixing and stirring the soil while adding and mixing a solidification material, and then performing compaction to form an improved ground,the foundation excavation step includes a step of excavating an upper part of the improved ground located below an above-ground part of a building pillar, into a polygonal prism shape with a plan outer perimeter defining a four-or-more-sided shape, to form an upper excavated portion, anda step of excavating a part below the upper excavated portion, forming a lower surface including a lower-most surface having a continuous outer perimeter, the lower-most surface defining a four-or-more-sided polygonal shape smaller than the plan outer perimeter of the upper excavated portion, and forming a sloped surface connecting the outer perimeter of the lower-most surface and a lower end of the plan outer perimeter of the upper excavated portion, thus forming a lower excavated portion,a slope angle of the sloped surface from a horizontal plane being not less than 20° and not greater than 40°, andthe foundation placing step is a step of placing leveling concrete into the lower excavated portion, performing foundation reinforcing bar arrangement in the upper excavated portion and the lower excavated portion, and placing the foundation concrete.
  • 2. The construction method of claim 1, wherein the sloped sides connect each of the four-or-more sides of the outer perimeter of the lower-most surface with the plan outer perimeter of the foundation concrete.
Priority Claims (2)
Number Date Country Kind
JP2017-130847 Jul 2017 JP national
JP2018-034971 Feb 2018 JP national
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2018/015895 4/17/2018 WO 00
Publishing Document Publishing Date Country Kind
WO2019/008866 1/10/2019 WO A
US Referenced Citations (61)
Number Name Date Kind
783901 Sheldon Feb 1905 A
1006309 Spickerman Oct 1911 A
1690259 Strauss Nov 1928 A
1805311 Hill May 1931 A
2446949 Neutra Aug 1948 A
2682750 Lorenz Jul 1954 A
3099911 Turzillo Aug 1963 A
RE25614 Turzillo Jul 1964 E
3269126 Freeman, Jr. Aug 1966 A
3921354 Connelly Nov 1975 A
4000622 Chiaves Jan 1977 A
4037384 Molyneux Jul 1977 A
4043909 Endo Aug 1977 A
4079930 Schiron Mar 1978 A
4134707 Ewers Jan 1979 A
4241543 Foscarini Dec 1980 A
4275538 Bounds Jun 1981 A
4591466 Murray May 1986 A
4714226 Tracy Dec 1987 A
4767241 Wells Aug 1988 A
4832533 Ringesten May 1989 A
4832535 Crambes May 1989 A
4843785 Sero Jul 1989 A
4911585 Vidal Mar 1990 A
5085276 Rivas Feb 1992 A
5689927 Knight, Sr. Nov 1997 A
6032421 Yamada Mar 2000 A
6702522 Silber Mar 2004 B2
6910832 Gagliano Jun 2005 B2
7497053 Nicolet Mar 2009 B2
7556453 Collina Jul 2009 B2
7661907 Armstrong Feb 2010 B2
7841143 Jensen Nov 2010 B2
8291668 Iske Oct 2012 B2
8549799 Tate Oct 2013 B2
8596924 Shimada Dec 2013 B2
8677700 Fairbairn Mar 2014 B2
8966837 Knudsen Mar 2015 B2
9096985 Phuly Aug 2015 B1
9133637 O'Brien Sep 2015 B1
9228313 Magi Jan 2016 B2
9267258 Knapp Feb 2016 B2
9340991 Yandell May 2016 B2
9347197 Phuly May 2016 B2
9428926 Kramer Aug 2016 B2
9546465 Song Jan 2017 B2
9567723 White Feb 2017 B2
9611615 Davis Apr 2017 B2
9777456 Spiro Oct 2017 B1
10344440 Surjaatmadja Jul 2019 B2
10358838 Dominguez Jul 2019 B2
10407859 Elfass Sep 2019 B2
10633818 Spiro Apr 2020 B2
10655353 Carless May 2020 B2
10822765 Serna Garcia-Conde Nov 2020 B2
20070181767 Wobben Aug 2007 A1
20090013625 Tourneur Jan 2009 A1
20130000236 Gallardo Hernandez Jan 2013 A1
20150121784 Abad Huber May 2015 A1
20170002535 Surjaatmadja Jan 2017 A1
20180209113 Birtele Jul 2018 A1
Foreign Referenced Citations (10)
Number Date Country
4005032 Aug 1991 DE
0115553 May 1987 EP
217541 Aug 1924 GB
796959 Jun 1958 GB
60203729 Oct 1985 JP
2003278173 Oct 2003 JP
3608568 Jan 2005 JP
5494880 May 2014 JP
2014145176 Aug 2014 JP
WO-2013058596 Apr 2013 WO
Non-Patent Literature Citations (1)
Entry
International Search Report dated May 22, 2018 from corresponding PCT Application No. PCT/JP2018/015895.
Related Publications (1)
Number Date Country
20200141082 A1 May 2020 US