The present application relates to the general art of structural, bridge and geotechnical engineering, and to the particular field of foundations for overfilled arches and other bridge structures.
Overfilled bridge structures are frequently formed of precast or cast-in-place reinforced concrete and are used in the case of bridges to support a first pathway over a second pathway, which can be a waterway, a traffic route, or in the case of other structures, a storage space or the like. The term “overfilled bridge” will be understood from the teaching of the present disclosure, and in general as used herein, an overfilled bridge is a bridge formed of bridge elements or units that rest on a foundation and has soil or the like resting thereon and thereabout to support and stabilize the structure and in the case of a bridge provide the surface of the first pathway.
In the past the bridge units of overfilled bridge structures have been constructed to rest on prepared foundations at the bottom of both sides of the structure. Fill material, at the sides of the arch (backfill material) serves to diminish the outward displacements of the structure when the structure is loaded from above. The foundations previously used have typically been cast-in-place, requiring significant on-site preparation and manufacturing time and labor, making foundation preparation a very weather effected step of the construction process.
A foundation structure, system and method with advantages as to manufacturability, installation and ability to effectively receive and support bridge structures would be desirable.
As used herein the term “precast” or “precast concrete” as used in reference to a structure or portion of a structure means that the concrete of the structure or portion of the structure was poured and cured to create the structure or portion of the structure prior to delivery of the structure or portion of the structure to a construction site or other installation/use location where the structure or portion of the structure will be installed for use.
As used herein the term “cast-in-place” or “cast-in-place concrete” as used in reference to a structure or portion of a structure means that the concrete of the structure or portion of the structure was poured and cured at the installation/use location of the structure or portion of the structure.
As used herein the term “concrete” means traditional concrete as well as variations such as concrete formulas with plastics/polymers or resins incorporated therein or with fibers or other materials incorporated therein.
In a first aspect, a bridge system includes a first combination precast and cast-in-place concrete foundation structure and a second combination precast and cast-in-place foundation structure. The first combination precast and cast-in-place foundation structure includes a first precast concrete foundation unit having an inner elongated upright wall member and an outer elongated upright wall member spaced apart from the inner elongated upright wall member to define a channel therebetween, and multiple upright supports located within the channel; and cast-in-place concrete within the channel of the first precast concrete foundation unit and tied to each of the inner and outer elongated upright wall members by reinforcement embedded within both the cast-in-place concrete and the inner elongated upright wall member and reinforcement embedded within both the cast-in-place concrete and the outer elongated upright wall member. The second combination precast and cast-in-place concrete foundation structure is spaced apart from the first combination precast and cast-in-place concrete foundation structure and extends substantially parallel thereto, and the second combination precast and cast-in-place concrete foundation structure includes: a second precast concrete foundation unit having an inner elongated upright wall member and an outer elongated upright wall member spaced apart from the inner elongated upright wall member to define a channel therebetween, and multiple upright supports located within the channel; and cast-in-place concrete within the channel of the second precast concrete foundation unit and tied to each of the inner and outer elongated upright wall members of the second precast concrete foundation unit by reinforcement embedded within both the cast-in-place concrete and the inner elongated upright wall member of the second precast concrete foundation unit and reinforcement embedded within both the cast-in-place concrete and the outer elongated upright wall member of the second precast concrete foundation unit. The system includes multiple bridge units, each of the multiple bridge units having a first bottom portion and a second bottom portion spaced apart from the first bottom portion, the first bottom portion supported by the first combination precast and cast-in-place concrete foundation structure and at least partly embedded in the cast-in-place concrete of the first combination precast and cast-in-place concrete foundation structure, and the second bottom portion supported by the second combination precast and cast-in-place concrete foundation structure and at least partly embedded in the cast-in-place concrete of the second combination precast and cast-in-place concrete foundation structure.
In the first aspect, the multiple supports of the first precast concrete foundation unit may substantially align with the multiple supports of the second precast concrete foundation unit.
In the first aspect, each of the multiple supports of the first precast concrete foundation unit may extend laterally between the inner elongated upright wall member and the outer elongated upright wall member of the first precast concrete foundation unit to define multiple spaced apart cells in the channel of the first precast concrete foundation unit, the cast-in-place concrete of the first combination precast and cast-in-place concrete foundation structure located within each cell of the first precast concrete foundation unit, and each of the multiple supports of the second precast concrete foundation unit may extend laterally between the inner elongated upright wall member and the outer elongated upright wall member of the second precast concrete foundation unit to define multiple spaced apart cells in the channel of the second precast concrete foundation unit, the cast-in-place concrete of the second combination precast and cast-in-place concrete foundation structure located within each cell of the second precast concrete foundation unit.
In the first aspect, each of the multiple cells of the first precast concrete foundation unit may be open at both the top and the bottom, and the cast-in-place concrete of the first combination precast and cast-in-place concrete foundation structure may substantially close each cell from top to bottom; and each of the multiple cells of the second precast concrete foundation unit may be open at both the top and the bottom, and the cast-in-place concrete of the second combination precast and cast-in-place concrete foundation structure may substantially close each cell from top to bottom.
In the first aspect, a receiving channel may be located atop each of the multiple supports of the first and second precast concrete foundation units to receive and support the first and second bottom portions of the bridge units.
In the first aspect, the receiving channels may take on various forms, including (i) a recess formed in the supports or a channel member mounted on the supports, (ii) having a U-shape or an L-shape and/or (iii) being entirely within the channel or extending from within the channel to one of the elongated upright walls.
In the first aspect, the cast-in-place concrete at the outer sides of the bottom portions of each bridge unit may have a higher elevation than at the inner sides. Moreover, the cast-in-place concrete at the outer side may be higher than a bottom surface of the bridge unit bottom portion to embed the bottom portion at its outer side, and the cast-in-place concrete at the inner side may be substantially flush with the bottom surface.
In the first aspect, at least some of the multiple supports may include at least one flow opening extending from cell to cell for permitting cast-in-place concrete to flow from one cell through the support to another cell during pouring, the flow opening including cast-in-place concrete therein. Moreover, at least some of the multiple supports may include multiple reinforcement openings extending from cell to cell, each reinforcement opening smaller than the flow opening, and reinforcement may extend through each of the reinforcement openings from cell to cell and include ends embedded in the cast-in-place concrete.
In the first aspect, the combination precast and cast-in-place concrete foundation structures may further include a precast wingwall foundation unit at one end, with reinforcement extending from the precast wingwall foundation unit into to the precast concrete foundation unit and embedded in the cast-in-place concrete. The reinforcement may extend from the precast wingwall foundation unit into the channel of first precast concrete foundation unit. A bottom of the precast wingwall foundation unit may be wider than a top of the precast wingwall foundation unit.
In another aspect, a precast concrete foundation unit for use in constructing a combination precast and cast-in-place concrete foundation structure is provided and includes: a first elongated upright wall member and a second elongated upright wall member spaced apart from the first elongated upright wall member to define a channel therebetween, and multiple upright supports located within the channel, each of the multiple supports extends laterally between the first elongated upright wall member and the second elongated upright wall member of the first precast concrete foundation unit to (i) define multiple spaced apart cells along a length of the channel and (ii) rigidly connect the first elongated upright wall member and the second elongated upright wall member, each of the multiple cells is open at both the top and the bottom, a receiving channel is located atop each of the multiple supports, at least some of the multiple supports include at least one flow opening extending from cell to cell for permitting cast-in-place concrete to flow from one cell through the support to another cell during pouring.
In yet another aspect, a combination precast and cast-in-place concrete foundation structure located at a bridge installation site is provided and includes: a precast concrete foundation unit having an inner elongated upright wall member and an outer elongated upright wall member spaced apart from the inner elongated upright wall member to define a channel therebetween, and multiple upright supports located within the channel; an elongated precast concrete pedestal unit, formed separately from the precast concrete foundation unit and positioned within the channel and extending upwardly out of the channel and above the precast concrete foundation unit, a top surface of the elongated precast concrete pedestal unit including a recess therein or channel member thereon; and cast-in-place concrete within the channel and (i) tied to each of the inner and outer elongated upright wall members by reinforcement embedded within both the cast-in-place concrete and the inner elongated upright wall member and reinforcement embedded within both the cast-in-place concrete and the outer elongated upright wall member and (ii) tied to the elongated precast concrete pedestal unit by reinforcement embedded within both the cast-in-pace concrete and the precast concrete pedestal unit.
In still another aspect, a method of constructing a combination precast and cast-in-place concrete foundation structure involves: receiving at a construction site a first precast concrete foundation unit having a first elongated upright wall member and a second elongated upright wall member spaced apart from the first elongated upright wall member to define a channel therebetween, and multiple upright supports located within the channel; placing the first precast concrete foundation unit at a desired use location of the construction site; delivering concrete into the channel of the first precast concrete foundation unit while the first precast concrete foundation unit remains at the desired use location; and allowing the concrete to cure-in-place such that each of the first and second elongated upright wall members are connected to the cured-in-place concrete by reinforcement embedded within both the cured-in-place concrete and the first elongated upright wall member and reinforcement embedded within both the cured-in-place concrete and the second elongated upright wall member.
In one implementation of the preceding method aspect, each of the multiple supports of the first precast concrete foundation unit extends laterally between the inner elongated upright wall member and the outer elongated upright wall member of the first precast concrete foundation unit to define multiple spaced apart cells in the channel of the first precast concrete foundation unit, and the delivering step involves delivering the concrete into each cell of the first precast concrete foundation unit.
In one implementation of the preceding method aspect, each of the multiple cells of the first precast concrete foundation unit is open at both the top and the bottom, and the cured-in-place concrete substantially closes each cell from top to bottom.
In one implementation of the preceding method aspect, prior to the delivering step one of a precast concrete pedestal unit or a bridge unit is supported at least in part within the channel on the multiple supports, and during the allowing step a bottom portion of the one of the precast concrete pedestal unit or the bridge unit becomes embedded in the cured-in-place concrete.
In one implementation of the preceding method aspect, each of the multiple supports includes a top recess therein or channel member thereon and the one of the precast concrete pedestal unit or the bridge unit is supported by the top recess or channel member.
In one implementation of the preceding method aspect, the top recess or channel member of each of the multiple supports of the first precast concrete foundation unit extends from within the channel to the first elongated upright wall member and during the delivering step the delivered concrete located between the bottom portion and the second elongated upright wall member is set to a first elevation and the delivered concrete located between the bottom portion and the first elongated upright wall member is set to a second elevation that is lower than the first elevation.
In one implementation of the preceding method aspect, the method includes the further steps of: receiving at the construction site a precast concrete wingwall foundation unit; prior to the delivering step, placing the precast concrete wingwall foundation unit at one end of the first precast concrete foundation unit such that reinforcement extends from the precast concrete wingwall unit and into the channel; and as a result of the delivering and allowing steps, the reinforcement that extends from the precast concrete wingwall unit and into the channel becomes embedded in the cured-in-place concrete.
In one implementation of the preceding method aspect, the precast concrete wingwall foundation unit includes a bottom surface and a top surface, the bottom surface wider than the top surface.
In a further aspect, a method of constructing a combination precast and cast-in-place concrete foundation structure involves: utilizing a precast concrete foundation unit having a first elongated upright wall member and a second elongated upright wall member spaced apart from the first elongated upright wall member to define a channel therebetween, and at least one upright support extending laterally across the channel and interconnecting the first elongated upright wall member and the second elongated upright wall member, wherein an inner side of the first elongated upright wall member includes a first lengthwise recess facing the channel and an inner side of the second upright wall member includes a second lengthwise recess facing the channel in opposed and aligned relationship with the first lengthwise recess, wherein the upright support includes a plurality of through openings; subsequent to casting of the precast concrete foundation unit, inserting a first plurality of elongated metal reinforcement members into the channel such that each elongated metal reinforcement member extends laterally between the first lengthwise recess and the second lengthwise recess with a first end of the elongated metal reinforcement member positioned in the first lengthwise recess and a second end of the elongated metal reinforcement member positioned in the second lengthwise recess; subsequent to casting of the precast concrete foundation unit, inserting a second plurality of elongated metal reinforcement members through the through openings such that each elongated metal reinforcement member of the second plurality extends generally parallel to the first and second elongated upright wall members; subsequent to casting of the precast concrete foundation unit, placing the precast concrete foundation unit at a desired use location of the construction site; delivering concrete into the open cell of the precast concrete foundation unit while the precast concrete foundation unit remains at the desired use location; and allowing the concrete to cure-in-place such that the first plurality of elongated metal reinforcement members and the second plurality of elongated reinforcement members become embedded in the cured-in-place concrete.
In one implementation of the preceding method, the inserting steps are performed at the construction site.
In another implementation of the method, the inserting steps are performed prior to delivery of the precast concrete foundation unit to the construction site.
In one implementation of the method, prior to the delivering and allowing steps, each elongated metal reinforcement member of the first plurality is tied to at least one elongated metal reinforcement member of the second plurality to maintain a desired position of each elongated metal reinforcement member of the first plurality within the channel.
In one implementation of the method, the inner side of the first elongated upright wall member includes a third lengthwise recess facing the channel and positioned below the first lengthwise recess, and the inner side of the second upright wall member includes a fourth lengthwise recess facing the channel and positioned below the second lengthwise recess, the fourth lengthwise recess in opposed and aligned relationship with the third lengthwise recess, and subsequent to casting of the precast concrete foundation unit, inserting a third plurality of elongated metal reinforcement members into the channel such that each elongated metal reinforcement member of the third plurality extends laterally between the third lengthwise recess and the fourth lengthwise recess with a first end of the elongated metal reinforcement member of the third plurality positioned in the third lengthwise recess and a second end of the elongated metal reinforcement member of the third plurality positioned in the fourth lengthwise recess.
In one implementation of the method, the third plurality of elongated reinforcement members is inserted prior to insertion of the first plurality of elongated reinforcement members.
In one implementation of the method, the plurality of through openings include a first set of laterally spaced apart through openings at a first height that is proximate a height of both the first lengthwise recess and the second lengthwise recess, and a second set of laterally spaced apart through openings at a second height that is proximate a height of both the third lengthwise recess and the fourth lengthwise recess.
In one implementation of the method, the step of inserting a second plurality of elongated metal reinforcement members involves inserting a first multiplicity of elongated metal reinforcement members through the first set of laterally spaced apart through openings and inserting a second multiplicity of elongated metal reinforcement members through the second set of laterally spaced apart through openings.
In one implementation of the method, prior to the delivering and allowing steps, each elongated metal reinforcement member of the first plurality is tied to at least one elongated metal reinforcement member of the first multiplicity and each elongated metal reinforcement member of the third plurality is tied to at least one elongated metal reinforcement member of the second multiplicity.
In one implementation of the method, the inserting steps are performed prior to delivery of the precast concrete foundation unit to the construction site.
In one implementation of the method, multiple upright supports are included, and the step of inserting the first plurality of elongated metal reinforcement members involves orienting each of the first plurality of elongated metal reinforcement members at an angle that is offset from perpendicular to a lengthwise axis of the precast concrete foundation unit, moving the elongated metal reinforcement member into the cell to a depth aligned with the first lengthwise recess and the second lengthwise recess and rotating the elongated metal reinforcement such that the first end moves in the first lengthwise recess and the second end moves into the second lengthwise recess.
In one implementation of the method, a first vertical recess intersects with the first lengthwise recess and a second vertical recess intersects with the second lengthwise recess, and the step of inserting the first plurality of elongated metal reinforcement members involves orienting each of the first plurality of elongated metal reinforcement members such that the first end is aligned with the first vertical recess and the second end is aligned with the second vertical recess, and moving the elongated metal reinforcement member depthwise along the first and second vertical recesses until the first end and the second end are positioned in the first lengthwise recess and second lengthwise recesses respectively.
In one implementation of the method, a distance between the first and second elongate upright wall members is at least as great as a span of a bridge unit to be placed thereon.
In another aspect, a method is provided for constructing a precast concrete foundation unit of a type including a first elongated upright wall member and a second elongated upright wall member spaced apart from the first elongated upright wall member to define a channel therebetween, and multiple upright supports extending laterally across the channel and interconnecting the first elongated upright wall member and the second elongated upright wall member to define open cells within the channel. The method involves: identifying a lay length of each of multiple precast concrete bridge units to be placed atop the precast concrete foundation unit when installed; manufacturing the precast concrete foundation unit such that a center to center distance between the upright supports on opposite ends of each cell corresponds to the identified lay length.
In another aspect, a precast concrete foundation unit assembly includes a precast concrete foundation unit having a first elongated upright wall member and a second elongated upright wall member spaced apart from the first elongated upright wall member to define a channel therebetween, and multiple upright supports located within and extending laterally across the channel and interconnecting the first elongated upright wall member and the second elongated upright wall member to define at least one open cell within the channel, wherein an inner side of the first elongated upright wall member includes a first lengthwise recess facing the open cell and an inner side of the second upright wall member includes a second lengthwise recess facing the open cell in opposed and aligned relationship with the first lengthwise recess, wherein at least some of the multiple upright supports each includes a plurality of lengthwise extending through openings. A first plurality of elongated metal reinforcement members each extends laterally between the first lengthwise recess and the second lengthwise recess with a first end of the elongated metal reinforcement member positioned in the first lengthwise recess and a second end of the elongated metal reinforcement member positioned in the second lengthwise recess, the first plurality of elongated metal reinforcement members are not embedded within either of the first and second elongated upright wall members. A second plurality of elongated metal reinforcement members extends through the lengthwise extending openings such that each elongated metal reinforcement member of the second plurality extends lengthwise along the precast concrete foundation unit, the second plurality of elongated metal reinforcement members are not embedded within the upright supports. Each elongated metal reinforcement member of the first plurality is tied to at least one elongated metal reinforcement member of the second plurality to maintain a desired position of each elongated metal reinforcement member of the first plurality within the open cell.
In one implementation of the precast concrete foundation unit assembly, the inner side of the first elongated upright wall member includes a third lengthwise recess facing the open cell and positioned below the first lengthwise recess, and the inner side of the second upright wall member includes a fourth lengthwise recess facing the open cell and positioned below the second lengthwise recess, the fourth lengthwise recess in opposed and aligned relationship with the first lengthwise recess; a third plurality of elongated metal reinforcement members extending laterally between the third lengthwise recess and the fourth lengthwise recess with a first end of the elongated metal reinforcement member of the third plurality positioned in the third lengthwise recess and a second end of the elongated metal reinforcement member of the third plurality positioned in the fourth lengthwise recess.
In another aspect, a method of constructing a bridge system involves: utilizing precast concrete foundation units having a first elongated upright wall member and a second elongated upright wall member spaced apart from the first elongated upright wall member to define a channel therebetween, and at least one upright support extending laterally across the channel and interconnecting the first elongated upright wall member and the second elongated upright wall member, wherein a distance between the first upright wall member and the second upright wall member is at least as great as a bottom span of bridge units to be supported thereon; placing multiple precast concrete foundation units end to end at an installation site of the bridge system to form a foundation assembly; and placing multiple bridge units on the foundation assembly, each bridge unit having spaced apart side walls, each upright support having the spaced apart sidewalls of at least one bridge unit supported at opposite ends of the upright support.
One implementation of the preceding method includes the step of delivering cast-in-place concrete into the channel of each precast concrete foundation unit after the step of placing multiple bridge units.
a and 3b are end views of embodiments of a foundation unit per
Referring to
The walls 20 of the foundation unit 16 may be formed with inner sides 28 slightly angled (relative to vertical) such that the width WC1 of the channel 22 is greater at the top of the unit than the width WC2 of the channel 22 at the base 18 of the unit. This configuration provides the advantage of more easily removing the unit from the precast formwork and reducing the weight of the unit. The upper surface 30 of the base 18 may be formed with channels 32 to aid in binding with cast-in-place concrete that will be placed in the channel 22 on-site as will be described in further detail below. Other types of surface features could be provided on the surface 30 to aid in such bonding, including different shapes of channels, different patterns of channels (circular, diagonal, cross-hatch) or even general surface roughening as might be achieved by a rake, any and all of which are referred to herein as “intentional roughening” of the surface. It is also recognized that such intentional roughening could be incorporated into the surfaces 28 of the walls 20 and/or the vertical surfaces of the supports 24.
As shown in
As shown in
It is contemplated that the width, length and height of the foundation units 16 may vary depending upon various aspects of the bridge installation. By way of examples, for a bridge installation utilizing bridge units 14 having a span of about 12′, a rise of about 6-8′ feet and a depth of about 8′ the dimensions T20-1, T20-2, TB, WB and H (see
Although
Regardless of the type of bridge unit being installed, the precast foundation units 16 of the present application facilitate the provision of a foundation with advantageous features. The precast foundation units are shipped to and received at a construction site. In use, a final use/installation site is prepared to receive the precast foundation units by excavating to the desired elevation in a smaller area than traditional methods and preparing a level subsurface which may include additional backfill materials on which to install the units.
Once the site is prepared to receive the precast foundation units 16, the units are placed in end to end abutting relationship to form two spaced apart foundation structures 12. In one example, the foundation units 16 are simply placed end to end without any structure holding the units adjacent each other. In another embodiment, alignable bolt pockets may be formed at the end portions of the foundation units (e.g., in side walls 20, base 18 and/or supports 24) and the bolts manually placed prior to setting of the bridge units. In still another embodiment, the bridge units 16 may be formed with lengthwise extending ducts could be formed in the foundation units so that tensioning members can be passed through the full length of the series of foundation units to secured them in abutting relationship. As will be described in further detail below, there may be other precast components to the foundation structure as well (e.g., to support wing walls at the ends of the bridge structure).
Once the precast foundation units 16 are set in desired positions, the reinforcement 36 and 38 can be manually placed and the bridge units placed atop the support structures 24. In this regard, as shown in
While embedment of the bottom ends of the bridge unit is contemplated, in some instances the concrete may be poured in the U-shaped foundation prior to the spans being set in place. Also, in some embodiments the base 18 of the foundation units may be formed with openings to allow some through passage of concrete which may assist self-leveling.
As mentioned above, the foundation system may include additional components. Referring to
In one embodiment, integration of the units 56 with units 16 is achieved using the cast-in-place concrete. Specifically, the wingwall foundation unit 56, which is precast with necessary reinforcement therein, may include pocket 62 at end 60 and into which reinforcement 64 is positioned prior to the on-site concrete pour. Reinforcement sections 64 include a first leg 66 extending axially along the length of the support unit 16 and a second leg 68 extending axially along the length of wingwall support unit 56 into the pocket 62. As shown, a laterally spaced series of reinforcement bars may be placed at each side of the end support member 24 of the foundation unit 16. When the on-site concrete pour takes place the concrete fills the pocket 62, surrounding the reinforcement. Upon concrete cure, the wingwall support portion 54 becomes an integrated part of the foundation structure 12.
In an alternative embodiment, integration of the units 56 with units 16 may be achieved without the pocket by integrating dowel bars or reinforcing bars into the end 60 of unit 56 during precasting such that either the dowel bars or reinforcing bars extend from the end of the unit or a connector (e.g., internally threaded) is presented at the end face of the unit 56 to which the threaded end of a reinforcement bar can be connected. These dowel bars may be pre-bent or subsequently bent, or the reinforcement subsequently connected to the connectors at the end face, to provide extending reinforcement portions in general alignment with the lengthwise axis of the precast foundation unit 16 as shown. The protruding ends of the dowel rods or reinforcement become embedded in the cast-in-place concrete of the U-shaped channel during the on-site pour. In other embodiments, the dowel rods or reinforcement could pass through openings in the elongated side walls of the precast unit 16 in order to enter the channel.
As shown in
As previously mentioned, the supports 24 could be cast as separate pieces and then attached to the base 18 of units 16 either after the base 18 and walls 20 have been cast together, or during the casting process for the base 18 and walls 20. Referring now to
In some embodiments, such as high clearance installations, a pedestal type foundation may be desired. Referring to
As previously mentioned, the foundation systems described herein can be utilized to support a variety of bridge structures.
Referring to
As shown in
The subject foundation units 160 can, in one embodiment, be manufactured using a single pour technique to produce both side walls and cross-members. In another embodiment, each side wall portion 150 with reinforcement 168 may be formed as separate pieces from respective pours. Once cured, the side wall portions are then arranged with the desired lateral spacing, and suitable formwork added between the side walls (and at the ends of the side walls) to produce the cross-member supports 152 from another pour. In this regard, the reinforcement portions 172 also extend into and within the cross-members to tie the cross-members to the side walls. Moreover, as shown in
Referring to
The foundation unit 160 may also be used in combination with various features and aspects of the other foundation unit embodiments described above, including the wingwall foundation and/or pedestals. For example, as shown in
Referring now to
The spacing of the cross-members 208 preferably matches the depth of the bridge units 214, such that adjacent end faces of the side-by-side bridge units abut each other in the vicinity of the recesses 210. Each cross-member support 206 also includes one or more larger through openings 216 for the purpose of weight reduction and allowing concrete to flow from one open area or cell 208 to the next. Each cross-member support also includes multiple axially extending reinforcement openings 218. In the illustrated embodiment, an upper row 220 and lower row 222 of horizontally spaced apart openings 218 is shown, but variations are possible. Axially extending reinforcement may be extended through such openings prior to delivery of the foundation units 200 to the installation site, but could also be installed on-site if desired. These openings 218 are also used to tie foundation units 200 end to end for longer foundation structures. In this regard, the ends of the foundation units 200 that are meant to abut an adjacent foundation unit may be substantially open between the upright wall members 202 and 204 such that the abutting ends create a continuous cell 224 in which cast-in-place concrete will be poured. However, the far ends of the end foundation units 200 in a string of abutting units may typically include an end-located cross-member 206 as shown.
The walls 202 and 204 include reinforcement 226 that includes a portion 228 extending vertically and a portion 230 extending laterally into the open cell areas 208 in the lower part of the foundation unit 200. At the installation site, or in some cases prior to delivery to the site, opposing portions 230 of the two side walls can then be tied together by a lateral reinforcement section 232.
The subject foundation units 200 can manufactured in a manner similar to units 160 as described above, with cross-member supports 206 also including reinforcement similar to that of cross-member supports 152.
The precast foundation units 200 are delivered to the job site and installed on ground that has been prepared to receive the units (e.g., compacted earth or stone). The bridge units 214 are placed after the precast foundation units are set. The cells 208 remain open and unfilled during placement of the bridge units 214 (with the exception of any reinforcement that may have been placed either prior to delivery of the units 200 to the job site or after delivery). Shims may be used for leveling and proper alignment of bridge units 214. Once the bridge units 214 are placed, the cells 208 may then be filled with an on-site concrete pour. The pour will typically be made to the upper surface level of the foundation units 200. In this regard, and referring to
The foundation unit 200 may also be used in combination with various features and aspects of the other foundation unit embodiments described above, including the wingwall foundation and/or pedestals. For example, the precast foundation unit 200 may be used in combination with a pedestal structure. Moreover, the foundation units 160 and 200 are both well adapted for use in connection with pile foundation systems. That is, the support piles can be driven into the ground at the intended use location of the unit (before or after placement of the unit) with the upper ends of the piles protruding into the open cell areas. When the on-site pour is carried out, the piles become embedded in the cast-in-place concrete, structurally tying the combination precast and cast-in-place foundation structure to the piles.
Referring now to
In the case of each embodiment of the precast concrete foundation units 16, 160 and 200 described above, it is noted that such foundation units have spaced apart elongated upright wall members to define a channel therebetween, and multiple upright supports located within the channel. In the illustrated embodiments of precast concrete foundation units 16, the units have a bottom wall and the supports extend upward from the bottom wall. In the illustrated embodiments of foundation units 160 and 200 the units have no bottom wall and the supports extend between and connect the elongated upright wall members. In the case of all embodiments, when installed at the final use site the multiple supports of one precast concrete foundation unit (e.g., supporting one side of a bridge structure) should typically substantially align with the multiple supports of the another, substantially parallel precast concrete foundation unit (e.g., supporting the opposite side of the bridge structure). The elongated upright wall members may have the same height (e.g., as in the illustrated embodiments of units 16 and 160) or the elongated upright wall members may have different heights (e.g., as in the illustrated embodiment of unit 200). The top recesses of the supports, when present, may be located entirely within the channel of the unit (e.g., as in some of the illustrated embodiments of units 16 and in the illustrated embodiments of units 160), or the recesses may be extend from the channel to one of the elongated walls (e.g., as shown in the illustrated embodiment of units 200).
As reflected by the described embodiments, supports of the precast foundation units may in some cases have recesses and in other cases not have recesses. Moreover, other embodiments may utilize channel members that are mounted to the supports. For example, referring to
Where precast concrete wingwall foundation units 54 are used in combination with the foundation units 16, 160, 200, embedded reinforcement may typically be used to lock the wingwall foundation units 54 to the foundation units 16, 160, 200 to provide a rigid, integrated structure. Cast-in-place concrete provides at least part of the embedment of the reinforcement. In some examples the cast-in-place concrete embedment may be in the concrete poured in the channel of the foundation units 16, 160, 200 and in other examples the cast-in-place concrete embedment may be in an end channel of the wingwall foundation unit 56. In either case, part of the reinforcement may be embedded in part of the precast concrete before the final embedment in the cast-in-place concrete is achieved. For example, in one implementation a first portion of the reinforcement is embedded in the precast concrete and has a surface exposed/accessible internally threaded socket end to which a second reinforcement portion is threadedly connected after curing of the concrete, such that, the first portion is embedded and the second portion initially protrudes. In another example, a continuous unitary piece of reinforcement has one part embedded in the precast concrete and one part protruding from the precast concrete.
The combination precast and cast-in-place concrete foundation structures described herein can be utilized to support virtually any type bridge structure. Moreover, other types of structures could be supported as well. On-site time and expense associated with foundation placement is reduced (e.g., the need for form placement and much of the reinforcement placement is eliminated).
Referring now to
The precast foundation unit 300 includes a spaced apart elongated upright wall members 302 and 304 to define a channel 306 therebetween. Multiple upright supports 308 extend laterally across the channel and interconnect the elongated upright wall members 302 and 304 to define open cells 310 within the channel. The cells are open at both the top and bottom of the unit. The number of supports 308 and cells 310 could vary. Additionally, one or more of the end portions of each unit 300 could be formed with open U-shaped channel portions (e.g., per
The upright supports 308 each include a plurality of lengthwise extending through openings 324 for receiving reinforcement. In the illustrated embodiment, a set 326 of six laterally spaced apart reinforcement openings 324 are located along an upper part of the support 308 and a set 328 of six laterally spaced apart openings 324 are located along a lower part of the support, but numerous variations of the number and position of reinforcement openings are possible. All or some of the supports 308 may also include a larger through opening 330 for the purpose of facilitating concrete flow from one cell to another as described above. As shown, the top of each of the supports also includes a recess 332, which is used to receive the bottom portion 334 of a precast bridge unit to be supported on the foundation (e.g., per the embodiments previously described above).
Utilizing a precast concrete foundation unit 300 as described, an advantageous method of constructing a combination precast and cast-in-place concrete foundation structure can be implemented. Specifically, subsequent to casting of the precast concrete foundation unit 300, a plurality of elongated metal reinforcement members 340 are inserted into each open cell 310 such that each elongated metal reinforcement member 340 extends laterally between the opposed lengthwise recesses (e.g., 314 and 320 or 316 and 322). As best seen in
Similarly, subsequent to casting of the precast concrete foundation unit 300, a plurality of elongated metal reinforcement members 342 are inserted through the lengthwise extending through openings 324 such that each elongated metal reinforcement member extends lengthwise along the precast concrete foundation unit 300. As seen in
In one implementation, the reinforcement inserting steps can be performed at the construction site. In another implementation, the inserting steps are performed prior to delivery of the precast concrete foundation unit 300 to the construction site (e.g., at the foundation unit manufacturing facility). In this regard, for the purpose of securing the reinforcement in place during shipment and/or prior to the on-site concrete pour, each elongated metal reinforcement member 340 may be tied (e.g., using concrete ties 344) to at least one elongated metal reinforcement member 342 (and visa versa) to maintain a desired position of each elongated metal reinforcement member 340 within its cell. For this reason, the height of opening set 326 is proximate the height of lengthwise recesses 314 and 320, and the height of opening set 328 is proximate the height of lengthwise recesses 316 and 322. Regardless of when the lengthwise and lateral reinforcement is inserted, the reinforcement is not embedded within the precast concrete of the unit 300.
The precast concrete foundation unit 300 is placed at a desired use location of the construction site, and then concrete is delivered into the open cells 310 while the precast concrete foundation unit remains at the desired use location. The concrete is allowed to cure-in-place within the cells such that the elongated metal reinforcement members 340 and the elongated reinforcement members 342 become embedded in the cured-in-place concrete (e.g., per
With respect to the installation of the lateral reinforcement members 340, in one implementation, a lateral distance between the opposed lengthwise recesses in each cell may be less than a lengthwise distance between the upright supports at opposite ends of each cell. The step of inserting the lateral metal reinforcement members involves orienting each of the elongated metal reinforcement members at an angle that is offset from perpendicular to the lengthwise axis 290 of the precast concrete foundation unit, moving the elongated metal reinforcement member into the cell to a depth aligned with a pair of the opposed lengthwise recesses (e.g., either recesses 314 and 320 or recesses 316 and 322) and then rotating the elongated metal reinforcement such that one end moves in one lengthwise recess and the opposite end moves into the other lengthwise recess. In another implementation, one or more vertical recesses that intersect with the lengthwise recesses may be provided (e.g., per 350 shown in dashed line form in
Similar to the precast foundation unit embodiments described above, foundation unit 300 also enables an advantageous construction operation that is adaptable to specific needs of a given project. Notably, the method involves identifying a lay length of each of multiple precast concrete bridge units to be placed atop the precast concrete foundation unit when installed. The lay length is the dimension of the bridge unit in the lengthwise direction of the precast concrete foundation unit, also referred to above as the depth of the bridge unit (shown as DB in
Also similar to the previously described foundation units 160 and 200 described above, each of the multiple supports 308 of the precast foundation unit 300 has a bottom surface 360 that is coextensive (entirely, or at least partially) with the bottom surfaces 362, 364 of the elongated walls 302 and 304. This arrangement assures that when the foundation unit 300 is placed on the ground at an installation location, the supports 308 will also be in contact with the ground (e.g., per
Referring now to
Referring to
As in the case of the previous embodiments, the channel of the foundation units is filled with cast-in-place concrete after the foundation units have been placed at the final installation location of the bridge unit or other structure to be supported. Referring to
The embodiment of
It is to be clearly understood that the above description is intended by way of illustration and example only and is not intended to be taken by way of limitation, and that changes and modifications are possible. For example, the subject foundation system and method could be adapted for other types of applications, such as pile caps or caps for other deep foundations. Accordingly, other embodiments are contemplated and modifications and changes could be made without departing from the scope of this application.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US13/74129 | 12/10/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61736819 | Dec 2012 | US | |
61837853 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14098615 | Dec 2013 | US |
Child | 14647233 | US |