The present invention relates to architectural assemblies, and, more particularly, to an improved architectural foundation assembly method and kit.
Most architectural dwellings, houses in particular, are built upon concrete slabs and footers. Insulation is often needed to address the temperature difference between the inside of the dwelling and the outside environment (which includes air and earth), as it is expensive to address the temperature differences using heating and cooling within the dwelling.
It is known to place the insulation at various parts around the slab or footer, in addition to the outside walls, but there are problems inherent in doing so. For example, if insulation is merely put on the outside of exposed footers, it can be damaged by tools used around the dwelling such as lawnmowers, weed trimmers, etc. Another disadvantage of current assemblies and methods is that expensive and/or custom materials are often needed for each individual project, and no common assembly/method can be used in most applications.
What is needed in the art is an inexpensive, easily-assembled, foundation/sidewall assembly and kit that efficiently places insulation at optimal locations.
The present invention provides an architectural foundation assembly and method of constructing the assembly, the assembly and method of assembly including a shelf created by an L-shaped form, upon which shelf a structural wall is built which includes a thermal air gap.
The present invention also provides a forming apparatus used in the method of constructing the architectural foundation assembly.
The present invention in one form is directed to an architectural foundation assembly comprising a horizontal slab including a top surface, a bottom surface, and an outside surface; a vertical slab in contact with the horizontal slab, the vertical slab including a top surface, an outside surface, and an inside surface, the top surface defining a shelf having a horizontal surface and a vertical surface; and at least one structural element attached to the shelf and in contact with the top surface of the vertical slab, the at least one structural element including a top surface which is flush with the top surface of the horizontal slab. The at least one structural element can optionally be not in contact with the vertical surface of the shelf, thereby creating a thermal air gap between the at least one structural element and the vertical surface of the shelf.
An architectural foundation assembly comprising a horizontal slab including a top surface, a bottom surface, and an outside surface; a vertical slab in contact with the horizontal slab, the vertical slab including a top surface, an outside surface, and an inside surface, the top surface defining a shelf having a horizontal surface and a vertical surface; at least one structural element attached to the shelf and in contact with the top surface of the vertical slab, the at least one structural element including a top surface which is flush with the top surface of the horizontal slab, the at least one structural element not in contact with the vertical surface of the shelf, thereby creating a thermal air gap between the at least one structural element and the vertical surface of the shelf; and a forming apparatus positioned at the top of the vertical slab for creating a shelf at the top of the vertical slab, the forming apparatus including a vertical structural element including an inside surface and a horizontal structural element including an outside surface, the outside surface of the horizontal structural element attached to the inside surface of the vertical structural element, wherein a cross-section of the forming apparatus is L-shaped.
The present invention in yet another form is directed to a method of assembling an architectural foundation assembly, comprising pouring a vertical slab including a top surface, an outside surface, and an inside surface; providing a forming apparatus including a vertical forming element including an inside surface, and a horizontal structural element including a top surface, a bottom surface, an outside surface, the outside surface of the horizontal structural element attached to the inside surface of the vertical structural element, wherein a cross-section of the forming apparatus is L-shaped; placing the forming apparatus onto the vertical slab or footer, wherein the bottom surface of the horizontal structural element contacts the top surface of the vertical slab or footer and at least part of the inside surface of the vertical forming element contacts the outside surface of the vertical slab; pouring a horizontal slab including a top surface, a bottom surface, and an outside surface, the bottom surface of the horizontal slab attached to the top surface of the vertical slab, the top surface of the horizontal slab being flush with the top surface of the horizontal structural element of the forming apparatus; removing the forming apparatus, wherein removing the forming apparatus defines a shelf having a horizontal surface and a vertical surface; and providing at least one structural element attached to the shelf and in contact with the top surface of the vertical slab, the at least one structural element including a top surface which is flush with the top surface of the horizontal slab. The at least one structural element can optionally be not in contact with the vertical surface of the shelf, thereby creating a thermal air gap between the at least one structural element and the vertical surface of the shelf.
An advantage of the present invention is that basic, common materials are used. None of the elements are custom-made.
Another advantage of the present invention is the cost to make the invention is inexpensive and not complicated.
Another advantage of the present invention is it can be used in multiple fashions and dimensions, depending upon particular needs and local/regional/national codes.
Still another advantage of the present invention is tools can be used against the vertical concrete without encountering exposed insulation, and therefore causing damage to it.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate embodiments of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Throughout this disclosure, the terms “inside”, “outside”, “top”, “bottom”, “vertical”, and “horizontal” are used. Unless otherwise stated: “inside” refers to areas facing toward the architectural construction (such as a house), “outside” refers to areas facing away from the architectural construction, “top” refers to areas facing the sky, “bottom” refers to areas facing the ground, “vertical” refers to the direction parallel to gravity, and “horizontal” refers to the direction perpendicular to gravity. These terms are considered to be non-limiting to the scope and spirit of the invention. Additionally, the invention is primarily described in a two-dimensional cross-section. It is assumed that the resulting architectural assembly will be three-dimensional, and any length or combination of lengths is within the scope and spirit of the invention.
Referring now to
Vertical slab or footer 12 includes a top surface 20, an outside surface 22, and an inside surface 24. Vertical slab or footer 12 is comprised of any material suited to provide support for construction purposes, typically concrete. Horizontal slab 14 includes a top surface 26, a bottom surface 28, and an outside surface 30. Horizontal slab 14 is comprised of any material suited to provide support for construction purposes, typically concrete. The thickness of both vertical slab 12 and horizontal slab 14 will vary according to structural needs and or code requirements, but the thickness of vertical slab 12 is typically greater than the thickness of horizontal slab 14.
Referring now to
At least one structural element 18 includes a bottom surface 36, an inside surface 38, a top surface 40, and an outside surface 42. At least one structural element 18 is attached to shelf 16 with bottom surface of the at least one structural element 18 in contact with the shelf 16 horizontal surface 32, and therefore in contact with at least part of vertical slab 12 top surface 20. When the at least one structural element 18 is attached to shelf 16, inside surface 38 is not in contact with shelf 16 vertical surface 34, and therefore inside surface 38 is not in contact with at least part of horizontal slab 14 outside surface 30. The resulting non-contact creates a thermal air gap 44, which aids in the insulating properties of architectural foundation assembly 10. After attachment of at least one structural element 18 to shelf 16, top surface 40 is flush with horizontal slab 14 top surface 26; additionally, outside surface 42 is flush with vertical slab 12 outside surface 22. The advantageous purpose of the at least one structural element 18 being flush with horizontal slab 14 top surface 18 is that standard-length building materials such as sheet rock, plywood, and lumber can be used during the sidewall construction as shown in
Advantageously and as shown in the embodiment of
Advantageously and as shown in the embodiment of
Now referring to
Advantageously and as shown in the embodiment of
With continued reference to
Alternatively, vertical slab 12 and horizontal slab 14 can be poured at the same time or one shortly after the other.
With continued reference to
Vertical slab 12 is surrounded by earth 82, and may advantageously contact first insulation 86 disposed between its inside surface 24 and earth 82 as illustrated. First insulation 86 advantageously is vertically higher than shelf horizontal surface 32 in order to provide thermal transfer between the outside and inside of a dwelling. A minimum of two inches of concrete, or more/less concrete according to code, must be present between the top of first insulation 86 and the horizontal portion of rebar 88. Horizontal slab 14 is at least partially disposed upon first insulation 86 and granular fill 84. First insulation 86, therefore, contacts earth 82, granular fill 84, and horizontal slab 14 as well as vertical slab 12. First insulation 86 may comprise a rigid material.
As shown in
Sidewall assembly 94 includes plate 96, sidewall insulation 98, sheathing 100, house wrap 101, and siding 102. Plate 96 is typically an untreated horizontal length of 2×4 lumber placed upon the at least one structural element 18, upon which a structure of additional vertical 2×4's (not shown) and sidewall insulation 98 is constructed. As shown in
To complete construction of sidewall assembly 94 upon architectural foundation 10, sheathing 100 is added over the outside of plate 96 and the 2×4/sidewall insulation 98. Second insulation 92 is then attached to the outside of the at least one structural element 18. Second insulation 92 may comprise a rigid material.
Foundation/sidewall construction 80, as shown in
While architectural foundation assemblies have been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2298837 | Oswald | Oct 1942 | A |
3956859 | Ingestrom | May 1976 | A |
4409766 | Blackmore | Oct 1983 | A |
4433720 | Lowstuter | Feb 1984 | A |
4538386 | DiCello | Sep 1985 | A |
4683692 | Tetschner | Aug 1987 | A |
4757651 | Crites | Jul 1988 | A |
5174083 | Mussell | Dec 1992 | A |
5934039 | Gallagher, Jr. | Aug 1999 | A |
6230468 | Klaus | May 2001 | B1 |
6308470 | Durkovic | Oct 2001 | B1 |
6397538 | Phillips | Jun 2002 | B1 |
6477811 | Choi | Nov 2002 | B1 |
6477817 | Yurick | Nov 2002 | B1 |
7174681 | Wilson | Feb 2007 | B2 |
7543414 | Sourlis | Jun 2009 | B2 |
8011144 | Compton | Sep 2011 | B2 |
8297005 | Bramble | Oct 2012 | B1 |
8365486 | Jablonka | Feb 2013 | B2 |
20080304921 | Langley | Dec 2008 | A1 |
20100088981 | Taraba | Apr 2010 | A1 |
20140182221 | Hicks | Jul 2014 | A1 |
20150101263 | Price | Apr 2015 | A1 |
20160032554 | Hicks | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
0528578 | Feb 1993 | EP |
4133704 | Aug 2008 | JP |
WO-2012142660 | Oct 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20180223496 A1 | Aug 2018 | US |