This present technology relates to foundry coke products, and associated systems and processing methods via cupolas.
Coke can be divided into various subcategories. Foundry coke has a large size relative to blast coke and is of exceptional quality, including relatively low impurities, and relatively high carbon content, strength, and stability. Foundry coke is used in foundry cupolas to melt iron and produce cast iron and ductile iron products. However, the production cost, including the manufacturing cost, transportation cost, and environmental cost, for foundry coke is high. Additionally, conventional coke products can have characteristics that result in undesirable processing conditions within a cupola. For example, conventional coke products may undergo oxidation and/or combustion reactions at areas of the cupola that limit transfer of the carbon content from the coke products to molten iron within cupolas. This decreased efficiency increases the amount of coke products needed to produce iron product and costs for iron producers. Therefore, there is a need to produce a higher quality foundry coke product.
Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following drawings.
A person skilled in the relevant art will understand that the features shown in the drawings are for purposes of illustrations, and variations, including different and/or additional features and arrangements thereof, are possible.
Embodiments of the present technology relate to foundry coke products and associated systems and processing methods via foundry cupolas (e.g., iron foundry cupolas, mineral wool foundry cupolas, lead foundry cupolas, etc.). Foundry cupolas are used to melt metal (e.g., iron and/or recycled steel) to produce usable products. Foundry coke is an input to and provides multiple functions within a cupola, including (i) providing heat from combustion thereof to melt the metal, (ii) supplying carbon to the metal, (iii) providing structural support for the metal, and (iv) creating permeable layers that allow gases to travel upward and spread throughout the cupola to provide contact with the metal.
In operation, as metal and coke heat and progress downward through the cupola, the heat of combustion of the coke causes the metal to melt, decrease in viscosity, and eventually form liquid or molten metal that is high or higher is carbon. At an upper portion or drying region of the cupola, heat dries the cupolas and reduces moistures, but preferably does not burn or combust the coke. If the coke is burned or combusted at the drying region of the cupola (i.e., too early), as opposed to deeper in the cupola at a lower portion or reaction region (e.g., comprising melting, combustion and well zones), relatively high amounts of carbon monoxide and/or hydrogen are produced and released, which corresponds to a loss of carbon and/or less carbon that can be transferred to the metal in the reaction region of the cupola. Stated differently, combusting the coke too early in the cupola, or at an area other than the reaction region, can cause carbon from the coke to react with carbon dioxide to form carbon monoxide. This generally results in efficiency losses and higher costs for steel production, including the need to use more coke and more oxygen or wind at the reaction region of the cupola. Additionally, such undesirable reactions at the upper portion of the cupola can result in more smoke production and a lower metal tap temperature, which can limit operational ability of the cupola and also correspond to efficiency losses. Such undesirable reactions can occur due to characteristics of the coke, including the size, shape, density, porosity, composition, and/or chemistry thereof. For example, an ash fusion temperature of the coke, which is a direct result of the chemistry and/or composition of the coke, can dictate where within the cupola the coke begins to cook. Conventional coke products often have an ash fusion temperature that is too high (e.g., above 2650° F.), and thus do not enable optimal processing of coke in the cupola.
Embodiments of the present technology address at least some of the above-described issues, and include a coke product comprising a size, shape, density, porosity, composition, and/or chemistry that enables a more optimal processing thereof via cupolas. For example, embodiments of the present technology include a coke product having an ash fusion temperature (e.g., below 2600° F., 2500° F., 2400° F., 2300° F., 2200° F., 2100° F., 2000° F., 1900° F., 1800° F., or within a range of 1800-2600° F., 1800-2400° F., or 1800-2200° F.) that enables the coke to be heated and combusted in a time-controlled and/or temperature-delayed manner, such that a core of the coke product (i) is heated and does not undergo combustion or oxidation in the drying region of the cupola and/or (ii) undergo combustion or oxidation in the reaction region (e.g., the melting, combustion and well zones) of the cupola. In doing so, the surface area of the coke that is exposed to metal or molten metal is increased, relative to conventional coke products, and more carbon from the coke can be transferred to the molten metal. Stated differently, unlike traditional coke products, which undergo more oxidation or combustion prior to the reaction region of the cupola and thus undesirably produce carbon monoxide, embodiments of the present technology optimize the melting profile of the metal and maximize the amount of carbon transferred from the coke to the metal within the cupola.
As explained herein, as the foundry coke products of embodiments of the present technology is heated, its core decreases in diameter and one or more diffusion layers can build up around (e.g., at least partially surrounding) the core. The diffusion layers can include (i) a first diffusion layer comprising ash (e.g., an ash diffusion layer) that acts as a rate controlling mechanism to delay combustion and/or oxidation of the coke core, e.g., until the coke progresses through the cupola and reaches the reaction region, and (ii) a second diffusion layer radially outward of the first diffusion layer and comprising iron, which can be a further rate controlling mechanism that also delays combustion and/or oxidation of the coke core. As the coke progresses through the cupola, the ash can be displaced from the coke (e.g., as a liquid) and carbon from the ash can be transferred to the metal within the cupola. In this regard, the ash diffusion layer limits cooking of the coke until the coke reaches the reaction region of the cupola, and as a result more carbon transfer can occur within the reaction region, compared to traditional coke products, which in turn forms carbon dioxide and less carbon monoxide. Moreover, because more of the carbon transfer is happening at the reaction region of the cupola and less or no carbon monoxide is produced outside of the reaction region, the cupolas can be operated at higher temperatures that can lead to increased efficiency and greater operational flexibility. Higher operating temperatures of the cupola can enable less smoke production and lower wind and/or oxygen usage, and can reduce coke usage, all of which result in lower cupolas operating costs. Additionally, higher operating temperatures can enable more desirable (e.g., thinner) steel materials to be produced that have higher profitability. Additional benefits of embodiments of the present technology are described elsewhere herein.
In the Figures, identical reference numbers identify generally similar, and/or identical, elements. Many of the details, dimensions, and other features shown in the Figures are merely illustrative of particular embodiments of the disclosed technology. Accordingly, other embodiments can have other details, dimensions, and features without departing from the spirit or scope of the disclosure. In addition, those of ordinary skill in the art will appreciate that further embodiments of the various disclosed technologies can be practiced without several of the details described below.
In operation, the coke 130 supplies carbon to the metal 112 and provides structural support for the metal 112 within the body 102. Additionally, combustion of the coke 130 provides heat that melts that metal 112 and causes it to transition from a solid material to a molten liquid along a length of the body 102. In representative embodiments, the coke 130 is dried at the drying region of the cupola 100 to reduce moisture therefrom, but is not oxidized or combusted. That is, carbon content of the coke remains in the coke at this stage and does not react to form carbon monoxide. If carbon monoxide is formed at the drying region or this high up in the body 102, the carbon of the formed carbon monoxide is released from the upper portion of the cupola 101 and is not able to be transferred to the metal 112 at the downstream reaction region 108 of the cupola 100. Additionally, combusting and/or oxidizing the coke and/or production of carbon monoxide at the drying region generally results in efficiency losses and higher operating costs for the cupola 100.
The coke 130 of the present technology is inhibited or prevented from being oxidized and combusted in the drying region 106 due to, e.g., the size, shape, density, porosity, composition, and/or chemistry of the coke. As the coke 130 is heated within the body 102, moisture decreases in the drying region 106, and the coke 130 undergoes oxidation and combustion in the reaction region 108. As a result of such oxidation and/or combustion, a core of individual coke particles 130 radially decreases in size and one or more diffusion layers forms around the core, as explained herein with reference to
The size, shape, porosity, density, and other characteristics of the coke 130 can also contribute to the optimal melting, oxidizing, and/or combusting profile desired for the cupola 100. For example, the coke 130 can be about 4×6″ length (i.e., 4″+) or 3.5×6″ which desirably enables a lower pressure drop in the cupola 100, relative to smaller coke products. In some embodiments, the coke 130 can comprise foundry coke greater than 4″, egg coke greater than 2×4″, stove coke greater than 1×2″, and breeze less than 1″. Including a combination of foundry coke greater than 4″ as well as egg coke of or greater than 2×4″ can decrease costs of the coke blend because 2×4″ coke is less expensive. Additionally or alternatively, a combination of foundry coke greater than 4″ as well as egg coke of or greater than 2×4″ can provide an optimal coke blend to improve pressure drop and/or carbon transfer from coke to metal. In some embodiments, egg coke can comprise less than 20% of the coke blend or between 10-20% of the coke blend. Additionally or alternatively, in some embodiments less than 10%, less than 8%, or less than 6% of the coke 130 in the cupola 100 is less than 2″.
As another example, the coke 130 can have an elongate or oblong shape, which, relative to the traditional more round, less elongate shapes of other coke products, enables a higher surface area to volume ratio and thereby improves contact and thus carbon transfer between the coke 130 and the metal 112. As another example, the coke 130 can have a porosity (e.g., between 20-50%, 30-50%, or 40-50%), which desirably enables the gas to permeate through the coke 130 and spread heat within the cupola 100, while also providing sufficient structural support for the metal 112. As another example, the coke 130 can have a higher density, relative to conventional coke products, and thus have a higher carbon content and better calorific value that enables less coke usage within the cupola 100.
As the coke 130 and metal 112 progress through the cupola 100, the metal 112 and ash of the coke 130 each begins to melt and decrease in viscosity along a length of the cupola 100. The melted ash can beneficially more quickly move through the coke bed 114 and/or body 102 generally, and thus increase contact time with the metal 112 to improve carbon transfer. Within the reaction region 108, carbon is transferred from the coke 130 to the metal 112. In some embodiments, at least 10%, 20%, 30%, 35%, 40%, 45%, 50%, or 55% of the carbon from the coke is transferred to the metal (e.g., the molten metal) within the cupola 100. Additionally, oxygen from air provided via the wind box 110 of the cupola 100 reacts with carbon of the coke 130 causing combustion and carbon dioxide production, as well as heat and gases used to heat upper portions of the cupola 100, e.g., to reduce moisture of the coke 130 with the drying region 106. By maximizing the production of carbon dioxide at the reaction region 108, or at areas deeper in the cupola 100, less carbon monoxide and more carbon dioxide is produced which leads to higher metal tap temperatures at the tap 120 of the cupola 100. A higher tap temperature can improve carbon conversion which lower coke usage, and enables lower wind and/or less oxygen injection. For embodiments of the present technology, for example, the iron to coke (or carbon) ratios can be at least 11:1, 12:1, 13:1, 14:1, 15:1, 16:1, or 17:1, whereas for traditional coke products the iron to coke (or carbon ratios) are no higher than 11:1 and more typically less than 10:1. As such, due to efficiency gains, embodiments of the present technology enable less coke usage and thus decreased operating costs.
The coke 130 has a fixed carbon content that is transferred to the iron/metal, or released from the top of the cupola 100 via gaseous carbon monoxide or carbon dioxide. For reasons described herein, the coke 130 of the present technology promotes transfer of the fixed carbon content to the iron/metal, as a result also limit the amount of carbon monoxide produced and released from the cupola. For example, the coke 130 of the present technology can limit the amount of carbon monoxide released from the cupola 100 to be less than 60 lbs/hr, 55 lbs/hr, 50 lbs/hr, 45 lbs/hr, 40 lbs/hr, 35 lbs/hr, 30 lbs/hr, or 25 lbs/hr. Relatedly, for embodiments of the present technology, the amount of fixed carbon content of the coke 130 that is released from the cupola 100 via carbon monoxide can be no more than 60%, 50%, 45%, 40%, 35%, or 30%. Additionally or alternatively, embodiments of the present technology can include a ratio for the amount of the fixed carbon content released as carbon monoxide relative to the amount of carbon released as carbon dioxide can be no more than 2.2:1, 2.1:1, 2.0:1, 1.95:1, or 1.9:1.
The cupola 100 can further include a thermal oxidizer 124, which can include a thermocouple to monitor temperature and/or be configured to oxidize hazardous air pollutants (HAPs) and/or volatile organic compounds (VOCs). In practice, the thermal oxidizer 124 can operate based on maintaining a minimum temperature (e.g., 1700° F., 1750° F., 1800° F., 1850° F., 1900° F., 1950° F., or 2000° F.) at the inlet of the body 102 where gases (e.g., carbon monoxide and hydrogen) are released from the cupola 100. If, for example, too much carbon monoxide is undesirably produced, particularly within the drying region 106, the temperature at the inlet or elsewhere of the body 102 can decrease and cause the thermal oxidizer 124 to fire and thereby oxidize the HAPs or VOCs and form, e.g., carbon dioxide and water.
The first diffusion layer 310 layer can be solid or liquid, and can effectively block the coke surface, or lower the mass transfer area across the coke surface into the surrounding liquid metal. Additionally or alternatively, the first diffusion layer 310 enables oxidation and/or combustion of the carbon of the coke particle to be time and/or temperature delayed, such that the coke does not produce carbon monoxide in the drying region and instead is oxidized and combusted in the reaction region of the cupola. The first diffusion layer 310 comprising ash is formed in part due to the ash fusion temperature of the coke product, which is directly correlated to the composition of the coke particle 300. As described elsewhere herein, the ash fusion temperature of the coke is lower than traditional coke products, and can no more than 2650° F., 2600° F., 2550° F., 2500° F., 2450° F., 2400° F., 2350° F., 2300° F., 2250° F., 2200° F., 2150° F., 2100° F., 2050° F., 2000° F., 1950° F., 1900° F., 1850° F., or within a range of 1800-2600° F., 1800-2500° F., 1900-1300° F., or 2000-2200° F. This relatively low ash fusion temperature can enable formation of the diffusion ash layer, e.g., in the drying region of the cupola, that prevents cooking of the coke, or more particularly the core 305, prior to the reaction region. Additionally or alternatively, this relatively low ash fusion temperature can optimize contact time between the coke 300 and the metal within the cupola once the metal melts and becomes molten at the reaction region of the cupola. As a result, more carbon can be transferred from the coke 300 to the metal. This is in contrast to conventional coke products, which can have a higher ash fusion temperature that results in ash being formed deeper (i.e., downstream) of the reaction region and thus limits the contact time between the coke and the molten metal, thereby resulting in relatively less carbon transfer.
The second diffusion layer 315 is formed as the coke particle 300 is heated within the cupola and the coke core 305 shrinks. The second diffusion layer can further limit cooking of the coke within the drying region and/or help ensure the vast majority of combustion and oxidation of the coke does not occur until the coke 300 reaches the reaction region. Additionally or alternatively, carbon and sulfur may compete with one another to pass through the second diffusion layer 315. That is, the presence of sulfur can undesirably decrease the transfer rate of carbon from and out of the coke 300. In some embodiments, the coke can be pre-fluxed and/or include (e.g., doped with) an additive (e.g., calcium, iron, calcium oxide, magnesium oxide, iron oxide, sodium oxide, and potassium oxide, and/or other oxides having a relatively low melting point) that acts as a catalytic material. As an example, sodium can act as a pre-fluxing agent, and iron can act as a pre-fluxing and catalytic agent. The catalytic material can trap sulfur and therein be utilized to flux the sulfur out of the coke. In some embodiments, the pre-fluxed coke is a result of selecting coals to produce the coke that have ash materials proportionally higher in the oxides described above. This is in contrast to coke products that may add calcium oxide or calcium carbonate particles/rocks as a flux to remove ash, as such methods are inefficient due to the very low surface to volume ratio for the fluxing to actually occur. Additionally, the pre-fluxed coke and/or catalytic agents can promote the carbon deposition via the Boudouard reaction, thereby generating more heat and increasing the amount of carbon that is present within the reaction region (e.g., the combustion zone) of the cupola. Without being bound by theory, the pre-fluxing agents can alter the liquid is temperature of the slag (e.g., slag 116;
Improved coke chemistry aims at increasing carbon dissolution from the coke particle 300 into the metal (i.e., the iron or steel) within the cupola. In operation, as carbon dissolves into the bulk liquid iron within the cupola, the coke core 305 shrinks and the ash and impurities are built up at the surface. Additionally, carbon and sulfur both dissociate from the surface, which can be aided by catalytic activity of Fe, Ni and other metals. A lower ash melting temperature, represented by an ash fusion temperature (as described elsewhere herein), allows improved ash removal by faster conversion of ash into a liquid phase and reduces ash resistance. Carbon and sulfur diffuse through the thin iron diffusion layer. Additionally, carbon and sulfur are competitive and resistant to dissolving or transferring of each other. As such, a low sulfur content of the coke improves carbon transfer. In addition, coke products having a high coke reactivity index (CRI) or a low coke strength after reaction (CSR) (as described elsewhere herein) allows more reactive carbon forms to dissociate from the surface thereby increasing the carbon dissolution rate.
Various metals added to a foundry coke product produced from a coal blend via ash in the coal blend or otherwise introduced into the foundry coke product can provide catalytic functions that increases a carbon dissolution rate. In some embodiments, a multi-oxidation state element (e.g., a metal) may change oxidation states in a coke product to provide catalytic activity. For example, a coke product may include sodium, which may transition from an unoxidized state Na into a first ionic oxidation state Na+. Alternatively, or additionally, a coke product may include iron, which may transition from an unoxidized state Fe into the oxidized states Fe2+ or Fe3+. Furthermore, the coke product may include the multi-oxidation state elements in an oxidized form. For example, the coke product may include Na+ in the form of a salt or Fe3+ in the form of Fe2O3. The coke product may also include other types of metals, such as nickel, copper, etc. The catalytic material embedded in the coke product increases carbon dissolution during steel production because at least some of the catalytic material will remain in contact with the interface between the coke product and a liquid iron bath during steel production.
Due to variations in the specific shape of foundry coke products, a foundry coke product can be characterized by a range of hydraulic diameters. For example, the foundry coke product 400 can have a hydraulic diameter that is greater than or equal to 1.0 inches, greater than or equal to 2.0 inches, or greater than or equal to 3.0 inches, etc. In some embodiments, the hydraulic diameter of a foundry coke product can be greater than an actual diameter of the foundry coke product due to the cross-sectional geometry of the foundry coke product.
The table 450 includes a set of attributes of the foundry coke product 400. Such attributes can be advantageous for foundry operations, such as having lower ash fusion temperature values in comparison to conventional coke products. Ash fusion temperature can be obtained in various ways. In some embodiments, ash fusion temperature can be measured from a sample of ash created by burning a coal, coal blend, or coke product to completion. The ash elemental analysis can be performed on each element, for example, individual silicon atoms create a signal in the analytical instrument. To obtain a mass percentage value used for model ash fusion calculation, some embodiments of the present technology can treat all elements as fully oxidized and determine a mass percentage is based oxidized forms. For example, some embodiments of the present technology can determine the SiO2 mass but not the Si mass. In some embodiments, the mass percentages of SiO2, Al2O3, Fe2O3, CaO, other compounds, etc., can be normalized to sum up to 100%.
Alternatively or additionally, ash fusion temperature can be measured by an ash fusion temperature test, such as a standard American Society for Testing and Materials (ASTM) method D1857. For example, some embodiments of the present technology can determine an initial deformation temperature (IDT), softening temperature (ST), hemispherical temperature (HT), and flow temperature (FT). These measured temperatures can have different values with respect to each other, and can be used to characterize a particular coal, coal blend, or coke product. Furthermore, as discussed elsewhere, the composition of the ash remaining from combustion of a coal or coal blend is considered to be the same as the ash remaining after combustion of a coke product produced from the coal or coal blend. Some embodiments can characterize a coal blend ash composition as the weighted average of the ash compositions of the coal components weighted by their respective mass fractions in the coal blend.
The ash fusion temperature can be calculated based on the ash composition using Formula (IA) (Cupola Handbook, 6th ed., © 1999, American Foundrymen's Society, Inc., Chapter 8), below:
AFT(° C.)=19×(wt % of Al2O3)+15×(wt % of SiO2+wt % of TiO2)+10×(wt % of CaO+wt % of MgO)+6×(wt % of Fe2O3+wt % of Na2O) (Formula IA)
Because K2O is known to be in ash samples and given the similarity of Na and K the K2O is may have a similar impact on the ash fusion temperature as Na2O. Formula (IA) may be modified to include the amount of K2O in the calculation as shown in Formula (IB) below:
AFT(° C.)=19×(wt % of Al2O3)+15×(wt % of SiO2+wt % of TiO2)+10×(wt % of CaO+wt % of MgO)+6×(wt % of Fe2O3+wt % of Na2O+wt % of K2O) (Formula IB)
For embodiments of the present technology, ash fusion temperature values can be represented in various forms, such as the initial deformation temperature (IDT) or softening temperature (ST) values. For example, sample “S4” shown in the table 450 has an ash fusion IDT equal to 2150° F. (1177° C.). Some embodiments can perform operations to reduce a low ash fusion to a coke product based on an ash fusion temperature threshold or target ash fusion range.
In some embodiments, a target ash fusion temperature value or ash fusion temperature range can vary based on the type of ash fusion value being used. In some embodiments, a produced coke product can have an IDT that is between 2100-2400° F. Some embodiments can include stricter limits on coke products and can include a coke product having an IDT that is between 2100-2250° F. Some embodiments can change coal blends or manufacturing thereof to satisfy a target IDT. For example, some embodiments of the present technology can select a coal blend or determine oven operations based on a target IDT value of approximately 2100° F., 2150° F., 2200° F., 2250° F., 2300° F., 2350° F., or 2400° F. In some embodiments, coke products are produced that have an ST within a specified range, such as between 2150-2500° F., or approximately 2100° F., 2150° F., 2200° F., 2250° F., 2300° F., 2350° F., 2400° F., 2450° F., or 2500° F. Furthermore, some embodiments of the present technology can set a target IDT value as a function of a target ST value.
Similarly, embodiments of the present technology can produce coke products having an HT between 2200-2350° F., 2150-2300° F. Furthermore, some embodiments of the present technology can change coal blends, soak times, or durations at different damper positions to satisfy a target HT. For example, some embodiments of the present technology can select a coal blend or determine oven operations based on a target HT value of approximately 2200° F., 2250° F., 2300° F., 2350° F., 2400° F., 2450° F., or 2500° F. Similarly, embodiments of the present technology can produce coke products having an FT between 2250-2600° F. or 2250-2400° F., or approximately 2250° F., 2300° F., 2350° F., 2400° F., 2450° F., 2500° F., 2550° F., or 2600° F.
Embodiments of the present technology can also produce coke products that satisfy multiple target ranges for different types of ash fusion temperature values. For example, coke products can have an IDT between 2100-2250° F., an ST between 2150-2300° F., an HT between 2200-2350° F., and/or an FT between 2250-2400° F. Additionally or alternatively, various other combination of target ranges for a coke product are possible. For example, embodiments of the present technology can include coke product having an IDT between 2100-2250° F., an ST between 2150-2300° F., an HT between 2200-2350° F., and an FT between 2250-2400° F.
As shown in the table 450, the CRI value of the foundry coke products can be 36.5% or another value that is greater than 35%. Some embodiments can implement coke production operations that produce batches of foundry coke that satisfy one or more CRI thresholds. For example, embodiments of the present technology can include coke products having a CRI of at least 25.0%, 30.0%, 35.0%, 40.0%, or 45.0%. Some embodiments can perform operations to select coke products that have CRI greater than a minimum CRI threshold for downstream use.
As shown in the table 450, the CSR value of the foundry coke products can be 26%, 15.6%, or another value that is greater than a CSR threshold such as 7.0%. Some embodiments can implement coke production operations that produce batches of foundry coke that satisfy one or more CSR thresholds. For example, embodiments of the present technology can include coke products having a CSR of no more than 40.0%, 35.0%, 30.0%, 25.0%, 20.0%, 15.0%, 10.0%, or 7.0%.
As shown in the table 450, an SiO2 composition of the coke product ash can include 49.4%, 48.9%, 48.8%, 49.1%, or 46.0%. Other embodiments can include other SiO2 mass fractions in ash, such as other values less than 70%, 50.0%, or 45.0%. In some embodiments, a mass fraction of approximately 50.0% SiO2 in coke product ash can correspond to a low amount of SiO2 in the coke product itself.
Embodiments of the present technology can include coke products having a fixed carbon content (e.g., a fixed carbon mass fraction) that is greater than or equal to a fixed carbon threshold. For example, embodiments of the present technology include coke products having a fixed carbon mass fraction that is greater than 80.0%, 85.0%, 90.0%, 90.5%, or 91.0%. In some embodiments, the fixed carbon content can be a targeted range, such as 80-91%, 85-95%, or 90-95%.
Embodiments of the present technology can generate coke products having an ash mass fraction within a targeted bounded or unbounded range. For example, embodiments of the present technology can produce foundry coke products having an ash mass fraction of at least 1.0%, 5.0%, 8.0%, 9.0%, or 10.0%. Furthermore, some embodiments of the present technology can include an upper bound to an ash mass fraction. For example, some embodiments of the present technology can produce foundry coke products having an ash mass fraction that is less than 5.0%, 9.0%, or 10.0%.
Some embodiments can produce a coke product or a coal blend used to produce the coal blend that satisfy other thresholds for Al2O3 or SiO2. For example, some embodiments of the present technology can produce a coke product such that an Al2O3 mass fraction of the ash of the coke product, or an ash of a coal blend used to create the coke product, is less than or approximately 30%, 25%, or 20%. Additionally or alternatively, embodiments of the present technology can produce a coke product wherein an SiO2 mass fraction of the ash of the coke product is no more than approximately 50%, 45%, 40%, or 35%. Additionally or alternatively, embodiments of the present technology can produce a coke product wherein a sum of a SiO2 mass fraction and Al2O3 mass fraction of an ash of the coke product is no more than approximately 80%, 75%, 70%, or 65%.
In some embodiments, as indicated by the range 1501, the ash content values of different samples can range between 2300° F. and 2560° F. Furthermore, as indicated by the range 1502, the ash content can range between approximately 7.8% to 8.8%. As shown in the chart 1500, some embodiments of the present technology can produce a coke product having an ash mass fraction that is less than 10.0%, less than 9.0%, or less than another maximum ash mass fraction threshold. Furthermore, some embodiments of the present technology can perform operations to maintain a minimum amount of ash product. For example, some embodiments of the present technology can implement coke oven operations to produce coke products having at least 1.0% ash, 5.0% ash, 7.0% ash, etc.
It will be apparent to those having skill in the art that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the present technology. In some cases, well known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the present technology. Although steps of methods may be presented herein in a particular order, alternative embodiments may perform the steps in a different order. Similarly, certain aspects of the present technology disclosed in the context of particular embodiments can be combined or eliminated in other embodiments. Furthermore, while advantages associated with certain embodiments of the present technology may have been disclosed in the context of those embodiments, other embodiments can also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages or other advantages disclosed herein to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein, and the invention is not limited except as by the appended claims.
Throughout this disclosure, the singular terms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. The term “comprising,” “including,” and “having” should be interpreted to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded.
Reference herein to “one embodiment,” “an embodiment,” “some embodiments” or similar formulations means that a particular feature, structure, operation, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present technology. Thus, the appearances of such phrases or formulations herein are not necessarily all referring to the same embodiment. Furthermore, various particular features, structures, operations, or characteristics may be combined in any suitable manner in one or more embodiments.
Unless otherwise indicated, all numbers expressing concentrations and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present technology. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Additionally, all ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein. For example, a range of “1 to 10” includes any and all subranges between (and including) the minimum value of 1 and the maximum value of 10, i.e., any and all subranges having a minimum value of equal to or greater than 1 and a maximum value of equal to or less than 10, e.g., 5.5 to 10.
The disclosure set forth above is not to be interpreted as reflecting an intention that any claim requires more features than those expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims following this Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment. This disclosure includes all permutations of the independent claims with their dependent claims.
The present technology is illustrated, for example, according to various aspects described below as numbered clauses or embodiments (1, 2, 3, etc.) for convenience. These are provided as examples and do not limit the present technology. It is noted that any of the dependent clauses can be combined in any combination, and placed into a respective independent clause.
The present application claims the benefit of priority to U.S. Provisional Patent Application No. 63/275,891, filed Nov. 4, 2021, the disclosure of which is incorporated herein by reference in its entirety. The present application relates to U.S. patent application Ser. No. 18/052,760, filed Nov. 4, 2022, titled FOUNDRY COKE PRODUCTS, AND ASSOCIATED SYSTEMS, DEVICES, AND METHODS, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
425797 | Hunt | Apr 1890 | A |
469868 | Osbourn | Mar 1892 | A |
705926 | Hemingway | Jul 1902 | A |
760372 | Beam | May 1904 | A |
845719 | Schniewind | Feb 1907 | A |
875989 | Garner | Jan 1908 | A |
976580 | Krause | Jul 1909 | A |
1140798 | Carpenter | May 1915 | A |
1424777 | Schondeling | Aug 1922 | A |
1430027 | Plantinga | Sep 1922 | A |
1486401 | Ackeren | Mar 1924 | A |
1530995 | Geiger | Mar 1925 | A |
1572391 | Klaiber | Feb 1926 | A |
1677973 | Marquard | Jul 1928 | A |
1705039 | Thornhill | Mar 1929 | A |
1721813 | Geipert | Jul 1929 | A |
1757682 | Palm | May 1930 | A |
1818370 | Wine | Aug 1931 | A |
1818994 | Kreisinger | Aug 1931 | A |
1830951 | Lovett | Nov 1931 | A |
1848818 | Becker | Mar 1932 | A |
1895202 | Montgomery | Jan 1933 | A |
1947499 | Schrader et al. | Feb 1934 | A |
1955962 | Jones | Apr 1934 | A |
1979507 | Underwood | Nov 1934 | A |
2075337 | Burnaugh | Mar 1937 | A |
2141035 | Daniels | Dec 1938 | A |
2195466 | Otto | Apr 1940 | A |
2235970 | Wilputte | Mar 1941 | A |
2340283 | Vladu | Jan 1944 | A |
2340981 | Otto | Feb 1944 | A |
2394173 | Harris et al. | Feb 1946 | A |
2424012 | Bangham et al. | Jul 1947 | A |
2486199 | Nier | Oct 1949 | A |
2609948 | Laveley | Sep 1952 | A |
2641575 | Otto | Jun 1953 | A |
2649978 | Smith | Aug 1953 | A |
2667185 | Beavers | Jan 1954 | A |
2723725 | Keiffer | Nov 1955 | A |
2756842 | Chamberlin et al. | Jul 1956 | A |
2813708 | Frey | Nov 1957 | A |
2827424 | Homan | Mar 1958 | A |
2873816 | Emil et al. | Feb 1959 | A |
2902991 | Whitman | Sep 1959 | A |
2907698 | Schulz | Oct 1959 | A |
2968083 | Lentz et al. | Jan 1961 | A |
3015893 | McCreary | Jan 1962 | A |
3026715 | Briggs | Mar 1962 | A |
3033764 | Hannes | May 1962 | A |
3175961 | Samson | Mar 1965 | A |
3199135 | Trucker | Aug 1965 | A |
3224805 | Clyatt | Dec 1965 | A |
3259551 | Thompson, Jr. | Jul 1966 | A |
3265044 | Juchtern | Aug 1966 | A |
3267913 | Jakob | Aug 1966 | A |
3327521 | Briggs | Jun 1967 | A |
3342990 | Barrington et al. | Sep 1967 | A |
3444046 | Harlow | May 1969 | A |
3444047 | Wilde | May 1969 | A |
3448012 | Allred | Jun 1969 | A |
3453839 | Sabin | Jul 1969 | A |
3462345 | Kernan | Aug 1969 | A |
3511030 | Brown et al. | May 1970 | A |
3542650 | Kulakov | Nov 1970 | A |
3545470 | Paton | Dec 1970 | A |
3587198 | Hensel | Jun 1971 | A |
3591827 | Hall | Jul 1971 | A |
3592742 | Thompson | Jul 1971 | A |
3616408 | Hickam | Oct 1971 | A |
3623511 | Levin | Nov 1971 | A |
3630852 | Nashan et al. | Dec 1971 | A |
3652403 | Knappstein et al. | Mar 1972 | A |
3676305 | Cremer | Jul 1972 | A |
3709794 | Kinzler et al. | Jan 1973 | A |
3710551 | Sved | Jan 1973 | A |
3746626 | Morrison, Jr. | Jul 1973 | A |
3748235 | Pries | Jul 1973 | A |
3784034 | Thompson | Jan 1974 | A |
3806032 | Pries | Apr 1974 | A |
3811572 | Tatterson | May 1974 | A |
3836161 | Pries | Oct 1974 | A |
3839156 | Jakobi et al. | Oct 1974 | A |
3844900 | Schulte | Oct 1974 | A |
3857758 | Mole | Dec 1974 | A |
3875016 | Schmidt-Balve | Apr 1975 | A |
3876143 | Rossow et al. | Apr 1975 | A |
3876506 | Dix et al. | Apr 1975 | A |
3878053 | Hyde | Apr 1975 | A |
3894302 | Lasater | Jul 1975 | A |
3897312 | Armour et al. | Jul 1975 | A |
3906992 | Leach | Sep 1975 | A |
3912091 | Thompson | Oct 1975 | A |
3912597 | MacDonald | Oct 1975 | A |
3917458 | Polak | Nov 1975 | A |
3928144 | Jakimowicz | Dec 1975 | A |
3930961 | Sustarsic et al. | Jan 1976 | A |
3933443 | Lohrmann | Jan 1976 | A |
3957591 | Riecker | May 1976 | A |
3959084 | Price | May 1976 | A |
3963582 | Helm et al. | Jun 1976 | A |
3969191 | Bollenbach | Jul 1976 | A |
3975148 | Fukuda et al. | Aug 1976 | A |
3979870 | Moore | Sep 1976 | A |
3984289 | Sustarsic et al. | Oct 1976 | A |
3990948 | Lindgren | Nov 1976 | A |
4004702 | Szendroi | Jan 1977 | A |
4004983 | Pries | Jan 1977 | A |
4025395 | Ekholm et al. | May 1977 | A |
4040910 | Knappstein et al. | Aug 1977 | A |
4045056 | Kandakov et al. | Aug 1977 | A |
4045299 | McDonald | Aug 1977 | A |
4059885 | Oldengott | Nov 1977 | A |
4065059 | Jablin | Dec 1977 | A |
4067462 | Thompson | Jan 1978 | A |
4077848 | Grainer et al. | Mar 1978 | A |
4083753 | Rogers et al. | Apr 1978 | A |
4086231 | Ikio | Apr 1978 | A |
4093245 | Connor | Jun 1978 | A |
4100033 | Holter | Jul 1978 | A |
4100491 | Newman, Jr. et al. | Jul 1978 | A |
4100889 | Chayes | Jul 1978 | A |
4111757 | Carimboli | Sep 1978 | A |
4124450 | MacDonald | Nov 1978 | A |
4133720 | Franzer et al. | Jan 1979 | A |
4135948 | Mertens et al. | Jan 1979 | A |
4141796 | Clark et al. | Feb 1979 | A |
4143104 | van Konijnenburg et al. | Mar 1979 | A |
4145195 | Knappstein et al. | Mar 1979 | A |
4147230 | Ormond et al. | Apr 1979 | A |
4162546 | Shortell et al. | Jul 1979 | A |
4176013 | Garthus et al. | Nov 1979 | A |
4181459 | Price | Jan 1980 | A |
4189272 | Gregor et al. | Feb 1980 | A |
4194951 | Pries | Mar 1980 | A |
4196053 | Grohmann | Apr 1980 | A |
4211608 | Kwasnoski et al. | Jul 1980 | A |
4211611 | Bocsanczy | Jul 1980 | A |
4213489 | Cain | Jul 1980 | A |
4213828 | Calderon | Jul 1980 | A |
4222748 | Argo et al. | Sep 1980 | A |
4222824 | Flockenhaus et al. | Sep 1980 | A |
4224109 | Flockenhaus et al. | Sep 1980 | A |
4225393 | Gregor et al. | Sep 1980 | A |
4226113 | Pelletier et al. | Oct 1980 | A |
4230498 | Ruecki | Oct 1980 | A |
4235830 | Bennett et al. | Nov 1980 | A |
4239602 | La Bate | Dec 1980 | A |
4248671 | Belding | Feb 1981 | A |
4249997 | Schmitz | Feb 1981 | A |
4263099 | Porter | Apr 1981 | A |
4268360 | Tsuzuki et al. | May 1981 | A |
4271814 | Lister | Jun 1981 | A |
4284478 | Brommel | Aug 1981 | A |
4285772 | Kress | Aug 1981 | A |
4287024 | Thompson | Sep 1981 | A |
4289479 | Johnson | Sep 1981 | A |
4289584 | Chuss et al. | Sep 1981 | A |
4289585 | Wagener et al. | Sep 1981 | A |
4296938 | Offermann et al. | Oct 1981 | A |
4298497 | Colombo | Nov 1981 | A |
4299666 | Ostmann | Nov 1981 | A |
4302935 | Cousimano | Dec 1981 | A |
4303615 | Jarmell et al. | Dec 1981 | A |
4307673 | Caughey | Dec 1981 | A |
4314787 | Kwasnik et al. | Feb 1982 | A |
4316435 | Nagamatsu et al. | Feb 1982 | A |
4324568 | Wilcox et al. | Apr 1982 | A |
4330372 | Cairns et al. | May 1982 | A |
4334963 | Stog | Jun 1982 | A |
4336107 | Irwin | Jun 1982 | A |
4336843 | Petty | Jun 1982 | A |
4340445 | Kucher et al. | Jul 1982 | A |
4342195 | Lo | Aug 1982 | A |
4344820 | Thompson | Aug 1982 | A |
4344822 | Schwartz et al. | Aug 1982 | A |
4353189 | Thiersch et al. | Oct 1982 | A |
4366029 | Bixby et al. | Dec 1982 | A |
4373244 | Mertens et al. | Feb 1983 | A |
4375388 | Hara et al. | Mar 1983 | A |
4385962 | Stewen et al. | May 1983 | A |
4391674 | Velmin et al. | Jul 1983 | A |
4392824 | Struck et al. | Jul 1983 | A |
4394217 | Holz et al. | Jul 1983 | A |
4395269 | Schuler | Jul 1983 | A |
4396394 | Li et al. | Aug 1983 | A |
4396461 | Neubaum et al. | Aug 1983 | A |
4406619 | Oldengott | Sep 1983 | A |
4407237 | Merritt | Oct 1983 | A |
4421070 | Sullivan | Dec 1983 | A |
4431484 | Weber et al. | Feb 1984 | A |
4439277 | Dix | Mar 1984 | A |
4440098 | Adams | Apr 1984 | A |
4445977 | Husher | May 1984 | A |
4446018 | Cerwick | May 1984 | A |
4448541 | Lucas | May 1984 | A |
4452749 | Kolvek et al. | Jun 1984 | A |
4459103 | Gieskieng | Jul 1984 | A |
4469446 | Goodboy | Sep 1984 | A |
4474344 | Bennett | Oct 1984 | A |
4487137 | Horvat et al. | Dec 1984 | A |
4498786 | Ruscheweyh | Feb 1985 | A |
4506025 | Kleeb et al. | Mar 1985 | A |
4508539 | Nakai | Apr 1985 | A |
4518461 | Gelfand | May 1985 | A |
4527488 | Lindgren | Jul 1985 | A |
4564420 | Spindeler et al. | Jan 1986 | A |
4568426 | Orlando | Feb 1986 | A |
4570670 | Johnson | Feb 1986 | A |
4614567 | Stahlherm et al. | Sep 1986 | A |
4643327 | Campbell | Feb 1987 | A |
4645513 | Kubota et al. | Feb 1987 | A |
4655193 | Blacket | Apr 1987 | A |
4655804 | Kercheval et al. | Apr 1987 | A |
4666675 | Parker et al. | May 1987 | A |
4680167 | Orlando | Jul 1987 | A |
4690689 | Malcosky et al. | Sep 1987 | A |
4704195 | Janicka et al. | Nov 1987 | A |
4720262 | Durr et al. | Jan 1988 | A |
4724976 | Lee | Feb 1988 | A |
4726465 | Kwasnik et al. | Feb 1988 | A |
4732652 | Durselen et al. | Mar 1988 | A |
4749446 | van Laar et al. | Jun 1988 | A |
4793981 | Doyle et al. | Dec 1988 | A |
4821473 | Cowell | Apr 1989 | A |
4824614 | Jones et al. | Apr 1989 | A |
4889698 | Moller et al. | Dec 1989 | A |
4898021 | Weaver et al. | Feb 1990 | A |
4918975 | Voss | Apr 1990 | A |
4919170 | Kallinich et al. | Apr 1990 | A |
4929179 | Breidenbach et al. | May 1990 | A |
4941824 | Holter et al. | Jul 1990 | A |
5052922 | Stokman et al. | Oct 1991 | A |
5062925 | Durselen et al. | Nov 1991 | A |
5078822 | Hodges et al. | Jan 1992 | A |
5087328 | Wegerer et al. | Feb 1992 | A |
5114542 | Childress et al. | May 1992 | A |
5213138 | Presz | May 1993 | A |
5227106 | Kolvek | Jul 1993 | A |
5228955 | Westbrook, III | Jul 1993 | A |
5234601 | Janke et al. | Aug 1993 | A |
5318671 | Pruitt | Jun 1994 | A |
5370218 | Johnson et al. | Dec 1994 | A |
5398543 | Fukushima et al. | Mar 1995 | A |
5423152 | Kolvek | Jun 1995 | A |
5447606 | Pruitt | Sep 1995 | A |
5480594 | Wilkerson et al. | Jan 1996 | A |
5542650 | Abel et al. | Aug 1996 | A |
5597452 | Hippe et al. | Jan 1997 | A |
5603810 | Michler | Feb 1997 | A |
5622280 | Mays et al. | Apr 1997 | A |
5659110 | Herden et al. | Aug 1997 | A |
5670025 | Baird | Sep 1997 | A |
5687768 | Albrecht et al. | Nov 1997 | A |
5705037 | Reinke et al. | Jan 1998 | A |
5715962 | McDonnell | Feb 1998 | A |
5720855 | Baird | Feb 1998 | A |
5745969 | Yamada et al. | May 1998 | A |
5752548 | Matsumoto et al. | May 1998 | A |
5787821 | Bhat et al. | Aug 1998 | A |
5810032 | Hong et al. | Sep 1998 | A |
5816210 | Yamaguchi | Oct 1998 | A |
5857308 | Dismore et al. | Jan 1999 | A |
5881551 | Dang | Mar 1999 | A |
5913448 | Mann et al. | Jun 1999 | A |
5928476 | Daniels | Jul 1999 | A |
5966886 | Di Loreto | Oct 1999 | A |
5968320 | Sprague | Oct 1999 | A |
6002993 | Naito et al. | Dec 1999 | A |
6003706 | Rosen | Dec 1999 | A |
6017214 | Sturgulewski | Jan 2000 | A |
6022112 | Isler et al. | Feb 2000 | A |
6059932 | Sturgulewski | May 2000 | A |
6126910 | Wilhelm et al. | Oct 2000 | A |
6139692 | Tamura et al. | Oct 2000 | A |
6152668 | Knoch | Nov 2000 | A |
6156688 | Ando et al. | Dec 2000 | A |
6173679 | Bruckner et al. | Jan 2001 | B1 |
6187148 | Sturgulewski | Feb 2001 | B1 |
6189819 | Racine | Feb 2001 | B1 |
6290494 | Barkdoll | Sep 2001 | B1 |
6412221 | Emsbo | Jul 2002 | B1 |
6495268 | Harth, III et al. | Dec 2002 | B1 |
6539602 | Ozawa et al. | Apr 2003 | B1 |
6596128 | Westbrook | Jul 2003 | B2 |
6626984 | Taylor | Sep 2003 | B1 |
6699035 | Brooker | Mar 2004 | B2 |
6712576 | Skarzenski et al. | Mar 2004 | B2 |
6758875 | Reid et al. | Jul 2004 | B2 |
6786941 | Reeves et al. | Sep 2004 | B2 |
6830660 | Yamauchi et al. | Dec 2004 | B1 |
6907895 | Johnson et al. | Jun 2005 | B2 |
6946011 | Snyder | Sep 2005 | B2 |
6964236 | Schucker | Nov 2005 | B2 |
7056390 | Fratello | Jun 2006 | B2 |
7077892 | Lee | Jul 2006 | B2 |
7314060 | Chen et al. | Jan 2008 | B2 |
7331298 | Barkdoll et al. | Feb 2008 | B2 |
7433743 | Pistikopoulos et al. | Oct 2008 | B2 |
7497930 | Barkdoll et al. | Mar 2009 | B2 |
7547377 | Inamasu et al. | Jun 2009 | B2 |
7611609 | Valia et al. | Nov 2009 | B1 |
7644711 | Creel | Jan 2010 | B2 |
7722843 | Srinivasachar | May 2010 | B1 |
7727307 | Winkler | Jun 2010 | B2 |
7785447 | Eatough et al. | Aug 2010 | B2 |
7803627 | Hodges et al. | Sep 2010 | B2 |
7823401 | Takeuchi et al. | Nov 2010 | B2 |
7827689 | Crane | Nov 2010 | B2 |
7998316 | Barkdoll | Aug 2011 | B2 |
8071060 | Ukai et al. | Dec 2011 | B2 |
8079751 | Kapila et al. | Dec 2011 | B2 |
8080088 | Srinivasachar | Dec 2011 | B1 |
8146376 | Williams et al. | Apr 2012 | B1 |
8152970 | Barkdoll et al. | Apr 2012 | B2 |
8172930 | Barkdoll | May 2012 | B2 |
8236142 | Westbrook | Aug 2012 | B2 |
8266853 | Bloom et al. | Sep 2012 | B2 |
8311777 | Suguira et al. | Nov 2012 | B2 |
8383055 | Palmer | Feb 2013 | B2 |
8398935 | Howell et al. | Mar 2013 | B2 |
8409405 | Kim et al. | Apr 2013 | B2 |
8500881 | Orita et al. | Aug 2013 | B2 |
8515508 | Kawamura et al. | Aug 2013 | B2 |
8568568 | Schuecker et al. | Oct 2013 | B2 |
8640635 | Bloom et al. | Feb 2014 | B2 |
8647476 | Kim et al. | Feb 2014 | B2 |
8800795 | Hwang | Aug 2014 | B2 |
8956995 | Masatsugu et al. | Feb 2015 | B2 |
8980063 | Kim et al. | Mar 2015 | B2 |
9039869 | Kim et al. | May 2015 | B2 |
9057023 | Reichelt et al. | Jun 2015 | B2 |
9103234 | Gu et al. | Aug 2015 | B2 |
9169439 | Sarpen et al. | Oct 2015 | B2 |
9193913 | Quanci et al. | Nov 2015 | B2 |
9193915 | West et al. | Nov 2015 | B2 |
9200225 | Barkdoll et al. | Dec 2015 | B2 |
9238778 | Quanci et al. | Jan 2016 | B2 |
9243186 | Quanci et al. | Jan 2016 | B2 |
9249357 | Quanci et al. | Feb 2016 | B2 |
9273249 | Quanci et al. | Mar 2016 | B2 |
9273250 | Choi et al. | Mar 2016 | B2 |
9321965 | Barkdoll | Apr 2016 | B2 |
9359554 | Quanci et al. | Jun 2016 | B2 |
9404043 | Kim | Aug 2016 | B2 |
9463980 | Fukada et al. | Oct 2016 | B2 |
9476547 | Quanci et al. | Oct 2016 | B2 |
9498786 | Pearson | Nov 2016 | B2 |
9580656 | Quanci et al. | Feb 2017 | B2 |
9672499 | Quanci et al. | Jun 2017 | B2 |
9683740 | Rodgers et al. | Jun 2017 | B2 |
9708542 | Quanci et al. | Jul 2017 | B2 |
9862888 | Quanci et al. | Jan 2018 | B2 |
9976089 | Quanci et al. | May 2018 | B2 |
10016714 | Quanci et al. | Jul 2018 | B2 |
10041002 | Quanci et al. | Aug 2018 | B2 |
10047295 | Chun et al. | Aug 2018 | B2 |
10047296 | Chun et al. | Aug 2018 | B2 |
10053627 | Sarpen et al. | Aug 2018 | B2 |
10233392 | Quanci et al. | Mar 2019 | B2 |
10308876 | Quanci et al. | Jun 2019 | B2 |
10323192 | Quanci et al. | Jun 2019 | B2 |
10392563 | Kim et al. | Aug 2019 | B2 |
10435042 | Weymouth | Oct 2019 | B1 |
10526541 | West et al. | Jan 2020 | B2 |
10526542 | Quanci et al. | Jan 2020 | B2 |
10578521 | Dinakaran et al. | Mar 2020 | B1 |
10611965 | Quanci et al. | Apr 2020 | B2 |
10619101 | Quanci et al. | Apr 2020 | B2 |
10732621 | Cella et al. | Aug 2020 | B2 |
10760002 | Ball et al. | Sep 2020 | B2 |
10851306 | Crum et al. | Dec 2020 | B2 |
10877007 | Steele et al. | Dec 2020 | B2 |
10883051 | Quanci et al. | Jan 2021 | B2 |
10920148 | Quanci et al. | Feb 2021 | B2 |
10927303 | Choi et al. | Feb 2021 | B2 |
10947455 | Quanci et al. | Mar 2021 | B2 |
10968393 | West et al. | Apr 2021 | B2 |
10968395 | Quanci et al. | Apr 2021 | B2 |
10975309 | Quanci et al. | Apr 2021 | B2 |
10975310 | Quanci et al. | Apr 2021 | B2 |
10975311 | Quanci et al. | Apr 2021 | B2 |
1378782 | Floyd | May 2021 | A1 |
11008517 | Chun et al. | May 2021 | B2 |
11008518 | Quanci et al. | May 2021 | B2 |
11021655 | Quanci et al. | Jun 2021 | B2 |
11053444 | Quanci et al. | Jul 2021 | B2 |
11060032 | Quanci et al. | Jul 2021 | B2 |
11071935 | Quanci et al. | Jul 2021 | B2 |
11098252 | Quanci et al. | Aug 2021 | B2 |
11117087 | Quanci | Sep 2021 | B2 |
11142699 | West et al. | Oct 2021 | B2 |
11186778 | Crum et al. | Nov 2021 | B2 |
11193069 | Quanci et al. | Dec 2021 | B2 |
11214739 | Quanci et al. | Jan 2022 | B2 |
11261381 | Quanci et al. | Mar 2022 | B2 |
11359145 | Ball et al. | Jun 2022 | B2 |
11359146 | Quanci et al. | Jun 2022 | B2 |
11365355 | Quanci et al. | Jun 2022 | B2 |
11395989 | Quanci et al. | Jul 2022 | B2 |
1429346 | Horn | Sep 2022 | A1 |
11441077 | Quanci et al. | Sep 2022 | B2 |
11441078 | Quanci et al. | Sep 2022 | B2 |
20020170605 | Shiraishi et al. | Nov 2002 | A1 |
20030014954 | Ronning et al. | Jan 2003 | A1 |
20030015809 | Carson | Jan 2003 | A1 |
20030057083 | Eatough et al. | Mar 2003 | A1 |
20040016377 | Johnson et al. | Jan 2004 | A1 |
20040220840 | Bonissone et al. | Nov 2004 | A1 |
20050087767 | Fitzgerald et al. | Apr 2005 | A1 |
20050096759 | Benjamin et al. | May 2005 | A1 |
20060029532 | Breen et al. | Feb 2006 | A1 |
20060102420 | Huber et al. | May 2006 | A1 |
20060149407 | Markham et al. | Jul 2006 | A1 |
20070087946 | Quest et al. | Apr 2007 | A1 |
20070102278 | Inamasu et al. | May 2007 | A1 |
20070116619 | Taylor et al. | May 2007 | A1 |
20070251198 | Witter | Nov 2007 | A1 |
20080028935 | Andersson | Feb 2008 | A1 |
20080179165 | Chen et al. | Jul 2008 | A1 |
20080250863 | Moore | Oct 2008 | A1 |
20080257236 | Green | Oct 2008 | A1 |
20080271985 | Yamasaki | Nov 2008 | A1 |
20080289305 | Girondi | Nov 2008 | A1 |
20090007785 | Kimura et al. | Jan 2009 | A1 |
20090032385 | Engle | Feb 2009 | A1 |
20090105852 | Wintrich et al. | Apr 2009 | A1 |
20090152092 | Kim et al. | Jun 2009 | A1 |
20090162269 | Barger et al. | Jun 2009 | A1 |
20090217576 | Kim et al. | Sep 2009 | A1 |
20090257932 | Canari et al. | Oct 2009 | A1 |
20090283395 | Hippe | Nov 2009 | A1 |
20100015564 | Chun et al. | Jan 2010 | A1 |
20100095521 | Kartal et al. | Apr 2010 | A1 |
20100106310 | Grohman | Apr 2010 | A1 |
20100113266 | Abe et al. | May 2010 | A1 |
20100115912 | Worley | May 2010 | A1 |
20100119425 | Palmer | May 2010 | A1 |
20100181297 | Whysail | Jul 2010 | A1 |
20100196597 | Di Loreto | Aug 2010 | A1 |
20100276269 | Schuecker et al. | Nov 2010 | A1 |
20100287871 | Bloom et al. | Nov 2010 | A1 |
20100300867 | Kim et al. | Dec 2010 | A1 |
20100314234 | Knoch et al. | Dec 2010 | A1 |
20110000284 | Kumar et al. | Jan 2011 | A1 |
20110014406 | Coleman et al. | Jan 2011 | A1 |
20110048917 | Kim et al. | Mar 2011 | A1 |
20110083314 | Baird | Apr 2011 | A1 |
20110088600 | McRae | Apr 2011 | A1 |
20110120852 | Kim | May 2011 | A1 |
20110144406 | Masatsugu et al. | Jun 2011 | A1 |
20110156902 | Wang et al. | Jun 2011 | A1 |
20110168482 | Merchant et al. | Jul 2011 | A1 |
20110174301 | Haydock et al. | Jul 2011 | A1 |
20110192395 | Kim | Aug 2011 | A1 |
20110198206 | Kim et al. | Aug 2011 | A1 |
20110223088 | Chang et al. | Sep 2011 | A1 |
20110253521 | Kim | Oct 2011 | A1 |
20110291827 | Baldocchi et al. | Dec 2011 | A1 |
20110313218 | Dana | Dec 2011 | A1 |
20110315538 | Kim et al. | Dec 2011 | A1 |
20120031076 | Frank et al. | Feb 2012 | A1 |
20120125709 | Merchant et al. | May 2012 | A1 |
20120152720 | Reichelt et al. | Jun 2012 | A1 |
20120177541 | Mutsuda et al. | Jul 2012 | A1 |
20120179421 | Dasgupta | Jul 2012 | A1 |
20120180133 | Ai-Harbi et al. | Jul 2012 | A1 |
20120195815 | Moore et al. | Aug 2012 | A1 |
20120228115 | Westbrook | Sep 2012 | A1 |
20120247939 | Kim et al. | Oct 2012 | A1 |
20120305380 | Wang et al. | Dec 2012 | A1 |
20120312019 | Rechtman | Dec 2012 | A1 |
20130020781 | Kishikawa | Jan 2013 | A1 |
20130045149 | Miller | Feb 2013 | A1 |
20130213114 | Wetzig et al. | Aug 2013 | A1 |
20130216717 | Rago et al. | Aug 2013 | A1 |
20130220373 | Kim | Aug 2013 | A1 |
20130306462 | Kim et al. | Nov 2013 | A1 |
20140039833 | Sharpe, Jr. et al. | Feb 2014 | A1 |
20140156584 | Motukuri et al. | Jun 2014 | A1 |
20140208997 | Alferyev et al. | Jul 2014 | A1 |
20140224123 | Walters | Aug 2014 | A1 |
20150041304 | Kiim et al. | Feb 2015 | A1 |
20150122629 | Freimuth et al. | May 2015 | A1 |
20150143908 | Cetinkaya | May 2015 | A1 |
20150175433 | Micka et al. | Jun 2015 | A1 |
20150176095 | Connors | Jun 2015 | A1 |
20150219530 | Li et al. | Aug 2015 | A1 |
20150226499 | Mikkelsen | Aug 2015 | A1 |
20160026193 | Rhodes et al. | Jan 2016 | A1 |
20160048139 | Samples et al. | Feb 2016 | A1 |
20160149944 | Obermeirer et al. | May 2016 | A1 |
20160154171 | Kato et al. | Jun 2016 | A1 |
20160370082 | Olivo | Dec 2016 | A1 |
20170173519 | Naito | Jun 2017 | A1 |
20170182447 | Sappok et al. | Jun 2017 | A1 |
20170226425 | Kim et al. | Aug 2017 | A1 |
20170261417 | Zhang | Sep 2017 | A1 |
20170313943 | Valdevies | Nov 2017 | A1 |
20170352243 | Quanci et al. | Dec 2017 | A1 |
20190317167 | LaBorde et al. | Oct 2019 | A1 |
20200071190 | Wiederin et al. | Mar 2020 | A1 |
20200139273 | Badiei | May 2020 | A1 |
20200173679 | O'Reilly et al. | Jun 2020 | A1 |
20200208059 | Quanci et al. | Jul 2020 | A1 |
20200208063 | Quanci et al. | Jul 2020 | A1 |
20200208833 | Quanci et al. | Jul 2020 | A1 |
20210130697 | Quanci et al. | May 2021 | A1 |
20210163821 | Quanci et al. | Jun 2021 | A1 |
20210163823 | Quanci et al. | Jun 2021 | A1 |
20210198579 | Quanci et al. | Jul 2021 | A1 |
20210261877 | Despen et al. | Aug 2021 | A1 |
20210340454 | Quanci | Nov 2021 | A1 |
20210363426 | West et al. | Nov 2021 | A1 |
20210363427 | Quanci et al. | Nov 2021 | A1 |
20210371752 | Quanci et al. | Dec 2021 | A1 |
20210388270 | Choi et al. | Dec 2021 | A1 |
20220056342 | Quanci et al. | Feb 2022 | A1 |
20220106527 | Quanci et al. | Apr 2022 | A1 |
20220195303 | Quanci et al. | Jun 2022 | A1 |
20220204858 | West et al. | Jun 2022 | A1 |
20220204859 | Crum et al. | Jun 2022 | A1 |
20220226766 | Quanci et al. | Jul 2022 | A1 |
20220251452 | Quanci et al. | Aug 2022 | A1 |
20220298423 | Quanci et al. | Sep 2022 | A1 |
20220325183 | Quanci et al. | Oct 2022 | A1 |
20220356410 | Quanci et al. | Nov 2022 | A1 |
20230012031 | Quanci et al. | Jan 2023 | A1 |
20230258326 | Quanci et al. | Aug 2023 | A1 |
Number | Date | Country |
---|---|---|
1172895 | Aug 1984 | CA |
2775992 | May 2011 | CA |
2822841 | Jul 2012 | CA |
2822857 | Jul 2012 | CA |
2905110 | Sep 2014 | CA |
87212113 | Jun 1988 | CN |
87107195 | Jul 1988 | CN |
2064363 | Oct 1990 | CN |
2139121 | Jul 1993 | CN |
1092457 | Sep 1994 | CN |
1255528 | Jun 2000 | CN |
1270983 | Oct 2000 | CN |
2528771 | Feb 2002 | CN |
1358822 | Jul 2002 | CN |
2521473 | Nov 2002 | CN |
1468364 | Jan 2004 | CN |
1527872 | Sep 2004 | CN |
2668641 | Jan 2005 | CN |
1957204 | May 2007 | CN |
101037603 | Sep 2007 | CN |
101058731 | Oct 2007 | CN |
101157874 | Apr 2008 | CN |
101211495 | Jul 2008 | CN |
201121178 | Sep 2008 | CN |
101395248 | Mar 2009 | CN |
100510004 | Jul 2009 | CN |
101486017 | Jul 2009 | CN |
201264981 | Jul 2009 | CN |
101497835 | Aug 2009 | CN |
101509427 | Aug 2009 | CN |
101886466 | Nov 2010 | CN |
101910530 | Dec 2010 | CN |
102072829 | May 2011 | CN |
102155300 | Aug 2011 | CN |
2509188 | Nov 2011 | CN |
202226816 | May 2012 | CN |
202265541 | Jun 2012 | CN |
102584294 | Jul 2012 | CN |
202415446 | Sep 2012 | CN |
202470353 | Oct 2012 | CN |
103399536 | Nov 2013 | CN |
103468289 | Dec 2013 | CN |
103913193 | Jul 2014 | CN |
203981700 | Dec 2014 | CN |
104498059 | Apr 2015 | CN |
105001914 | Oct 2015 | CN |
105137947 | Dec 2015 | CN |
105189704 | Dec 2015 | CN |
105264448 | Jan 2016 | CN |
105467949 | Apr 2016 | CN |
106661456 | May 2017 | CN |
106687564 | May 2017 | CN |
107445633 | Dec 2017 | CN |
100500619 | Jun 2020 | CN |
2212544 | Jan 1973 | DE |
2720688 | Nov 1978 | DE |
3231697 | Jan 1984 | DE |
3328702 | Feb 1984 | DE |
3315738 | Mar 1984 | DE |
3329367 | Nov 1984 | DE |
3407487 | Jun 1985 | DE |
10122531 | Nov 2002 | DE |
10154785 | May 2003 | DE |
102005015301 | Oct 2006 | DE |
102006004669 | Aug 2007 | DE |
102006026521 | Dec 2007 | DE |
102009031436 | Jan 2011 | DE |
102011052785 | Dec 2012 | DE |
010510 | Oct 2008 | EA |
0126399 | Nov 1984 | EP |
0208490 | Jan 1987 | EP |
0903393 | Mar 1999 | EP |
1538503 | Jun 2005 | EP |
1860034 | Nov 2007 | EP |
2295129 | Mar 2011 | EP |
2468837 | Jun 2012 | EP |
2517802 | Jun 1983 | FR |
2764978 | Dec 1998 | FR |
364236 | Jan 1932 | GB |
368649 | Mar 1932 | GB |
441784 | Jan 1936 | GB |
606340 | Aug 1948 | GB |
611524 | Nov 1948 | GB |
725865 | Mar 1955 | GB |
871094 | Jun 1961 | GB |
923205 | May 1963 | GB |
S5319301 | Feb 1978 | JP |
S5453103 | Apr 1979 | JP |
S57172978 | Oct 1982 | JP |
60004588 | Jan 1985 | JP |
62285980 | Dec 1987 | JP |
01103694 | Apr 1989 | JP |
01249886 | Oct 1989 | JP |
03197588 | Aug 1991 | JP |
04159392 | Jun 1992 | JP |
H04178494 | Jun 1992 | JP |
H05230466 | Sep 1993 | JP |
H0649450 | Feb 1994 | JP |
H0654753 | Jul 1994 | JP |
H06264062 | Sep 1994 | JP |
H06299156 | Oct 1994 | JP |
07188668 | Jul 1995 | JP |
07216357 | Aug 1995 | JP |
H07204432 | Aug 1995 | JP |
H0843314 | Feb 1996 | JP |
H08104875 | Apr 1996 | JP |
08127778 | May 1996 | JP |
H08218071 | Aug 1996 | JP |
H10273672 | Oct 1998 | JP |
H11131074 | May 1999 | JP |
H11256166 | Sep 1999 | JP |
2000204373 | Jul 2000 | JP |
2000219883 | Aug 2000 | JP |
2001055576 | Feb 2001 | JP |
2001200258 | Jul 2001 | JP |
2002097472 | Apr 2002 | JP |
2002106941 | Apr 2002 | JP |
2003041258 | Feb 2003 | JP |
2003051082 | Feb 2003 | JP |
2003071313 | Mar 2003 | JP |
2003292968 | Oct 2003 | JP |
2003342581 | Dec 2003 | JP |
2004169016 | Jun 2004 | JP |
2005503448 | Feb 2005 | JP |
2005135422 | May 2005 | JP |
2005154597 | Jun 2005 | JP |
2005263983 | Sep 2005 | JP |
2005344085 | Dec 2005 | JP |
2006188608 | Jul 2006 | JP |
2007063420 | Mar 2007 | JP |
3924064 | Jun 2007 | JP |
2007231326 | Sep 2007 | JP |
4101226 | Jun 2008 | JP |
2008231278 | Oct 2008 | JP |
2009019106 | Jan 2009 | JP |
2009073864 | Apr 2009 | JP |
2009073865 | Apr 2009 | JP |
2009135276 | Jun 2009 | JP |
2009144121 | Jul 2009 | JP |
2010229239 | Oct 2010 | JP |
2010248389 | Nov 2010 | JP |
2011504947 | Feb 2011 | JP |
2011068733 | Apr 2011 | JP |
2011102351 | May 2011 | JP |
2012102302 | May 2012 | JP |
2012102325 | May 2012 | JP |
2013006957 | Jan 2013 | JP |
2013510910 | Mar 2013 | JP |
2013189322 | Sep 2013 | JP |
2014040502 | Mar 2014 | JP |
2015094091 | May 2015 | JP |
2016169897 | Sep 2016 | JP |
1019990054426 | Jul 1999 | KR |
20000042375 | Jul 2000 | KR |
100296700 | Oct 2001 | KR |
20030012458 | Feb 2003 | KR |
1020040020883 | Mar 2004 | KR |
20040107204 | Dec 2004 | KR |
20050053861 | Jun 2005 | KR |
20060132336 | Dec 2006 | KR |
100737393 | Jul 2007 | KR |
100797852 | Jan 2008 | KR |
20080069170 | Jul 2008 | KR |
20110010452 | Feb 2011 | KR |
101314288 | Apr 2011 | KR |
20120033091 | Apr 2012 | KR |
20130050807 | May 2013 | KR |
101318388 | Oct 2013 | KR |
20140042526 | Apr 2014 | KR |
20150011084 | Jan 2015 | KR |
20170038102 | Apr 2017 | KR |
20170058808 | May 2017 | KR |
20170103857 | Sep 2017 | KR |
101862491 | May 2018 | KR |
2083532 | Jul 1997 | RU |
2441898 | Feb 2012 | RU |
2493233 | Sep 2013 | RU |
201241166 | Oct 2012 | TW |
201245431 | Nov 2012 | TW |
50580 | Oct 2002 | UA |
WO9012074 | Oct 1990 | WO |
WO9945083 | Sep 1999 | WO |
WO02062922 | Aug 2002 | WO |
WO2005023649 | Mar 2005 | WO |
WO2005031297 | Apr 2005 | WO |
WO2005115583 | Dec 2005 | WO |
WO2007103649 | Sep 2007 | WO |
WO2008034424 | Mar 2008 | WO |
WO2008105269 | Sep 2008 | WO |
WO2009147983 | Dec 2009 | WO |
WO2010103992 | Sep 2010 | WO |
WO2011000447 | Jan 2011 | WO |
WO2011126043 | Oct 2011 | WO |
WO2012029979 | Mar 2012 | WO |
WO2012031726 | Mar 2012 | WO |
WO2013023872 | Feb 2013 | WO |
WO2010107513 | Sep 2013 | WO |
WO2014021909 | Feb 2014 | WO |
WO2014043667 | Mar 2014 | WO |
WO2014105064 | Jul 2014 | WO |
WO2014153050 | Sep 2014 | WO |
WO2016004106 | Jan 2016 | WO |
WO2016033511 | Mar 2016 | WO |
WO2016086322 | Jun 2016 | WO |
Entry |
---|
ASM Handbook, Cupola Furnaces, 2008 (Year: 2008). |
Chaudhari, Keval, Cupola Furnace, engineersgalary.com Jan. 24, 2016 (Year: 2016). |
U.S. Appl. No. 18/168,142, filed Feb. 13, 2023, Quanci et al. |
U.S. Appl. No. 18/313,647, filed May 8, 2023, Quanci et al. |
U.S. Appl. No. 18/321,530, filed May 22, 2023, Quanci et al. |
U.S. Appl. No. 18/363,465, filed Aug. 1, 2023, Quanci et al. |
U.S. Appl. No. 18/363,508, filed Aug. 1, 2023, Choi et al. |
U.S. Appl. No. 18/366,244, filed Aug. 7, 2023, Quanci et al. |
“ASBESTOS”, Virginia Department of Health, https://www.vdh.virginia.gov/environmental-health/public-health-toxicology/asbestos/, updated 2023, 2 pages. |
“Ceramic fibers wool—to 1,300° C”, gTeek, Dec. 29, 2017 (date obtained from google search tools), https://www.gteek.com/ceramic-fibers-wool-to1-300-%C2%B0C, 15 pages. |
De Cordova, et al. “Coke oven life prolongation—A multidisciplinary approach.” 10.5151/2594-357X-2610 (2015) 12 pages. |
“How Glass Is Made,” Corning, https://www.corning.com/worldwide/en/innovation/materials-science/glass/how-glass-made.html, 2 pages. |
Kusiorowski, et al., “Thermal decomposition of different types of absestos,” Journal of Thermal Analysis and Calorimetry—Feb. 2012, 109, 693-704 (2012). |
Lin, Rongying et al., “Study on the synergistic effect of calcium and aluminum on improving ash fusion temperature of semi-coke,” International Journal of Coal Preparation and Utilization, May 31, 2019 (published online), vol. 42, No. 3, pp. 556-564. |
Lipunov, et al. “Diagnostics of the Heating System and Lining of Coke Ovens,” Coke and Chemistry, 2014, Vopl. 57, No. 12, pp. 489-492. |
Tiwari, et al., “A novel technique for assessing the coking potential of coals/cole blends for non-recovery coke making process,” Fuel, vol. 107, May 2013, pp. 615-622. |
U.S. Appl. No. 17/843,164, filed Jun. 17, 2022, Quanci et al. |
U.S. Appl. No. 17/947,520, filed Sep. 19, 2022, Quanci et al. |
U.S. Appl. No. 17/967,615, filed Oct. 17, 2022, Quanci et al. |
U.S. Appl. No. 18/047,916, filed Oct. 19, 2022, Quanci et al. |
U.S. Appl. No. 18/052,760, filed Nov. 4, 2022, Quanci et al. |
ASTM D5341-99(2010)e1, Standard Test Method for Measuring Coke Reactivity Index (CRI) and Coke Strength After Reaction (CSR), ASTM International, West Conshohocken, PA, 2010. |
Astrom, et al., “Feedback Systems: An Introduction for Scientists and Engineers,” Sep. 16, 2006, available on line at http://people/duke.edu/-hpgavin/SystemID/References/Astrom-Feedback-2006.pdf ; 404 pages. |
Basset et al., “Calculation of steady flow pressure loss coefficients for pipe junctions,” Proc Instn Mech Engrs., vol. 215, Part C, p. 861-881 IMechIE 2001. |
Beckman et al., “Possibilities and limits of cutting back coking plant output,” Stahl Und Eisen, Verlag Stahleisen, Dusseldorf, DE, vol. 130, No. 8, Aug. 16, 2010, pp. 57-67. |
Bloom, et al., “Modular cast block—The future of coke oven repairs,” Iron & Steel Technol, AIST, Warrendale, PA, vol. 4, No. 3, Mar. 1, 2007, pp. 61-64. |
Boyes, Walt. (2003), Instrumentation Reference Book (3rd Edition)—34.7.4.6 Infrared and Thermal Cameras, Elsevier. Online version available at: https://app.knovel.com/hotlink/pdf/id:kt004QMGV6/instrumentation-reference-2/ditigal-video. |
Clean coke process: process development studies by USS Engineers and Consultants, Inc., Wisconsin Tech Search, request date Oct. 5, 2011, 17 pages. |
“Conveyor Chain Designer Guild”, Mar. 27, 2014 (date obtained from wayback machine), Renold.com, Section 4, available online at: http://www.renold/com/upload/renoldswitzerland/conveyor_chain _-_designer_guide.pdf. |
Costa, et al., “Edge Effects on the Flow Characteristics in a 90 deg Tee Junction,” Transactions of the ASME, Nov. 2006, vol. 128, pp. 1204-1217. |
Crelling, et al., “Effects of Weathered Coal on Coking Properties and Coke Quality”, Fuel, 1979, vol. 58, Issue 7, pp. 542-546. |
Database WPI, Week 199115, Thomson Scientific, Lond, GB; AN 1991-107552. |
Diez, et al., “Coal for Metallurgical Coke Production: Predictions of Coke Quality and Future Requirements for Cokemaking”, International Journal of Coal Geology, 2002, vol. 50, Issue 1-4, pp. 389-412. |
“High Alumina Cement-Manufacture, Characteristics and Uses,” TheConstructor.org, https://theconstructor.org/concrete/high-alumina-cement/23686/; 12 pages. |
Joseph, B., “A tutorial on inferential control and its applications,” Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), San Diego, CA, 1999, pp. 3106-3118 vol. 5. |
Kerlin, Thomas (1999), Practical Thermocouple Thermometry—1.1 The Thermocouple. ISA. Online version available at https:app.knovel.com/pdf/id:kt007XPTM3/practical-thermocouple/the-thermocouple. |
Kochanski et al., “Overview of Uhde Heat Recovery Cokemaking Technology,” AISTech Iron and Steel Technology Conference Proceedings, Association for Iron and Steel Technology, U.S., vol. 1, Jan. 1, 2005, pp. 25-32. |
Knoerzer et al. “Jewell-Thompson Non-Recovery Cokemaking”, Steel Times, Fuel & Metallurgical Journals Ltd. London, GB, vol. 221, No. 4, Apr. 1, 1993, pp. 172-173,184. |
Madias, et al., “A review on stamped charging of coals” (2013). Available at https://www.researchgate.net/publication/263887759_A_review_on_stamped_charging_of_coals. |
Metallurgical Coke MSDS, ArcelorMittal, May 30, 2011, available online at http://dofasco.arcelormittal.com/-/media/Files/A/Arcelormittal-Canada/material-safety/metallurgical-coke.pdf. |
“Middletown Coke Company HRSG Maintenance BACT Analysis Option 1—Individual Spray Quenches Sun Heat Recovery Coke Facility Process Flow Diagram Middletown Coke Company 100 Oven Case #1-24.5 VM”, (Sep. 1, 2009), URL: http://web.archive.org/web/20090901042738/http://epa.ohio.gov/portals/27/transfer/ptiApplication/mcc/new/262504.pdf, (Feb. 12, 2016), XP055249803 [X] 1-13 * p. 7 * * pp. 8-11 *. |
“Refractory Castables,” Victas.com, Dec. 28, 2011 (date obtained from WayBack Machine), https://www/vitcas.com/refactory-castables; 5 pages. |
Rose, Harold J., “The Selection of Coals for the Manufacture of Coke,” American Institute of Mining and Metallurgical Engineers, Feb. 1926, 8 pages. |
Waddell, et al., “Heat-Recovery Cokemaking Presentation,” Jan. 1999, pp. 1-25. |
Walker D N et al., “Sun Coke Company's heat recovery cokemaking technology high coke quality and low environmental impact”, Revue De Metallurgie—Cahiers D'Informations Techniques, Revue De Metallurgie. Paris, FR, (Mar. 1, 2003), vol. 100, No. 3, ISSN 0035-1563, p. 23. |
Westbrook, “Heat-Recovery Cokemaking at Sun Coke,” AISE Steel Technology, Pittsburg, PA, vol. 76, No. 1, Jan. 1999, pp. 25-28. |
“What is dead-band control,” forum post by user “wireaddict” on AllAboutCircuits.com message board, Feb. 8, 2007, accessed Oct. 24, 2018 at https:/forum.allaboutcircuits.com/threads/what-is-dead-band-control.4728/; 8 pages. |
U.S. Appl. No. 18/313,622, filed May 8, 2023, Quanci et al. |
U.S. Appl. No. 18/466,549, filed Sep. 13, 2023, Quanci et al. |
U.S. Appl. No. 18/469,704, filed Sep. 19, 2023, Crum et al. |
U.S. Appl. No. 18/473,135, filed Sep. 22, 2023, Quanci et al. |
U.S. Appl. No. 18/473,143, filed Sep. 22, 2023, Quanci et al. |
U.S. Appl. No. 07/587,742, filed Sep. 25, 1990, now U.S. Pat. No. 5,114,542, titled Nonrecovery Coke Oven Battery and Method of Operation. |
U.S. Appl. No. 07/878,904, filed May 6, 1992, now U.S. Pat. No. 5,318,671, titled Method of Operation of Nonrecovery Coke Oven Battery. |
U.S. Appl. No. 09/783,195, filed Feb. 14, 2001, now U.S. Pat. No. 6,596,128, titled Coke Oven Flue Gas Sharing. |
U.S. Appl. No. 07/886,804, filed May 22, 1992, now U.S. Pat. No. 5,228,955, titled High Strength Coke Oven Wall Having Gas Flues Therein. |
U.S. Appl. No. 08/059,673, filed May 12, 1993, now U.S. Pat. No. 5,447,606, titled Method of and Apparatus for Capturing Coke Oven Charging Emissions. |
U.S. Appl. No. 08/914,140, filed Aug. 19, 1997, now U.S. Pat. No. 5,928,476, titled Nonrecovery Coke Oven Door. |
U.S. Appl. No. 09/680,187, filed Oct. 5, 2000, now U.S. Pat. No. 6,290,494, titled Method and Apparatus for Coal Coking. |
U.S. Appl. No. 10/933,866, filed Sep. 3, 2004, now U.S. Pat. No. 7,331,298, titled Coke Oven Rotary Wedge Door Latch. |
U.S. Appl. No. 11/424,566, filed Jun. 16, 2006, now U.S. Pat. No. 7,497,930, titled Method and Apparatus for Compacting Coal for a Coal Coking Process. |
U.S. Appl. No. 12/405,269, filed Mar. 17, 2009, now U.S. Pat. No. 7,998,316, titled Flat Push Coke Wet Quenching Apparatus and Process. |
U.S. Appl. No. 13/205,960, filed Aug. 9, 2011, now U.S. Pat. No. 9,321,965, titled Flat Push Coke Wet Quenching Apparatus and Process. |
U.S. Appl. No. 11/367,236, filed Mar. 3, 2006, now U.S. Pat. No. 8,152,970, titled Method and Apparatus for Producing Coke. |
U.S. Appl. No. 12/403,391, filed Mar. 13, 2009, now U.S. Pat. No. 8,172,930, titled Cleanable in Situ Spark Arrestor. |
U.S. Appl. No. 12/849,192, filed Aug. 3, 2010, now U.S. Pat. No. 9,200,225, titled Method and Apparatus for Compacting Coal for a Coal Coking Process. |
U.S. Appl. No. 13/631,215, filed Sep. 28, 2012, now U.S. Pat. No. 9,683,740, titled Methods for Handling Coal Processing Emissions and Associated Systems and Devices. |
U.S. Appl. No. 13/730,692, filed Dec. 28, 2012, now U.S. Pat. No. 9,193,913, titled Reduced Output Rate Coke Oven Operation With Gas Sharing Providing Extended Process Cycle. |
U.S. Appl. No. 14/655,204, now U.S. Pat. No. 10,016,714, filed Jun. 24, 2015, titled Systems and Methods for Removing Mercury From Emissions. |
U.S. Appl. No. 16/000,516, now U.S. Pat. No. 11,117,087, filed Jun. 5, 2018, titled Systems and Methods for Removing Mercury From Emissions. |
U.S. Appl. No. 17/459,380, filed Jun. 5, 2018, titled Systems and Methods for Removing Mercury From Emissions. |
U.S. Appl. No. 13/830,971, filed Mar. 14, 2013, now U.S. Pat. No. 10,047,296, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods, now U.S. Pat. No. 10,047,295. |
U.S. Appl. No. 16/026,363, filed Jul. 3, 2018, now U.S. Pat. No. 11,008,517, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods. |
U.S. Appl. No. 13/730,796, filed Dec. 28, 2012, now U.S. Pat. No. 10,883,051, titled Methods and Systems for Improved Coke Quenching. |
U.S. Appl. No. 17/140,564, filed Jan. 4, 2021, titled Methods and Systems for Improved Coke Quenching. |
U.S. Appl. No. 18/473,143, filed Sep. 22, 2023, titled Methods and Systems for Improved Coke Quenching. |
U.S. Appl. No. 13/730,598, filed Dec. 28, 2012, now U.S. Pat. No. 9,238,778, titled Systems and Methods for Improving Quenched Coke Recovery. |
U.S. Appl. No. 14/952,267, filed Nov. 25, 2015, now U.S. Pat. No. 9,862,888, titled Systems and Methods for Improving Quenched Coke Recovery. |
U.S. Appl. No. 15/830,320, filed Dec. 4, 2017, now U.S. Pat. No. 10,323,192, titled Systems and Methods for Improving Quenched Coke Recovery. |
U.S. Appl. No. 13/730,735, filed Dec. 28, 2012, now U.S. Pat. No. 9,273,249, titled Systems and Methods for Controlling Air Distribution in a Coke Oven. |
U.S. Appl. No. 14/655,013, filed Jun. 23, 2015, now U.S. Pat. No. 11,142,699, titled Vent Stack Lids and Associated Systems and Methods. |
U.S. Appl. No. 17/471,491, filed Sep. 10, 2021, now U.S. Pat. No. 11,142,699, titled Vent Stack Lids and Associated Systems and Methods. |
U.S. Appl. No. 13/843,166, filed Mar. 15, 2013, now U.S. Pat. No. 9,273,250, titled Methods and Systems for Improved Quench Tower Design. |
U.S. Appl. No. 15/014,547, filed Feb. 3, 2016, now, U.S. Pat. No. 10,927,303, titled Methods for Improved Quench Tower Design. |
U.S. Appl. No. 17/155,818, filed Jan. 22, 2021, now U.S. Pat. No. 11,746,296, titled Methods and Systems for Improved Quench Tower Design. |
U.S. Appl. No. 18/363,508, filed Aug. 1, 2023, titled Methods and Systems for Improved Quench Tower Design. |
U.S. Appl. No. 14/655,003, filed Jun. 23, 2015, now U.S. Pat. No. 10,760,002, titled Systems and Methods for Maintaining a Hot Car in a Coke Plant. |
U.S. Appl. No. 16/897,957, filed Jun. 10, 2020, now U.S. Pat. No. 11,359,145, titled Systems and Methods for Maintaining a Hot Car in a Coke Plant. |
U.S. Appl. No. 13/829,588, filed Mar. 14, 2013, now U.S. Pat. No. 9, 193,915, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns. |
U.S. Appl. No. 15/322,176, filed Dec. 27, 2016, now U.S. Pat. No. 10,526,541, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns. |
U.S. Appl. No. 15/511,036, filed Mar. 14, 2017, now U.S. Pat. No. 10,968,383, titled Coke Ovens Having Monolith Component Construction. |
U.S. Appl. No. 17/190,720, filed Mar. 3, 2021, titled Coke Ovens Having Monolith Component Construction. |
U.S. Appl. No. 13/589,009, filed Aug. 17, 2012, now U.S. Pat. No. 9,359,554, titled Automatic Draft Control System for Coke Plants. |
U.S. Appl. No. 15/139,568, filed Apr. 27, 2016, now U.S. Pat. No. 10,947,455, titled Automatic Draft Control System for Coke Plants. |
U.S. Appl. No. 17/176,391, now U.S. Pat. No. 11,692,138, filed Feb. 16, 2021, titled Automatic Draft Control System for Coke Plants. |
U.S. Appl. No. 18/321,530, filed May 22, 2023, titled Automatic Draft Control System for Coke Plants. |
U.S. Appl. No. 13/588,996, filed Aug. 17, 2012, now U.S. Pat. No. 9,243,186, titled Coke Plant Including Exhaust Gas Sharing. |
U.S. Appl. No. 14/959,450, filed Dec. 4, 2015, now U.S. Pat. No. 10,041,002, titled Coke Plant Including Exhaust Gas Sharing. |
U.S. Appl. No. 16/047,198, filed Jul. 27, 2018, now U.S. Pat. No. 10,611,965, titled Coke Plant Including Exhaust Gas Sharing. |
U.S. Appl. No. 16/828,448, filed Mar. 24, 2020, now U.S. Pat. No. 11,441,077, titled Coke Plant Including Exhaust Gas Sharing. |
U.S. Appl. No. 13/589,004, filed Aug. 17, 2012, now U.S. Pat. No. 9,249,357, titled Method and Apparatus for Volatile Matter Sharing in Stamp-Charged Coke Ovens. |
U.S. Appl. No. 13/730,673, filed Dec. 28, 2012, now U.S. Pat. No. 9,476,547, titled Exhaust Flow Modifier, Duct Intersection Incorporating G the Same, and Methods Therefor. |
U.S. Appl. No. 15/281,891, filed Sep. 30, 2016, now U.S. Pat. No. 10,975,309, titled Exhaust Flow Modifier, Duck Intersection Incorporating the Same, and Methods Therefor. |
U.S. Appl. No. 17/191,119, filed March 3, 3021, titled Exhaust Flow Modifier, Duck Intersection Incorporating The Same, and Methods Therefor. |
U.S. Appl. No. 13/598,394, filed Aug. 29, 2012, now U.S. Pat. No. 9,169,439, titled Method and Apparatus for Testing Coal Coking Properties. |
U.S. Appl. No. 14/865,581, filed Sep. 25, 2015, now U.S. Pat. No. 10,053,627, titled Method and Apparatus for Testing Coal Coking Properties, now U.S. Pat. No. 10,053,627. |
U.S. Appl. No. 14/839,384, filed Aug. 28, 2015, now U.S. Pat. No. 9,580,656, titled Coke Oven Charging System. |
U.S. Appl. No. 15/443,246, filed Feb. 27, 2017, now U.S. Pat. No. 9,976,089, titled Coke Oven Charging System. |
U.S. Appl. No. 14/587,670, filed Dec. 31, 2014, now U.S. Pat. No. 10,619,101, titled Methods for Decarbonizing Coking Ovens, and Associated Systems and Devices. |
U.S. Appl. No. 16/845,530, filed Apr. 10, 2020, now U.S. Pat. No. 11,359,146, titled Methods for Decarbonizing Coking Ovens, and Associated Systems and Devices. |
U.S. Appl. No. 14/984,489, filed Dec. 30, 2015, now U.S. Pat. No. 10,975,310, titled Multi-Modal Beds of Coking Material. |
U.S. Appl. No. 14/983,837, filed Dec. 30, 2015, now U.S. Pat. No. 10,968,395, titled Multi-Modal Beds of Coking Material. |
U.S. Appl. No. 14/986,281, filed Dec. 31, 2015, now U.S. Pat. No. 10,975,311, titled Multi-Modal Beds of Coking Material. |
U.S. Appl. No. 17/222,886, filed Apr. 12, 2021, titled Multi-Modal Beds of Coking Material. |
U.S. Appl. No. 14/987,625, filed Jan. 4, 2016, now U.S. Pat. No. 11,060,032, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques. |
U.S. Appl. No. 17/172,476, filed Feb. 10, 2021, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques. |
U.S. Appl. No. 18/473,143, filed Sep. 22, 2023, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques. |
U.S. Appl. No. 14/839,493, filed Aug. 28, 2015, now U.S. Pat. No. 10,233,392, titled Method and System for Optimizing Coke Plant Operation and Output. |
U.S. Appl. No. 16/251,352, filed Jan. 18, 2019, now U.S. Pat. No. 11,053,444, titled Method and System for Optimizing Coke Plant Operation and Output. |
U.S. Appl. No. 14/839,551, filed Aug. 28, 2015, now U.S. Pat. No. 10,308,876, titled Burn Profiles for Coke Operations. |
U.S. Appl. No. 16/428,014, filed May 31, 2019, now U.S. Pat. No. 10,920,148, titled Improved Burn Profiles for Coke Operations. |
U.S. Appl. No. 17/155,719, filed Jan. 22, 2021, now U.S. Pat. No. 11,441,078, titled Improved Burn Profiles for Coke Operations. |
U.S. Appl. No. 14/839,588, filed Aug. 28, 2015, now U.S. Pat. No. 9,708,542, titled Method and System for Optimizing Coke Plant Operation and Output. |
U.S. Appl. No. 15/392,942, filed Dec. 28, 2016, now U.S. Pat. No. 10,526,542, titled Method and System for Dynamically Charging a Coke Oven. |
U.S. Appl. No. 16/735,103, filed Jan. 6, 2020, now U.S. Pat. No. 11,214,739, titled Method and System for Dynamically Charging a Coke Oven. |
U.S. Appl. No. 15/614,525, filed Jun. 5, 2017, now U.S. Pat. No. 11,508,230, titled Methods and Systems for Automatically Generating a Remedial Action in an Industrial Facility. |
U.S. Appl. No. 18/047,916, filed Oct. 19, 2022, titled Methods and Systems for Automatically Generating a Remedial Action in an Industrial Facility. |
U.S. Appl. No. 15/987,860, filed May 23, 2018, now U.S. Pat. No. 10,851,306, titled System and Method for Repairing a Coke Oven. |
U.S. Appl. No. 17/076,563, filed Oct. 21, 2020, now U.S. Pat. No. 11,186,778, titled System and Method for Repairing a Coke Oven. |
U.S. Appl. No. 17/521,061, filed Nov. 8, 2021, titled System and Method for Repairing a Coke Oven. |
U.S. Appl. No. 18/469,704, filed Sep. 19, 2023, titled System and Method for Repairing a Coke Oven. |
U.S. Appl. No. 17/135,483, filed Dec. 28, 2020, titled Oven Health Optimization Systems and Methods. |
U.S. Appl. No. 16/729,053, filed Dec. 27, 2019, now U.S. Pat. No. 11,760,937, titled Oven Uptakes. |
U.S. Appl. No. 18/366,244, filed Aug. 7, 2023, titled Oven Uptakes. |
U.S. Appl. No. 16/729,036, filed Dec. 27, 2019, now U.S. Pat. No. 11,365,355, titled Systems and Methods for Treating a Surface of a Coke Plant. |
U.S. Appl. No. 17/747,708, filed May 18, 2022, titled Systems and Methods for Treating a Surface of a Coke Plant. |
U.S. Appl. No. 16/729,201, filed Dec. 27, 2019, titled Gaseous Tracer Leak Detection. |
U.S. Appl. No. 16/729,122, filed Dec. 27, 2019, now U.S. Pat. No. 11,395,989, titled Methods and Systems for Providing Corrosion Resistant Surfaces in Contaminant Treatment Systems. |
U.S. Appl. No. 17/843,164, filed Jun. 17, 2022, titled Methods and Systems for Providing Corrosion Resistant Surfaces in Contaminant Treatment Systems. |
U.S. Appl. No. 16/729,068, filed Dec. 27, 2019, now U.S. Pat. No. 11,486,572, titled Systems and Methods for Utilizing Flue Gas. |
U.S. Appl. No. 17/947,520, filed Sep. 19, 2022, titled Systems and Methods for Utilizing Flue Gas. |
U.S. Appl. No. 16/729,129, filed Dec. 27, 2019, now U.S. Pat. No. 11,008,518, titled Coke Plant Tunnel Repair and Flexible Joints. |
U.S. Appl. No. 17/320,343, filed May 14, 2021, now U.S. Pat. No. 11,597,881, titled Coke Plant Tunnel Repair and Flexible Joints. |
U.S. Appl. No. 18/168, 142, filed Feb. 13, 2023, titled Coke Plant Tunnel Repair and Flexible Joints. |
U.S. Appl. No. 16/729,170, now U.S. Pat. No. 11,193,069, filed Dec. 27, 2019, titled Coke Plant Tunnel Repair and Anchor Distribution. |
U.S. Appl. No. 17/532,058, now U.S. Pat. No. 11,505,747, filed Nov. 22, 2021, titled Coke Plant Tunnel Repair and Anchor Distribution. |
U.S. Appl. No. 17/967,615, filed Oct. 17, 2022, titled Coke Plant Tunnel Repair and Anchor Distribution. |
U.S. Appl. No. 16/729,157, filed Dec. 27, 2019, now U.S. Pat. No. 11,071,935, titled Particulate Detection for Industrial Facilities, and Associated Systems and Methods. |
U.S. Appl. No. 16/729,057, filed Dec. 27, 2019, now U.S. Pat. No. 11,021,655, titled Decarbonization of Coke Ovens and Associated Systems and Methods. |
U.S. Appl. No. 17/321,857, filed May 17, 2021, now U.S. Pat. No. 11,643,602, titled Decarbonization of Coke Ovens and Associated Systems and Methods. |
U.S. Appl. No. 18/313,622, filed May 8, 2023, titled Decarbonization of Coke Ovens and Associated Systems and Methods. |
U.S. Appl. No. 16/729,212, filed Dec. 27, 2019, now U.S. Pat. No. 11,261,381, titled Heat Recovery Oven Foundation. |
U.S. Appl. No. 17/584,672, filed Jan. 26, 2022, titled Heat Recovery Oven Foundation. |
U.S. Appl. No. 16/729,219, now U.S. Pat. No. 11,098,252, filed on Dec. 27, 2019, titled Spring-Loaded Heat Recovery Oven System and Method. |
U.S. Appl. No. 17/388,874, filed Jul. 29, 2021, now, U.S. Pat. No. 11,680,208, titled Spring-Loaded Heat Recovery Oven System and Method. |
U.S. Appl. No. 18/313,647, filed May 8, 2023, titled Spring-Loaded Heat Recovery Oven System and Method. |
U.S. Appl. No. 17/736,960, filed May 20, 2022, titled Foundry Coke Products, and Associated Systems and Methods. |
U.S. Appl. No. 17/306,895, now U.S. Pat. No. 11,767,482, filed May 3, 2021, now U.S. Pat. No. 11,767,482, titled High-Quality Coke Products. |
U.S. Appl. No. 18/363,465, filed Aug. 1, 2023, titled High-Quality Coke Products. |
U.S. Appl. No. 18/466,549, filed Sep. 13, 2023, titled High-Quality Coke Products. |
U.S. Appl. No. 18/052,760, filed Nov. 2, 2022, titled Foundry Coke Products, and Associated Systems, Devices, and Methods. |
U.S. Appl. No. 09/680,187, filed on Oct. 5, 2000, now U.S. Pat. No. 6,290,494, titled Method and Apparatus for Coal Coking. |
U.S. Appl. No. 17/155,818, filed Jan. 22, 2021, titled Methods and Systems for Improved Quench Tower Design. |
U.S. Appl. No. 17/176,391, filed Feb. 16, 2021, titled Automatic Draft Control System for Coke Plants. |
U.S. Appl. No. 13/730,673, filed Dec. 28, 2012, now U.S. Pat. No. 9,476,547, titled Exhaust Flow Modifier, Duct Intersection Incorporating the Same, and Methods Therefor. |
U.S. Appl. No. 16/729,053, filed Dec. 27, 2019, titled Oven Uptakes. |
U.S. Appl. No. 16/729,068, filed Dec. 27, 2019, titled Systems and Methods for Utilizing Flue Gas. |
U.S. Appl. No. 17/320,343, filed May 14, 2021, titled Coke Plant Tunnel Repair and Flexible Joints. |
U.S. Appl. No. 16/729, 157, filed on Dec. 27, 2019, now U.S. Pat. No. 11,071,935, titled Particulate Detection for Industrial Facilities, and Associated Systems and Methods. |
U.S. Appl. No. 17/321,857, filed May 17, 2021, titled Decarbonization of Coke Ovens and Associated Systems and Methods. |
U.S. Appl. No. 16/729,219, now U.S. Pat. No. 11,098,252, filed Dec. 27, 2019, titled Spring-Loaded Heat Recovery Oven System and Method. |
U.S. Appl. No. 17/388,874, filed Jul. 29, 2021, titled Spring-Loaded Heat Recovery Oven System and Method. |
U.S. Appl. No. 17/306,895, filed May 3, 2021, titled High-Quality Coke Products. |
Number | Date | Country | |
---|---|---|---|
20230142380 A1 | May 2023 | US |
Number | Date | Country | |
---|---|---|---|
63275891 | Nov 2021 | US |