Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish

Information

  • Research Project
  • 10271304
  • ApplicationId
    10271304
  • Core Project Number
    R01HD099031
  • Full Project Number
    5R01HD099031-02
  • Serial Number
    099031
  • FOA Number
    PA-19-056
  • Sub Project Id
  • Project Start Date
    9/25/2020 - 3 years ago
  • Project End Date
    8/31/2025 - a year from now
  • Program Officer Name
    TOYAMA, REIKO
  • Budget Start Date
    9/1/2021 - 2 years ago
  • Budget End Date
    8/31/2022 - a year ago
  • Fiscal Year
    2021
  • Support Year
    02
  • Suffix
  • Award Notice Date
    8/18/2021 - 2 years ago
Organizations

Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish

PROJECT SUMMARY/ABSTRACT Defects in programmed cell shape changes during embryonic development can disrupt organ morphogenesis and cause structural birth defects. There are fundamental gaps in our understanding of how cells change their shape during organ formation. While the biochemical signals and morphogen gradients that help govern organogenesis are well-studied, evidence is growing that robust control of organ form and function often also depends on multiple mechanical mechanisms that remain poorly understood. Thus, there is a critical need to tease apart how multiple mechanisms ? including tissue-scale dynamic forces and cell-autonomous contractile forces ? work together to generate ?mechanical gradients? that program cell and organ shape during organ formation. A challenge is that mechanical perturbations that affect the entire embryo often result in the same global phenotype, making it difficult to pinpoint the role of each mechanism. Our long- term goal is to develop a combined cell biology and modeling toolkit that allows us to predict cell-scale phenotypes and appropriate perturbations that can be used to distinguish between multiple mechanical mechanisms. This project uses Kupffer?s vesicle (KV), a transient epithelial organ that establishes left-right asymmetry in the zebrafish embryo, as a model system. No upstream biochemical signaling gradients have been identified that regulate KV cell shapes as required for left-right patterning, but multiple mechanical mechanisms have been implicated. Preliminary results ? from (4D = 3D + time) experimental perturbations and measurements of single KV cell shapes, and novel mathematical models that simulate interacting 3D tissue structures while retaining cell-scale resolution ? lead us to formulate our central hypothesis that cell shape changes critical for KV organogenesis result from mechanical gradients generated by interactions between the KV and surrounding tissue structures as well as cell-autonomous contractile forces from inside KV. The goal of Aim 1 is to determine how interactions between KV and notochord impact cell shape changes. 4D modeling predictions for cell shapes and cell movement combined with live in vivo imaging and localized laser ablations will determine how asymmetric forces generated by the rod-like notochord impact KV cell shape changes during organogenesis. The goal of Aim 2 is to understand mechanisms by which actomyosin contractility in surrounding tailbud cells and inside KV generate KV cell shape changes. Novel mathematical models will predict how localized optical perturbations to tailbud mechanics, as well as perturbations to volume and cell- autonomous contractility in cells inside the KV, affect KV organ shape. Key outputs include a modeling toolkit for high-throughput simulations of dynamic interactions between complex 3D tissue structures complemented by a cell biology toolkit that tests model predictions with spatially and temporally modulated activation of biomechanical and biochemical signaling molecules. These results will pinpoint mechanical mechanisms that regulate organogenesis, and may ultimately aid in the prediction or prevention of birth defects.

IC Name
EUNICE KENNEDY SHRIVER NATIONAL INSTITUTE OF CHILD HEALTH & HUMAN DEVELOPMENT
  • Activity
    R01
  • Administering IC
    HD
  • Application Type
    5
  • Direct Cost Amount
    407726
  • Indirect Cost Amount
    45803
  • Total Cost
    453529
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    865
  • Ed Inst. Type
    SCHOOLS OF ARTS AND SCIENCES
  • Funding ICs
    NICHD:453529\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    DEV2
  • Study Section Name
    Development - 2 Study Section
  • Organization Name
    SYRACUSE UNIVERSITY
  • Organization Department
    PHYSICS
  • Organization DUNS
    002257350
  • Organization City
    SYRACUSE
  • Organization State
    NY
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    132441200
  • Organization District
    UNITED STATES