Four-direction scrubbing carpet shampooer

Information

  • Patent Grant
  • 12239267
  • Patent Number
    12,239,267
  • Date Filed
    Tuesday, June 30, 2020
    4 years ago
  • Date Issued
    Tuesday, March 4, 2025
    a month ago
  • Inventors
  • Examiners
    • Landrum; Edward F
    • Fordjour; Sarah Akyaa
    Agents
    • Inventive Law Inc.
    • Salter; Jim H.
Abstract
A four-direction carpet shampooer is disclosed. Example embodiments include: a first brush configured to rotate on a first axis; a second brush configured to rotate on a second axis, the second axis being different from the first axis; a direction of travel sensor to detect the shampooer direction of travel; and a rotation changing actuator configured to reverse the rotation of the first brush on the first axis and to reverse the rotation of the second brush on the second axis when the direction of travel sensor indicates the shampooer direction of travel has changed. Example embodiments also include a shampooer cleaning station comprising: a first brush configured to rotate on a first axis; a second brush configured to rotate on a second axis, the second axis being different from the first axis; and a hair grinding system including protrusions configured to remove hair from a brush roll of a carpet shampooer, and a grinder to grind up the hair and dispose the ground-up hair into a waste water reservoir.
Description
COPYRIGHT

A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction of the patent document or the patent disclosure, as it appears in the U.S. Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever. The following notice applies to the disclosure provided herein and to the drawings that form a part of this document: Copyright 2018-2020, Mark Jeffery GIARRITTA; All Rights Reserved.


TECHNICAL FIELD

The disclosed subject matter relates to carpet shampooers and floor cleaners, and more particularly to a four-direction carpet shampooer.


BACKGROUND

Typical cleaner designs have one roller brush that rotates vertically and spins in one direction; thus, it essentially only cleans one vertical face/side of the carpet fiber and at least partially the top when traveling in one path forward and back. This means that to shampoo all four faces or sides of the carpet fiber, the carpet shampooer would have to run forward and backward in four directions to thoroughly scrub all four sides of the carpet fibers. This would be extremely time consuming and hard on the equipment.


Another conventional design provided two brush rolls running parallel and both rotating opposite directions. This would work a little better, but would still only clean two sides of the carpet fiber in a forward and backward motion of the shampooer or cleaner. To thoroughly scrub the carpet, it would still require excessive work having to run the machine in multiple directions to scrub all sides of the carpet fibers.


A third conventional design implements the original long brush and a second row of horizontally rotating flat brushes in an effort to clean more sides of the carpet fibers. However, this design loses some of its cleaning ability; because, the parallel opposing rotation brush roll is removed to insert the flat brushes. The flat bushes while spinning strike around the sides of some of the carpet fibers; but this design runs a risk of damaging the carpet fibers with the twisting motion and still is not effectively cleaning all sides of the carpet.


SUMMARY

There is disclosed herein various example embodiments of a four-direction scrubbing shampooer. In the various example embodiments described herein, this new four-direction scrubbing shampooer design is an improvement of existing shampooers and floor cleaner technology. One purpose of my new four-direction scrubbing carpet shampooer is to be able to clean all four vertical faces of the carpet fibers, in one path of travel, and one pass forward and backwards. The new design can be implemented in any shampooer, vacuum and floor buffing system, etc., as a stand-alone unit or an attachment. This in no way constitutes a limitation of use or application. The disclosed process and brush design can be employed in any cleaning system. Thus, the disclosed design is useful in any cleaning application. The various example embodiments are described in more detail below.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which:



FIG. 1 illustrates an example embodiment showing a spindle gear, an idler arm, brush rolls, and a bevel gear;



FIG. 2 illustrates an example embodiment showing a transmission, a brush array frame rail, a belt, a foam output port from a soap bottle, and an air intake port to the soap bottle;



FIG. 3 illustrates an example embodiment showing a transmission/motor shell and attachment dowels;



FIG. 4 illustrates an example embodiment showing a belt lifter;



FIG. 5 illustrates an example embodiment showing a gear box and scrubber unit;



FIG. 6 illustrates an example embodiment showing an attachment bar;



FIG. 7 illustrates an example embodiment showing a gap spanning gear;



FIG. 8 illustrates an example embodiment showing a top view of the shampoo head and shell;



FIG. 9 illustrates an example embodiment showing a side view of the shampoo head and shell;



FIG. 10 illustrates an example embodiment showing a mechanical actuation arm;



FIG. 11 illustrates an example embodiment showing the intake manifold, the intake manifold locking hand lever, the soap tanks, and the air intake distribution tubes;



FIG. 12 illustrates an example embodiment showing the brush cleaning waste water troughs, the brush roll housing cleaning brush (long brush), the brush roll housing cleaning brush (short brushes), and the attachment hooks;



FIG. 13 illustrates an example embodiment showing an upright view of a steam cleaner and a bottom brush array view; and



FIG. 14 illustrates an example embodiment showing a cleaning station, a hair grabber grinder system, and a sump tube.





DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which are shown, by way of illustration, specific embodiments in which the disclosed subject matter can be practiced. It is understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the disclosed subject matter.


There is disclosed herein various example embodiments of a four-direction scrubbing shampooer. In the various example embodiments described herein, this new four-direction scrubbing shampooer design is an improvement of existing shampooers and floor cleaner technology. One purpose of my new four-direction scrubbing carpet shampooer is to be able to clean all four vertical faces of the carpet fibers, in one path of travel, and one pass forward and backwards. The new design can be implemented in any shampooer, vacuum and floor buffing system, etc., as a stand-alone unit or an attachment. This in no way constitutes a limitation of use or application. The disclosed process and brush design can be employed in any cleaning system. Thus, the disclosed design is useful in any cleaning application or non-cleaning application into which the disclosed design can be incorporated.


In a particular example embodiment, a conventional circular dry foam shampooer head or any foam shampooer can be used to help describe the new design. The circular dry foam shampooer head can retain the original head shape, but it will be extended longer in the rear to accommodate a new row of brush rolls. The original vertically rotating brush roll stays in the same general position with approximately five new vertically rotating short brush rolls, positioned parallel to each other in the opposing direction of the original long brush. The additional brushes will be the same shape, diameter and design as the existing brush roll, but shorter at approximately 4″-6″ long (See Item 3, FIG. 1). The existing brush roll will retain its original connectors to hook into the shampooer head, while at the same time being connected to the brush array frame rail (See item 6, FIG. 2). Along with the existing long brush, all five opposing short brushes will be connected to the rail, making all brushes into a single removable brush array (See item 6, FIG. 2), that keeps all brushes in perfect alignment for easy removal and installation for maintenance. The brushes can be permanently attached to the rail, or can be attached to the rail with a connector on each end, so if one of the brushes is damaged, it can be replaced. Additionally, the brushes can be inserted in, or connected to the cleaning device head singly or in any connected combination, instead of as an array.


How it Works


As described above, two sets of brushes clean in opposing directions simultaneously, which cleans two vertical faces/sides of the carpet fibers. The shampooer cleans all four sides of the carpet fibers by using the following process: when the shampooer is traveling forward all brushes are spinning/rotating one direction, cleaning two vertical faces of the carpet fibers. When the user starts pulling the shampooer backwards, all brushes change their direction of rotation and spin to a reverse direction, thus cleaning the other two faces of the carpet fibers. In this manner, all four sides of the carpet fibers are cleaned in one stroke forwards and backwards of the shampooer, in one path of travel.


How the Brush Rolls are Driven


There are numerous ways that the brushes can be driven, such as:

    • 1. All brushes are driven separately by belts, gears, worm drive, air suction or blower, or an alternate driving component, by motor, transmission, air pump, or alternative driving source.
    • 2. The cleaning unit can use brush rolls with motors inside of them, each operating independently, with cooling fans and gearing for operation. In this application the motor and brush roll are coaxial.
    • 3. The row of short brushes can be all connected and can be run simultaneously via a belt, air suction or blower, worm drive, or an alternative driving component with the long brush separately propelled, all propelled by a motor, transmission or alternative driving source.
    • 4. Some combination of above.
    • 5. All brushes can be driven simultaneously from the same source.


In an alternative example embodiment, all five brushes can be propelled from a single source. This is achieved by using the following process:

    • 1. provide an idler arm (See item 2, FIG. 1) running in between the long brush and the row of short brushes.
    • 2. provide a bevel gear on the end of each short brush, with a corresponding bevel gear on the idler arm.
    • 3. provide a straight or bevel gear on the end of the long brush, a gear in between to span the gap (See item 13, FIG. 7), and a corresponding gear on the idler arm.
    • 4. With this alignment, the one idler arm propels all brush rolls at the same time, driven by one propulsion source.


Near the center of the idler arm, aligned with the drive spindle, one more gear is provided, with a corresponding gear above that has a spindle attached or (spindle gear) (See item 1, FIG. 1). The belt (See item 7, FIG. 2) connects to the spindle gear of the idler arm and above to the drive spindle (See item 23, FIG. 1) of either a transmission or a motor (See item 5, FIG. 2), to propel and change direction of brush rotation. Drive can be achieved with less ease of belt changing by having to disconnect the idler arm to slide the belt around it to connect directly, removing the spindle gear.


The spindle gear is important for two reasons:

    • 1. The conventional design required a user to disassemble the machine and take out the brush roll, to slide the belt around the brush roll, to install the belt. Customers many times had trouble disassembling the machine, which was discouraging. The extra spindle gear allows the user to install the belt without disassembling the inner workings of the head, only needing to remove the transmission/motor shell (See item 10, FIG. 3), wrap the belt around the spindle gears spindle, use the belt lifter to grab and lift belt, slide back on the transmission/motor shell and turn belt lifter to lower belt onto transmission/motor output spindle, making belt installation much easier.
    • 2. Having the extra spindle gear above the idler arm also makes it possible to put a protective and sound dampening casing (not illustrated) around the idler arm and gears, which can quiet the gear noise, and can be sealed to keep moisture and most importantly sand and grit out of the gears. To accomplish full seal, the casing can completely surround the spindle gear as well as the idler arm and long brush gears as two halves assembled around the gears and the idler arm. This allows the belt to be connected without the belt going through the protective casing, which would create an opening for dirt and moisture.


The gears, the entire brush array frame rail, the entire shampooer base, and the transmission/motor shell can be constructed of any type of material, such as: wood, metal, plastic, composite or alternatively material.


To execute the changing of brush rotation direction, an actuator either mechanical, electric, or computerized, can run off the handle. A direct mechanical arm could be used for sensing a direction of travel (See item 15, FIG. 10). A wheel sensor could be implemented to detect the direction the shampooer or device is traveling and change the direction of brush rotation when the machine's direction of travel changes. Alternatively, a scanning or motion sensor can be used to detect the direction of travel.


The rotation changing actuator can have a delay built in to slow down the brushes to near or complete stop before the brush rotation direction changes. Also, it is possible to have the drive motor or transmission incrementally increase and decrease power to the brushes below and back to normal operating levels during rotation transition for varying cleaning tasks and or at turning machine on or off. The motor can also have varying operation speeds for different cleaning tasks to conserve energy, if necessary.


In the case of a machine that employs attachments, a transmission (See item 5, FIG. 2) may be necessary to facilitate drive and rotation direction change from the power plant to the brushes. With the transmission changing the rotation direction, the power plant can function normally and rotate constantly in one direction. In this case, we use a bevel gear (See item 4, FIG. 1) on the input shaft of the transmission to be propelled by the corresponding bevel gear (See item 4, FIG. 1) of the power plant's output shaft. The transmission can be connected to the power plant by some other means, but the above-described gearing is the simplest method.


The changing of the brush rotation can also be achieved with the brushes being propelled directly by a motor. The motor can reverse polarity and itself rotate in the opposite direction, when the path of travel actuator or sensor signals a change in the direction of travel and brush rotation. There can also be two separate motors propelling in opposite directions, taking turns propelling to achieve both directions of brush rotation. One motor propelling brush rotation one direction when the machine is traveling forward and one motor propelling brush rotation in the opposite direction when the machine is traveling backwards.


Any combination of motors, transmissions, belts, gears, air suction or blower, worm drives or the like can be used to achieve this four-direction carpet scrubbing process. Any combination mentioned would still constitute the same process. This description is not suggesting limitations to this design. This process of having two opposite orientations of vertically rotating brushes, changing direction of brush rotation based on the direction the machine is traveling, to clean four sides of the carpet fibers, is not limited to the enclosed descriptions. Any arrangement of brush size, orientation, drive method or directional method will still constitute this same new process. For instance, if the brushes were turned diagonally and changed brush rotation direction based on direction of travel of the machine, or if a user used horizontally rotating brushes, in any number or orientation, with or without also having a vertically rotating brush also and had them change rotation direction based on direction of travel of the machine, it would still be the same process.


In the case of a steam cleaner (See items 24 & 25, FIG. 13), the implementation can be similar to the design described above with the new brush ensemble installed. The water can be sprayed into the carpet and sucked up with the same general process. The improved steam cleaner will employ our new brush operating process and arrangement to scrub carpet.


Some alternate designs include the following:

    • 1. Have one or more brushes only spin one direction with a separate brush or set of brushes changing rotation direction based on whether the machine is moving forwards or backwards, in the same cleaning head or unit.
    • 2. Brushes can be suction or air powered with air diverter or blower that can switch back and forth from one side of the brush to the other, to change the rotation of the brushes. The air diverter or blower switch would change based on the forwards or backwards motion of the machine.
    • 3. One brush or one brush array (grouping of brushes) that changes brush rotation direction based on the forwards or backwards movement of the machine. Simultaneously the entire brush or brush array rotates horizontally and changes rotation direction based on travel path of motion forwards or backwards of the machine. For example, when the machine is traveling forward, the brush or brush array is rotating horizontally to the right and when the machine is traveling backwards the brush or brush array starts rotating to the left. Alternatively, the entire brush or brush array can rotate only one direction while the brushes still change rotation direction based on machine direction of travel. Any combination of applications mentioned, of vertically or horizontally rotating brushes or apparatuses, combination of rotation changing brushes and single direction brushes and entire brush or apparatus rotation changing based on the direction of travel of the machine, will constitute the same concept of this invention. All mentioned application arrangements in no way are stating limitations to this design. Any parameter combination would still constitute the same design as the example embodiments disclosed herein.
    • 4. The direction changing brush, brushes or brush array, can move up or down in elevation, to change brush depth, if necessary.


In the case of improving a conventional circular dry foam shampooer, the improvement may require a bit more redesign to accommodate all new parts. The existing head can have a lower frame that extends to the rear. The back rail of the frame running parallel to the belt lifter can have attachment bars (See item 14, FIG. 6) or holes for the attachment hooks (See item 26, FIG. 12), on the rear of the brush array to which to connect. The brush array can be inserted from underneath and angled with the hooks elevated and the opposite side lower so once the attachment hooks are connected to the frame, the front swings up into the head with the connectors on the outer edge of the long brush fitting into their connection cups. Once inserted, the tension of the belt between the spindle gear off the idler arm and the output spindle of the transmission or motor, holds the brush array into the shampooer head. Around the brushes can be troughs (See item 20, FIG. 12) running the length of each side of each brush, the same as the existing blade on the front of the existing brush. These blades help remove sand, dirt and moisture from the brushes as the cleaning process takes place. They are needed on both sides of the brushes; because, the brushes change direction of rotation. The troughs will need to be sloped from side to side and from back to front, to make sure the water all drains to the empty tray properly.


The belt is attached by inserting the brush array, wrapping the belt around the idler arm spindle gear, and using the belt lifter (See item 12, FIG. 4) to pick up the belt. The transmission or motor shell is then slid into place, riding on preformed tracks in the center portion of the lower frame, until the front of the shell abuts the rear of the belt lifter housing, enabling insertion of the attachment dowels (See item 11, FIG. 3) at the outer edge of the shell, into their attachment holes on the back of the existing shampooer head. The removing and attaching of the transmission/motor shell can happen without having to remove the soap bottles. At the same time, the drive/output spindle from the transmission or motor, slides underneath the belt putting it into position for the belt lifter to lower the belt onto the drive/output spindle. The latches (not illustrated) on the back of the lower frame are activated to attach the rear of the transmission/motor shell to the base frame. Now, the machine is assembled and ready to go. The transmission/motor shell can have a handle (not illustrated) on the top for easy pickup, removal, and installation. The rear of the transmission/motor shell will retain the shape of the rear of the existing shampooer to attach to the power plant.


In an effort to simplify use of the shampooer, an example embodiment can be made into a one piece unit that connects to the power plant in one motion, instead of three separate pieces that have to be separately installed. To do this, the machine can still have only one tank, but to allow it to carry more soap, the machine can be upgraded to have two onboard soap tanks (See item 18, FIG. 11) that can have button quick release connections. This also gives the user the ability to only fill one tank if only a small area is being cleaned. The two tanks can sit in a frame saddle that is attached to the frame base, having a manifold (See item 16, FIG. 11) that attaches to the blower port and splits with a tube (See item 19, FIG. 11) going to each tank. The tanks would retain the existing on/off switch for easy use.


The soap tanks can also be connected with the illustrated option of a spring loaded push in lock in connection type, like a printer ink cartridge, which would remove the need for a saddle/frame to connect the soap tanks to the shampooer head. The soap bottles have two female receptacles or male spouts. One side is the air intake (See item 9, FIG. 2) and one side is the foam output port (See item 8, FIG. 2). This design may require some alignment dowels, or an alignment slot and protrusion on the tanks and the shampooer head (not illustrated), to support and protect the tanks and connectors from blows from the side. The tanks may also require a lock (not illustrated) that can be initiated once the tanks are push locked in, to prevent the tanks from accidentally being removed while in use. There may also be a need for a safety actuator that doesn't allow the power plant to turn on, if both tanks aren't installed, similar to the ones currently on the power plant.


When one tank is used up, the other tank can be turned on to continue shampooing. It can also be possible to have them both connected to a single on/off instead. The shampooer intake manifold connection, would need a lever (See item 17, FIG. 11), and clamp or automatic connection actuator, to connect to the power plant's blower port; because, the existing design has the soap tank being connected by twisting it onto the blower port.


With this new design, the shampooer head would essentially connect the same way by tilting the head, setting the attachment hooks onto the attachment bar, lean the head back and turn the attachment lever to lock the head on. Now, since the head and tanks are all one piece, after the user attaches the hooks on the bar and leans the head back, the intake manifold simultaneously lowers onto the blower port for connection in the same motion. This will greatly improve the ease of use of the shampooer head.


In some applications, a separate blower port, different than the existing one, may be required for connection. An air flow diverter may be required to change flow direction between ports, or an automatic opening and closing airlock, to introduce air flow once shampooer head is connected. This may be necessary in an application where the bag can stay connected to its own port, while the shampooer connects and disconnects to the secondary blower port.


The Cleaning Station


Currently, to clean the hair off of the brushes of the shampooer and clean above the brushes, the conventional shampooer has to be disassembled with the brush removed. In an effort to further simplify the shampooer cleaning process, we have designed a cleaning station (See item 27, FIG. 14) that eliminates the need to disassemble the shampooer. To use the cleaning station, the user would drive the shampooer over the edge of the cleaning station, with the shampooer in its highest height setting and lower the height setting down for the cleaning cycle once the shampooer is in position. Underneath each brush will be a cleaning brush with cutting implements to clean the hair off of the brushes.


In addition, the cleaning station hair removal apparatus below the brushes, can have a rotating hair grinding system (See item 28, FIG. 14) with fingers or protrusions that pull hair in, remove hair from the brush roll, grind up hair, and spit or release the ground-up hair into the water that will be sucked up by the sump (See item 29, FIG. 14). This way, the station is self-cleaning and won't require hair removal itself. In an example embodiment, the hair grinding system can be a rotating device that is combined or integrated into the hair grabbing bristles of the brush cleaning apparatus below the machine. The grinding device can also be the entire hair removing apparatus with no brush bristles (See item 28, FIG. 14). The hair grinder apparatus can also have scissor-like blades on the side of the wheels. The wheels can be offset and overlapping by halfway to create a scissor like motion as they rotate up against each other, which helps cut up the hair as it is pulled in (not illustrated). Additionally, the grinding apparatus can have a built-in beater bar (not illustrated) that agitates the brush roll to remove unwanted sand and grit.


At the same time that the brushes are having the hair removed, there can be an assortment of spray nozzles (not illustrated) spraying water and soap up inside the shampooer, to clean out any debris from the brush housings and the water troughs around the brushes. It should have a rinse cycle once soap has been sprayed. There can also be a sump to pump the waste water into a removable tank, into the front tray of the shampooer head, or plumbed into the house to drain directly into the sewer. This way, the cleaning station doesn't have to be awkwardly carried to be emptied for cleaning when it is full of water.


The wastewater empty tray/receptacle can drain directly into the cleaning station by manually opening a valve or an actuator operated valve to automatically drain during the cleaning cycle, so that the water is released and removed with the rest of the machine's cleaning wastewater. Also, the cleaning station can spray water into the wastewater tray/receptacle and around itself, to clean out dirt and grime during the cleaning cycle.


Also, the cleaning station can have a water fill level operated by a float or sensor, so that the station can fill up with enough water for the brushes to be partially submerged and be themselves cleaned, while spitting water into the channels above, onto the upper shields and even into the waste water tray, simultaneously cleaning all parts and avoiding most need of spray nozzles.


The Cleaning Cycle


Once the shampooer is parked in position in the cleaning station, a sensor or actuator activates a preprogrammed cleaning cycle. This starts water and/or soap sprayers, and/or a water fill level and a hair grinder/remover, if applicable. Completion is signaled by an indicator light and or a sound signal, when the cleaning cycle is complete. When the shampooer is parked in position in the cleaning station, the shampooer does not suction to the cleaning station for the cleaning process to happen. Instead, the shampooer is suspended above the base, de-hairing apparatus and spray nozzles for the cleaning process to take place. The shampooer can stay in the cleaning station, connected or disconnected from the power plant, when not in use, using the cleaning station as a drip pan. The cleaning station can also have a sensor that detects if all of the hair is removed from the brush roll. Using this sensor, it is possible to extend or reduce the length of the cleaning cycle, as needed. Once the cleaning cycle is complete, the cleaning station can signal the power plant to cause the cleaning station to shut down.


Alternatively, the cleaning station can be a wash basin area into which a user can submerge the lower brush portion of the shampooer, to clean and de-hair the brushes, once the attachment has been removed from the power plant. Once the attachment is installed into the basin, either a manually or automatically activated wash cycle can commence to clean the shampooer attachment, grind up hair, release the ground hair into the water, and sump out water into a removable waste water tank for dumping or emptying directly into the house's is sewer system. The basin can spray some water and self-clean once the shampooer head is removed. Then, once the cleaning cycle is complete, the shampooer is ready for storage.


Brush Roll Housing Cleaning Brush


Another example embodiment is provided herein to make the cleaning process of the shampooer and various other types of cleaning apparatuses possible. This example embodiment is the brush roll housing cleaning brush (See items 21 & 22, FIG. 12). The brush roll housing cleaning brush is a horseshoe or cavity-shaped brush that has upward facing bristles. The brush has an attachment and sliding implement on each side of the housing. This brush runs above the brush roll, by sliding back and forth from side to side, with its bristles brushing the cavity above the brush roll cleaning off the grime. The brush roll housing cleaning brush can function in various ways described as follows:

    • 1. Staying at the outside edge of the brush roll during shampooing and being swiped back and forth manually with a lever, while running some water into the housing, after shampooing is complete and head is removed, to clean dirt out. If the shampooer is a stand-alone unit, then it can just be flipped over to clean.
    • 2. The brush roll housing cleaning brush can have a mechanism on the cleaning station that connects to the housing brushes and swipes them back and forth while the cleaning cycle is running.
    • 3. The brush roll housing cleaning brush can be set up to automatically run constantly while the shampooer is running, constantly swiping the brush roll housing keeping it clean. This can be accomplished in multiple ways as described below:
      • a. A mechanical or electric piston can be provided that pushes and pulls each of the two brushes back and forth against the brush roll cavities continuously.
      • b. The brush roll housing cleaning brush can employ a mechanism similar to train propulsion having a gear running off our already spinning brush gears, with an arm connected to the brush and pivotally at one point on the gear pushing and pulling the brush back and forth as the gear spins. In this application, the long brush cavity may require two brushes, one on each side to reach all the way across. Both the long brush and short brush cavity brushes may require their own propulsion gearing since they move in opposing directions.
      • c. The brush roll housing cleaning brush can use a worm drive gear for each of the two brushes, running off the brush array gears or a motor, that would swipe the brush one way when the machine travels forward and when the brush roll and worm drive rotation changes as the machine starts to travel backwards, the brushes would swipe the other direction.
      • d. The shampooer can create suction through added ducts on each side of the two cavity brushes, with an actuator opening the suction port on the opposite side of the cavity as the brush putting suction into the slide track air ducts sucking the brush over. Then, the actuator would close this suction port and open the one on the other side, to suck the brush back to the other side. The suction port changing actuator can run off the same actuator that changes brush direction based on motion of the machine, or it can activate the suction port change every time the brushes reach one side or the other making a continuous cleaning motion.
      • e. Implementations “c” and “d” described above can be combined, as suction to propel worm drive gears with suction ports oriented to propel the worm drive gears both required directions, using actuators to change suction ports, gear direction of rotation and brush swipe direction.


This brush roll housing cleaning brush as described herein can be implemented in shampooers, vacuums, and various cleaning devices. It may also have applications other than cleaning devices.


SHAMPOOER ITEM REFERENCE LEGEND





    • Item 1—Spindle Gear

    • Item 2—Idler Arm

    • Item 3—Original Long Brush Roll and Set of New Short Brush Rolls.

    • Item 4—Bevel Gear and Drive Input Shaft

    • Item 5—Transmission

    • Item 6—Brush Array Frame Rail (Entire Brush Array Unit)

    • Item 7—Belt

    • Item 8—Foam Output Port from Soap Bottle

    • Item 9—Air Intake Port to Soap Bottle

    • Item 10—Transmission/Motor Shell

    • Item 11—Attachment Dowels

    • Item 12—Belt Lifter

    • Item 13—Gap Spanning Gear

    • Item 14—Attachment Bar

    • Item 15—Mechanical Actuation Arm

    • Item 16—Intake Manifold

    • Item 17—Intake Manifold Locking Hand Lever

    • Item 18—Soap Tanks

    • Item 19—Air intake Distribution Tubes

    • Item 20—Brush Cleaning Waste Water Troughs

    • Item 21—Brush Roll Housing Cleaning Brush (Long Brush)

    • Item 22—Brush Roll Housing Cleaning Brush (Short Brushes)

    • Item 23—Drive Spindle

    • Item 24—Upright View Steam Cleaner

    • Item 25—Bottom Brush Array View

    • Item 26—Attachment Hooks

    • Item 27—Cleaning Station

    • Item 28—Hair Grabber Grinder System

    • Item 29—Sump Tube





The illustrations of embodiments described herein are intended to provide a general understanding of the structure of various embodiments, and they are not intended to serve as a complete description of all the elements and features of components and systems that might make use of the structures described herein. Many other embodiments will be apparent to those of ordinary skill in the art upon reviewing the description provided herein. Other embodiments may be utilized and derived, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. The figures herein are merely representational and may not be drawn to scale. Certain proportions thereof may be exaggerated, while others may be minimized. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.


The description herein may include terms, such as “up”, “down”, “upper”, “lower”, “first”, “second”, etc. that are used only for descriptive purposes and not to be construed as limiting. The elements, materials, geometries, dimensions, and sequence of operations may all be varied for particular applications. Parts of some embodiments may be included in, or substituted for, those of other embodiments. While the foregoing examples of dimensions and ranges are considered typical, the various embodiments are not limited to such dimensions or ranges.


The Abstract is provided to allow the reader to quickly ascertain the nature and gist of the technical disclosure. The Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In the foregoing Detailed Description, various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments have more features than are expressly recited in each claim. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.


Although the disclosed subject matter has been described with reference to several example embodiments, it may be understood that the words that have been used are words of description and illustration, rather than words of limitation. Changes may be made within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the disclosed subject matter in all its aspects. Although the disclosed subject matter has been described with reference to particular means, materials, and embodiments, the disclosed subject matter is not intended to be limited to the particulars disclosed; rather, the subject matter extends to all functionally equivalent structures, methods, and uses such as are within the scope of the appended claims.

Claims
  • 1. A four-direction carpet shampooer comprising: a single first brush roll configured to rotate on a first axis, the first brush roll being parallel with a front edge of a shampooer head and perpendicular to a forward and backward direction of travel of the shampooer, the first brush roll extending a substantial length across the shampooer head;a plurality of second brush rolls configured to rotate on parallel second axes, the plurality of second brush rolls including three or more brush rolls, the parallel second axes being transverse to the first axis and parallel with the forward and backward direction of travel of the shampooer, the plurality of second brush rolls extending the substantial length across the shampooer head, each of the plurality of second brush rolls having bristles attached directly thereto around an entire circumference of each brush roll, wherein two adjacent sides of carpet fibers being in contact with the single first brush roll and the plurality of second brush rolls across the substantial length of the shampooer head during a single pass of the shampooer in the forward direction of travel, wherein two opposite adjacent sides of the carpet fibers being in contact with the single first brush roll and the plurality of second brush rolls across the substantial length of the shampooer head during a single pass of the shampooer in the backward direction of travel;a direction of travel sensor to detect the shampooer direction of travel; anda rotation changing actuator configured to reverse the rotation of the first brush roll on the first axis and to reverse the rotation of the plurality of second brush rolls on the parallel second axes when the direction of travel sensor indicates the forward or backward direction of travel of the shampooer has changed, the four-direction carpet shampooer thereby configured to clean two adjacent sides of carpet fibers when traveling forward and to clean the remaining two opposite sides of the carpet fibers when traveling backwards, thereby cleaning all four sides of the carpet fibers with one forward and one backward pass over the carpet fibers.
  • 2. The four-direction carpet shampooer of claim 1 wherein the first roll and the plurality of second brush rolls are brush arrays.
  • 3. The four-direction carpet shampooer of claim 1 wherein the first roll and the plurality of second brush rolls are propelled by one idler arm from one belt.
  • 4. The four-direction carpet shampooer of claim 1 wherein the first roll and the plurality of second brush rolls are propelled using a device from the group consisting of: a transmission, a motor, an air diverter for suction, and an air blower.
  • 5. The four-direction carpet shampooer of claim 1 being further configured with an idler arm and gear damper to protect gears and reduce gear noise.
  • 6. The four-direction carpet shampooer of claim 5 being further configured with an extra spindle gear above the idler arm to facilitate belt installation without brush disassembly.
  • 7. The four-direction carpet shampooer of claim 1 wherein the direction of travel sensor is a device of a type from the group consisting of: a mechanical device, an electrical device, a computerized device, and a motion sensor.
  • 8. The four-direction carpet shampooer of claim 1 being further configured with a brush roll housing cleaning brush.
  • 9. The four-direction carpet shampooer of claim 8 wherein the brush roll housing cleaning brush is a horseshoe or cavity-shaped brush having upward facing bristles.
  • 10. The four-direction carpet shampooer of claim 8 wherein the brush roll housing cleaning brush is configured to automatically run while the shampooer is running.
  • 11. The four-direction carpet shampooer of claim 8 wherein the brush roll housing cleaning brush is propelled by a worm drive gear or a suction port.
  • 12. The four-direction carpet shampooer of claim 1 being further configured with the shampooer head and a soap bottle integrated in one component.
  • 13. The four-direction carpet shampooer of claim 1 being further configured with dual soap tanks.
  • 14. The four-direction carpet shampooer of claim 1 being further configured with a manifold attached to the shampooer head allowing installation of the shampooer head to be performed in one motion.
  • 15. The four-direction carpet shampooer of claim 1 being further configured with a transmission/motor shell, wherein the transmission/motor shell is configured as a separate removable component from the shampooer head.
PRIORITY PATENT APPLICATION

This non-provisional patent application draws priority from U.S. provisional patent application Ser. No. 62/869,602; filed Jul. 2, 2019. The entire disclosure of the referenced patent application is considered part of the disclosure of the present application and is hereby incorporated by reference herein in its entirety.

US Referenced Citations (405)
Number Name Date Kind
573922 Ridge Dec 1896 A
594395 Graetz Nov 1897 A
720791 Draver Feb 1903 A
907014 Dunn Dec 1908 A
1161700 Lazar Nov 1915 A
1200995 Smarlin Oct 1916 A
1222436 Mason Apr 1917 A
1240799 Gray Sep 1917 A
1268963 Gray Jun 1918 A
1720165 Nathan Jul 1929 A
1736446 Keefer Nov 1929 A
1752882 Boutwell Apr 1930 A
1813325 Smith Jul 1931 A
1820350 Dance Aug 1931 A
1872602 Olsen Aug 1932 A
1907692 White May 1933 A
1965614 Sellers Jul 1934 A
1999696 Kitto Apr 1935 A
2008376 White Jul 1935 A
2032345 Cranon Mar 1936 A
2049603 Dietenberger Aug 1936 A
2064587 Fredrik Dec 1936 A
2138239 Irgens Nov 1938 A
2200026 Juelson May 1940 A
2217617 Conway Oct 1940 A
2542634 Davis Feb 1951 A
2625698 Kadt Jan 1953 A
2642601 Saffioti Jun 1953 A
2642617 Lilly Jun 1953 A
2660457 Mallon Nov 1953 A
2663045 Conway Dec 1953 A
2698672 Burnside Jan 1955 A
2703903 Johan Mar 1955 A
2731659 George Jan 1956 A
2733000 Sparklin Jan 1956 A
2741785 Siebert Apr 1956 A
2789306 Kath Apr 1957 A
2904818 Sheahan Sep 1959 A
2960714 Senne Nov 1960 A
2975450 Edgar Mar 1961 A
2980392 Greenwood Apr 1961 A
2999258 Edward Sep 1961 A
3011206 Karl Dec 1961 A
3268936 Hiroshi Aug 1966 A
3331090 Reiber Jul 1967 A
3425192 Davis Feb 1969 A
3444577 Koland May 1969 A
3469470 Gaudry Sep 1969 A
3470575 Larson Oct 1969 A
3605786 Machin Sep 1971 A
3631558 Kovacevic Jan 1972 A
3644960 Danzig Feb 1972 A
3655328 Sando Apr 1972 A
3671996 Gaudry Jun 1972 A
3683444 Schaefer Aug 1972 A
3688339 Conway Sep 1972 A
3722018 Fisher Mar 1973 A
3792707 Tupper Feb 1974 A
3851349 Lowder Dec 1974 A
3862467 Krickovic Jan 1975 A
3863285 Hukuba Feb 1975 A
3924285 Hukuba Dec 1975 A
3928884 Sutter Dec 1975 A
3947911 Meyerhoefer Apr 1976 A
3996640 Blue Dec 1976 A
4000538 Tissier Jan 1977 A
4014067 Bates Mar 1977 A
4020526 Johansson May 1977 A
4025984 Hoener, Jr. May 1977 A
4084283 Rosendall Apr 1978 A
4153968 Perkins May 1979 A
4158248 Palmer Jun 1979 A
4171208 Lowder Oct 1979 A
4171554 Tschudy Oct 1979 A
4173054 Ando Nov 1979 A
4179768 Sawyer Dec 1979 A
4193710 Pietrowski Mar 1980 A
4209872 Maier Jul 1980 A
4242396 Wilson Dec 1980 A
4295243 King Oct 1981 A
4317253 Gut Mar 1982 A
4329756 Chicoine May 1982 A
4348783 Swanson Sep 1982 A
4352221 Revells Oct 1982 A
4353145 Woodford Oct 1982 A
4370690 Baker Jan 1983 A
4370777 Woerwag Feb 1983 A
4372004 Vermillion Feb 1983 A
4373228 Dyson Feb 1983 A
4377017 Herpers Mar 1983 A
4398231 Currence Aug 1983 A
4426751 Nordeen Jan 1984 A
4429432 Copeland Feb 1984 A
4464810 Karpanty Aug 1984 A
4490873 Stratton Jan 1985 A
4554700 Lyman Nov 1985 A
4558484 Groth Dec 1985 A
4558823 Groth Dec 1985 A
4564972 Varin Jan 1986 A
4570856 Groth Feb 1986 A
4573235 Baird, Sr. Mar 1986 A
4654924 Getz Apr 1987 A
4679152 Perdue Jul 1987 A
4702122 Richard Oct 1987 A
4741069 Helm May 1988 A
4763293 Takei Aug 1988 A
4776060 Chang Oct 1988 A
4797969 Caduff Jan 1989 A
4802254 Lahndorff Feb 1989 A
4805258 Sitarski Feb 1989 A
4809397 Jacobs Mar 1989 A
4817233 Waldhauser Apr 1989 A
4841595 Wiese Jun 1989 A
4847944 Lackner Jul 1989 A
4875246 Macgregor Oct 1989 A
4881288 May Nov 1989 A
4893375 Girman Jan 1990 A
4920605 Takashima May 1990 A
4940082 Roden Jul 1990 A
4953253 Fukuda Sep 1990 A
4956891 Wulff Sep 1990 A
4989293 Bashyam Feb 1991 A
4991730 Pehr Feb 1991 A
5018240 Holman May 1991 A
5048141 Huppi Sep 1991 A
5067861 Danielsen Nov 1991 A
5075922 Tsuchida Dec 1991 A
5088149 Berg Feb 1992 A
5115538 Cochran May 1992 A
5121592 Jertson Jun 1992 A
5129125 Gamou Jul 1992 A
5180439 Allison Jan 1993 A
5182834 Wright Feb 1993 A
5203047 Lynn Apr 1993 A
5243732 Koharagi Sep 1993 A
5287581 Lo Feb 1994 A
5299608 Bosyj Apr 1994 A
5394588 Kweon Mar 1995 A
5406673 Bradd Apr 1995 A
5452490 Brundula Sep 1995 A
5482562 Abernathy Jan 1996 A
5483726 Blase Jan 1996 A
5500977 Mcallise Mar 1996 A
5566422 Geyer Oct 1996 A
5608945 Crouser Mar 1997 A
5630246 Knowlton May 1997 A
5634693 Heuvelman Jun 1997 A
D381477 Ingram Jul 1997 S
5657503 Caruso Aug 1997 A
5657504 Khoury Aug 1997 A
5692808 Heuvelman Dec 1997 A
5697509 Hayes Dec 1997 A
5698957 Sowada Dec 1997 A
5867857 Crouser Feb 1999 A
5871152 Saney Feb 1999 A
5937475 Kasen Aug 1999 A
5974622 Louis Nov 1999 A
5974975 Seefried Nov 1999 A
5991972 Krebs Nov 1999 A
6030465 Marcussen Feb 2000 A
6042656 Knutson Mar 2000 A
6090221 Gan Jul 2000 A
6105203 Hueppi Aug 2000 A
6108862 Frederick Aug 2000 A
6123779 Conrad Sep 2000 A
6131237 Kasper Oct 2000 A
6131238 Weber Oct 2000 A
6134744 Kasen Oct 2000 A
6145159 Zahuranec Nov 2000 A
6158081 Kasen Dec 2000 A
6167586 Reed, Jr. Jan 2001 B1
6170119 Conrad Jan 2001 B1
6247202 Lesco Jun 2001 B1
6253414 Bradd Jul 2001 B1
6266838 Caruso Jul 2001 B1
6279196 Kasen Aug 2001 B2
6282749 Tajima Sep 2001 B1
6286180 Kasper Sep 2001 B1
6289552 Mccormick Sep 2001 B1
6289553 Dyson Sep 2001 B1
6300306 Firkins Oct 2001 B1
6351872 Mccormick Mar 2002 B1
6367120 Beauchamp Apr 2002 B2
6389329 Colens May 2002 B1
6446302 Kasper Sep 2002 B1
6453507 Gilbert Sep 2002 B1
6481048 Hauff Nov 2002 B1
6502277 Petersson Jan 2003 B1
6533871 Zahuranec Mar 2003 B2
6539575 Cohen Apr 2003 B1
6539577 Okuda Apr 2003 B1
6605156 Clark Aug 2003 B1
6658692 Lenkiewicz Dec 2003 B2
6671925 Field Jan 2004 B2
6681442 Coates Jan 2004 B2
6684452 Lehman Feb 2004 B2
6721990 Zahuranec Apr 2004 B2
6807707 Park Oct 2004 B2
6810559 Mertes Nov 2004 B2
6842942 Morgan Jan 2005 B2
6866603 Ackerman Mar 2005 B2
6883201 Jones Apr 2005 B2
6892420 Haan May 2005 B1
7039985 Hisrich May 2006 B2
7069620 Bagwell Jul 2006 B2
7100234 Weber Sep 2006 B2
7143461 Spooner Dec 2006 B2
7159276 Omoto Jan 2007 B2
7163568 Sepke Jan 2007 B2
7171723 Kobayashi Feb 2007 B2
7228593 Conrad Jun 2007 B2
7237298 Reindle Jul 2007 B2
7243393 Matusz Jul 2007 B2
7251858 Hitzelberger Aug 2007 B2
7281297 Peacock Oct 2007 B2
7290308 Downey Nov 2007 B2
7293326 Hawkins Nov 2007 B2
7299521 Theiss, Jr. Nov 2007 B2
7367083 Barker May 2008 B2
7475450 Ragner Jan 2009 B1
7533442 Morgan May 2009 B2
7600521 Woo Oct 2009 B2
7617563 Hertrick Nov 2009 B2
7627927 Blocker Dec 2009 B2
7628831 Gomiciaga-pereda Dec 2009 B2
7631392 Meitz Dec 2009 B1
7718593 Micciche May 2010 B2
7722709 Conrad May 2010 B2
7731618 Burlington Jun 2010 B2
7757340 Sawalski Jul 2010 B2
7770255 Zahuranec Aug 2010 B2
7784148 Lenkiwicz Aug 2010 B2
7895706 Mitchell Mar 2011 B2
7930799 Sutton Apr 2011 B2
7931716 Oakham Apr 2011 B2
7931717 Conrad Apr 2011 B2
7996956 Wood Aug 2011 B2
8042224 White Oct 2011 B2
8048183 Conrad Nov 2011 B2
8051531 Brough Nov 2011 B2
8087117 Kapoor Jan 2012 B2
8100999 Ashbee Jan 2012 B2
8132288 Dawson Mar 2012 B2
8292979 Conrad Oct 2012 B2
8351736 Demandolx Jan 2013 B2
8387206 Arthey Mar 2013 B2
8387207 Dimbylow Mar 2013 B2
8418303 Kapoor Apr 2013 B2
8468647 Lambourn Jun 2013 B2
8510908 Maguire Aug 2013 B2
8544145 Arthey Oct 2013 B2
8567009 Krebs Oct 2013 B2
8601643 Eriksson Dec 2013 B2
8671515 Eriksson Mar 2014 B2
8800106 Bilek Aug 2014 B2
8819892 Mangum Sep 2014 B1
8826680 Crane Sep 2014 B2
9072416 Kowalski Jul 2015 B2
9186030 Jung Nov 2015 B2
9226941 Cooksey Jan 2016 B2
9314140 Eriksson Apr 2016 B2
9427128 Dejonge Aug 2016 B2
9549648 Lenkiewicz, Jr. Jan 2017 B2
9615708 Kowalski Apr 2017 B2
9693663 Kasper Jul 2017 B2
9717389 Johnson Aug 2017 B2
9820624 Eriksson Nov 2017 B2
9820626 Eriksson Nov 2017 B2
10059118 Sato Aug 2018 B2
10105024 Kasper Oct 2018 B2
10130235 Caro, Jr. Nov 2018 B2
10165916 Morphey Jan 2019 B2
10165917 Miller Jan 2019 B2
10168709 Kleiner Jan 2019 B2
10182696 Dehn Jan 2019 B2
10188252 Nguyen Jan 2019 B2
20010002500 Kasen Jun 2001 A1
20010054213 Oh Dec 2001 A1
20020007528 Beauchamp Jan 2002 A1
20020092115 Zahuranec Jul 2002 A1
20020092116 Zahuranec Jul 2002 A1
20020092122 Zahuranec Jul 2002 A1
20020170137 Coates Nov 2002 A1
20030037409 Lee Feb 2003 A1
20030051309 Morgan Mar 2003 A1
20030110588 Zahuranec Jun 2003 A1
20030135952 Coates Jul 2003 A1
20030188396 Hitzelberger Oct 2003 A1
20030196294 Conrad Oct 2003 A1
20040000023 Hitzelberger Jan 2004 A1
20040010884 Hitzelberger Jan 2004 A1
20040025270 Mitchell Feb 2004 A1
20040134024 Allen Jul 2004 A1
20040172769 Giddings Sep 2004 A1
20040172784 Downey Sep 2004 A1
20040181888 Tawara Sep 2004 A1
20040216265 Peacock Nov 2004 A1
20040244140 Joo Dec 2004 A1
20050015916 Orubor Jan 2005 A1
20050015922 Lim Jan 2005 A1
20050034266 Morgan Feb 2005 A1
20050044657 Shanor Mar 2005 A1
20050091788 Forsberg May 2005 A1
20050155169 Cheah Jul 2005 A1
20050160555 Mayes Jul 2005 A1
20050160556 Hitzelberger Jul 2005 A1
20050172447 Roney Aug 2005 A1
20060000053 Lim Jan 2006 A1
20060060216 Woo Mar 2006 A1
20060070206 Fischer Apr 2006 A1
20060076035 Mcgee Apr 2006 A1
20060101604 Frederick May 2006 A1
20060101612 Gordon May 2006 A1
20060156498 Venard Jul 2006 A1
20060213025 Sawalski Sep 2006 A1
20060236492 Sudo Oct 2006 A1
20060288516 Sawalski Dec 2006 A1
20070017062 Overvaag Jan 2007 A1
20070144193 Crane Jun 2007 A1
20070234492 Svendsen Oct 2007 A1
20070261193 Gordon Nov 2007 A1
20080196193 Huffman Aug 2008 A1
20080230083 Williams Sep 2008 A1
20090095699 Milante Apr 2009 A1
20090165822 Kintz Jul 2009 A1
20090265878 Bilek Oct 2009 A1
20120047677 Paliobeis Mar 2012 A1
20130139349 Iles Jun 2013 A1
20140245560 Huang Sep 2014 A1
20140289983 Gilbert, Jr. Oct 2014 A1
20150000705 Dehn Jan 2015 A1
20150375272 Dehn Dec 2015 A1
20160324385 Lenkiewicz Nov 2016 A1
20160353957 Dejonge Dec 2016 A1
20160367096 Kasper Dec 2016 A1
20160367097 Moyher, Jr. Dec 2016 A1
20160367101 Haley Dec 2016 A1
20170000305 Gordon Jan 2017 A1
20170071434 Nguyen Mar 2017 A1
20170100006 Lenkiewicz Apr 2017 A1
20170113234 Endo Apr 2017 A1
20170119223 Staf May 2017 A1
20170119225 Xia May 2017 A1
20170127901 Huang May 2017 A1
20170141040 Yu May 2017 A1
20170172363 Eriksson Jun 2017 A1
20170188768 Song Jul 2017 A1
20170215665 Vantongeren Aug 2017 A1
20170217176 Sato Aug 2017 A1
20170231445 Kasper Aug 2017 A1
20170296021 Li Oct 2017 A1
20170296023 Qiao Oct 2017 A1
20170297455 Romanov Oct 2017 A1
20170360267 Jenson Dec 2017 A1
20170371341 Leinhos Dec 2017 A1
20180008114 Caro, Jr. Jan 2018 A1
20180035606 Burdoucci Feb 2018 A1
20180074508 Kleiner Mar 2018 A1
20180078103 Vantongeren Mar 2018 A1
20180078107 Gagnon Mar 2018 A1
20180092499 Strazisar Apr 2018 A1
20180098675 Sauer Apr 2018 A1
20180110388 Xia Apr 2018 A1
20180125315 Kasper, Jr. May 2018 A1
20180168419 Johnson Jun 2018 A1
20180177374 Nguyen Jun 2018 A1
20180184863 Kasper Jul 2018 A1
20180185530 Ronda Jul 2018 A1
20180199780 Landry Jul 2018 A1
20180213987 Hong Aug 2018 A1
20180221920 Piwonka-corle Aug 2018 A1
20180229255 Pruiett Aug 2018 A1
20180236663 Cohen Aug 2018 A1
20180249875 Hooley Sep 2018 A1
20180255991 Der Marderosian Sep 2018 A1
20180263454 Landry Sep 2018 A1
20180281191 Sinyavskiy Oct 2018 A1
20180284792 Kleiner Oct 2018 A1
20180289231 Santini Oct 2018 A1
20180292828 Jones Oct 2018 A1
20180296046 Thorne Oct 2018 A1
20180297208 Goel Oct 2018 A1
20180303300 Kasper Oct 2018 A1
20180317728 Tomlinson Nov 2018 A1
20180325341 Xia Nov 2018 A1
20180333845 Williams Nov 2018 A1
20180338654 Kelsey Nov 2018 A1
20180338656 Carter Nov 2018 A1
20180339409 Williams Nov 2018 A1
20180339410 Williams Nov 2018 A1
20180344112 Krebs Dec 2018 A1
20180344114 Scholten Dec 2018 A1
20180368646 Buehler Dec 2018 A1
20190000286 Kasper Jan 2019 A1
20190008348 Conrad Jan 2019 A1
20190021565 Fester Jan 2019 A1
20190045996 Caro, Jr. Feb 2019 A1
20190053680 Schultheis Feb 2019 A1
20190059665 Krebs Feb 2019 A1
20190059671 Conrad Feb 2019 A1
20190059679 Huffman Feb 2019 A1
20190061160 Fisher Feb 2019 A1
20190069739 Miller Mar 2019 A1
20190069743 Spencer Mar 2019 A1
20190223678 Park Jul 2019 A1
Foreign Referenced Citations (3)
Number Date Country
102017106419 Sep 2018 DE
H03202032 Dec 1989 JP
101514201 Nov 2013 KR
Non-Patent Literature Citations (4)
Entry
Translation of KR101514201B1 (Year: 2022).
Translation of DE-102017106419-A1 (Year: 2022).
PCT International Search Report and Written Opinion, PCT International Appl. No. PCT/US2020/40435, International Filing Date: Jul. 1, 2020, Applicant: Mark Jeffery Giarritta, mailed Nov. 9, 2020.
PCT International Preliminary Report on Patentability, PCT International Appl. No. PCT/US2020/040435, International Filing Date: Jul. 1, 2020, Applicant: Mark Jeffery Giarritta, mailed Dec. 28, 2021.
Related Publications (1)
Number Date Country
20210000317 A1 Jan 2021 US
Provisional Applications (1)
Number Date Country
62869602 Jul 2019 US