The invention relates to metal forming and more particularly to four-hammer forging devices and may be used for forging ingots and blanks on hydraulic forging presses.
It may be used in mechanical engineering and the metallurgy industry for producing forgings and elongated-axis products of circular, round and rectangular cross-sections from structural, tooling, stainless, heat-resistant and other hardly-deformed steels and alloys.
A tooling for radial forging of bar blanks is known, which comprises four hammers, wherein two of them have two working sections each, which are separated by a notch, and the other two have one working section each, which enters the notches on the first pair of the hammers. (see, Forging on Radial Squeezing Machines. V. A. Tyurin, V. A. Lazorkin, I. A. Pospelov et al., Ed. by V. A. Tyurin. Moscow, Mashinostroyenie Publishers, 1990, p. 13-16).
The said tooling enables to produce high quality forgings of rectangular cross-section in a wide range of dimensions on radial forging machines which provide for adjustment of the hammer closed height.
It is thought that a disadvantage of the said tooling is the impossibility of using it in known four-hammer forging devices on hydraulic forging presses with the effect similar to that achieved on radial forging machines. It is due to the fact that four-hammer forging devices used on hydraulic forging presses lack separate adjustment of the hammer closed height for every pair of hammers. Therefore, by using the said tooling in such a four-hammer forging device it is possible to produce forgings of rectangular cross-section only in a narrow range of dimensions.
A four-hammer forging device is also known in the art, which comprises two holders of the upper and the lower hammers with inclined surfaces; two holders of the side hammers, wherein the holders have kinematical connection with the first two holders and the side hammers have inclined surfaces corresponding to the inclined surfaces of the said holders of the upper and the lower hammers; and four hammers fastened to the hammer holders with clamps and tightening studs. (See Ukraine Patent # 34978 A, B2 J 1/04, B2 J 13/02. Published in the Invention Gazette # 2/2001.)
A disadvantage of the said device is that it does not provide for adjusting the hammer closed height, and, consequently, it may not be used for producing forgings of rectangular cross-section in a wide range of dimensions with one set of hammers.
The present invention solves the task of ensuring the possibility for producing forgings in a wide range of dimensions by using only one set of hammers, which, in its turn, will result in lowering costs for making the necessary tooling and shortening the time required for its readjustment.
The stated task can be solved by that a four-hammer forging device, which comprises two holders of the upper and the lower hammers with inclined surfaces; two holders of the side hammers, wherein the holders have kinematical connection with the first two holders and the side hammers have inclined surfaces corresponding to the inclined surfaces of the said holders of the upper and the lower hammers; and four hammers fastened to the hammer holders with clamps and tightening studs, wherein the first two of them, namely the upper hammer and the lower hammer, have two working sections each, which are separated by a notch, and the other two, namely the side hammers, have one working section each, which enters the notches on the upper hammer and the lower hammer; in order to expand the range of blank cross-sections, according to the claimed invention, one or more adjusting plates are installed between the lower hammer holder and the lower hammer itself, the lower hammer is fastened to the lower hammer holder with two L-shaped clamps which on one side are pressed by their inclined surfaces against the inclined surfaces of the lower hammer holder and on the other side against two friction plates fastened to the side surfaces of the lower hammer. Pins, which are fastened in the lower hammer, pass through holes in the adjusting plates, enter holes in the lower hammer holder and are intended for centering the adjusting plates.
Making the friction plates of copper contributes to the fulfillment of the stated task.
The four-hammer forging device comprises the upper hammer holder 1, the lower hammer holder 2, the side hammer holders 3 and 4, the upper hammer 5, the lower hammer 6, the side hammers 7 and 8, the guides 9 through 12 (
The four-hammer forging device operates as follows.
The four-hammer forging device, as assembled for producing forgings of a definite size and rectangular cross-section, is installed into the working area of a press, and the press is switched on. When the movable cross bar together with the upper plate goes up, the upper hammer holder 1, which is fastened to the upper plate of the press, also moves up together with the upper hammer 5. At the same time, with the use of the guides 9 through 12, the upper hammer holder 1 moves apart the side hammer holders 3 and 4 together with the side hammers 7 and 8, thus opening the working area of the device (
If it is necessary to produce rectangular forgings of other dimensions, the device can be disconnected from the upper cross bar of the press by issuing the respective command from the control panel. The forging device is moved out of the press working area with the use of the tool table. Then, after removing the tightening studs 14, the L-shaped clamps which hold the lower hammer 6 are removed, the lower hammer is lifted, and the adjusting plate 15 is changed (
After that the hammer 6 is lowered onto the adjusting plate 15, the L-shaped clamps 13 are installed, using the tightening studs 14, ensuring that the inclined surfaces of the clamps 13 are pressed against the inclined surfaces of the lower hammer holder 2 and on the other side their corrugated surfaces are pressed against the friction plates 16 (
After installing the required adjusting plates 15, the hammer 6 is lowered until its contacting the adjusting plates. At that the guiding pins 17 enter the respective holes in the adjusting plates 15, thus centering them, and then into the respective holes in the lower hammer holder 2. The pins 17 are also used for preventing the lower hammer 6 from moving relative to the lower hammer holder 2 at high axial loads (
By using one set of hammers, without adjusting the raising height of the lower hammer, it is possible to produce forgings which cross-section dimensions are on the plot of the A=ƒ(B) function, as shown in
Bu using the claimed forging device with the raising height of the lower hammer regulated with the use of adjusting plates it is possible to produce forgings which cross-section dimensions are between the plots of the A=ƒ(B) and A=ƒ′(B) functions in the cross-hatched area (
Thus, the claimed invention, due to changing the closed height of the hammers, ensures the possibility of producing forgings of rectangular cross-section in a wider range of sizes by using one set of hammers, as compared to the four-hammer forging device taken as the prototype. This enables to lower the costs of making the tooling as well as shorten the time required for its readjustment when switching from bars of one size to another by 30-40 per cent.
The present invention may be best utilized for producing forgings of rectangular cross-section.
Number | Date | Country | Kind |
---|---|---|---|
2003131236 | Oct 2003 | RU | national |