Four level magnon laser at room temperatures

Information

  • Patent Grant
  • 8593724
  • Patent Number
    8,593,724
  • Date Filed
    Wednesday, March 9, 2011
    13 years ago
  • Date Issued
    Tuesday, November 26, 2013
    11 years ago
Abstract
A four level magnon laser comprising: a Magnon Gain Medium, wherein the Magnon Gain Medium supports generation of nonequilibrium magnons, and a means for pumping nonequilibrium electrons into Magnon Gain Medium. Propagation of nonequilibrium electrons in Magnon Gain Medium causes generation of nonequilibrium magnons. Magnon Gain Medium comprises ferromagnetic materials at room temperatures including the half-metallic ferromagnets.
Description
TECHNICAL FIELD

The technology relates to magnon laser effect.


BACKGROUND

In the parent U.S. Pat. No. 7,430,074 “GENERATION OF TERAHERTZ WAVES” the generation of nonequilibrium magnons was disclosed. In the U.S. patent application Ser. No. 11/701,284, filed on Jan. 31, 2007 and entitled “MAGNON LASER”, the generation of nonequilibrium magnons was described by using a general laser analogy.


In the present patent application a magnon laser that utilizes a magnon gain medium (MGM) at room temperatures is disclosed.


SUMMARY

This Summary is provided to introduce a selection of concepts that are further described below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.


A method of generation of nonequilibrium magnons by using a four level magnon laser is provided. The magnon laser utilizes a magnon gain medium (MGM) selected from the group consisting of: {a ferromagnetic semiconductor; a dilute magnetic semiconductor (DMS); a half-metallic ferromagnet(HMF); and a ferromagnetic conductor, with a gap in the density of states of the minority electrons around the Fermi energy}. The half-metallic ferromagnet (HMF) is selected from the group consisting of: {a spin-polarized Heusler alloy; a spin-polarized Colossal magnetoresistance material; CrO2; Sr2FeMoO6; and Fe3O4}.





DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the technology and, together with the description, serve to explain the principles below:



FIG. 1 illustrates process of strong electron-magnon interaction (comparatively with electron-electron or with electron-phonon interaction) wherein a nonequilibrium electron put in the upper subband with spin down rapidly emits a magnon with a large wave vector in accordance with an embodiment of the present technology.



FIG. 2 shows the energy level structure of a four-level magnon laser operating at room temperatures in accordance with an embodiment of the present technology.





DETAILED DESCRIPTION

Reference now be made in detail to the embodiments of the technology, examples of which are illustrated in the accompanying drawings. While the present technology will be described in conjunction with the various embodiments, it will be understood that they are not intended to limit the present technology to these embodiments. On the contrary, the present technology is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the various embodiments as defined by the appended claims.


Furthermore, in the following detailed description, numerous specific-details are set forth in order to provide a thorough understanding of the presented embodiments. However, it will be obvious to one of ordinary skill in the art that the presented embodiments may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the presented embodiments.


Recently some dilute magnetic semiconductors (DMS), with Tc above room temperature, have been studied intensively. These are oxides doped with magnetic cations. The examples are: GaN, doping Mn—9%, Tc=940 K; AlN, doping Cr—7%, Tc>600 K; TiO2 (anatase), doping Co—7%, Tc=650 K; SnO2, doping Co—5%, Tc=650 K. These magnets can be used as a magnon gain medium (MGM) to generate nonequilibrium magnons and photons at room temperatures.


Another system that can be used as a magnon gain medium (MGM) is a system comprising a half-metallic ferromagnet (HMF). Half-metallic ferromagnets (HMF) are ferromagnetic conductors, with a gap in the density of states of the minority electrons around the Fermi energy, Ef. Thus, the electrons in these materials are supposed to be 100% spin polarized at Ef. Thermal effects and spin-orbital interactions reduce the electron polarization. However, the electron polarization is close to 100% in half-metallic ferromagnets with spin-orbital interaction smaller than the minority electron gap, and at temperatures much lower than the Curie temperature Tc.


Half-metallic ferromagnets (HMF) form a quite diverse collection of materials with very different chemical and physical properties.


Chromium dioxide, CrO2. Tc=390 K. Magnetic moment per Cr=2μB. The polarization measured at low temperatures is close to 100%. There are some other known half-metallic ferromagnetic oxides, e.g. Sr2FeMoO6.


Heusler alloys. Most of the predicted HMF are Heusler alloys. In general, these are ternary X2YZ-compounds, X and Y are usually transition metals and Z is a main group element. The most studied of them is NiMnSb: Tc=728K, magnetic moment close to 4μB. Experiments show that NiMnSb is a half-metallic ferromagnet at low temperatures. But there is evidence that at T≈90K a phase transition into a usual ferromagnetic state takes place, and it seems unlikely that NiMnSb is a half-metallic ferromagnet near room temperature.


There are many other Heusler alloys with half-metallic ferromagnet properties, like: (1) Co2MnSi having Tc of 1034K and magnetic moment of 5μB; (2) Co2MnGe having Tc of 905K and magnetic moment close to 5μB; and (3) Co2MnSn having Tc of 826K and magnetic moment of 5.4μB; etc.


It has been shown recently (S. Wurmehl et al., PRB 72, 184434 (2005)), that the alloy with the highest magnetic moment and Tc is Co2FeSi having Tc of 1100 K (higher than for Fe), and having magnetic moment per unit cell of 6μB. The orbital contribution to the moments is small, while the exchange gap is large, of order 2 eV. Therefore, the effect of thermal fluctuations and spin-orbit interaction on the electron polarization is negligible. One should expect, therefore, that the electrons in Co2FeSi are polarized at high temperatures, sufficiently close to Tc. Indeed, according to the experiment the magnetic moment at 300 K is the same as at 5K.


Colossal magnetoresistance materials: La1−xSrxMnO3 (for intermediate values of x) is presumably a half-metallic ferromagnet having Tc close to room temperature. Photoelectron emission experiments confirm the half-metallicity of La0.7Sr0.3MnO3, with Tc=350 K. The polarization degree at T=40K is 100±5%, the gap for the minority spins is 1.2 eV.


Note that HMF, as well as ferromagnetic semiconductors, differ from “normal” metallic ferromagnets by the absence of one-magnon scattering processes. Therefore, spin waves in HMF, as well as in magnetic insulators, are well defined in the entire Brillouin zone. This was confirmed by neutron scattering experiments performed on some Heusler alloys. For references, please see: (1) Y. Noda and Y. Ishikawa (J. Phys. Soc. Japan v. 40, 690, 699 (1976)) have investigated the following Heusler alloys: Pd2MnSn and Ni2MnSn. (2) K. Tajima et al. (J. Phys. Soc. Jap. v.43, 483 (1977)), have investigated Heusler alloy Cu2MnAl.


Hence, the magnon laser effect (disclosed in the parent U.S. Pat. No. 7,430,074 “GENERATION OF TERAHERTZ WAVES”) can be observed (in at least some of the referenced above half-metals) at room temperatures.


However, in half-metals the spin-up electron with energy larger than the exchange gap will interact with the spin-up electrons with energy smaller than the gap. Since the number of the spin-up electrons is large (as compared to the number of spin-up electrons in ferromagnetic semiconductors) this interaction should lead to the fast thermalisation of high-energy electrons, which will prevent the reverse process of absorption of magnons by electrons with spin-up, which is crucial for existence of the magnon laser.


In other words, the electron bath in half-metallic ferromagnets could play the same role as the optical phonons in ferromagnetic semiconductors. However, in half-metallic ferromagnetic oxides the interaction of the electrons with spin-up with optical phonons could also play an important role.


The following disclosure is focused on magnon laser at room temperatures that can be observed in half-metallic ferromagnets, in which only the states in the lower subband are occupied in equilibrium, i.e. the electrons are fully polarized, as shown in FIG. 1.


A nonequilibrium electron 20 put in the upper subband with spin down rapidly emits a magnon 18, with a large wave vector q≈custom character−1 (2mΔ)1/2, where m is the electron effective mass. It follows from the energy and momentum conservation laws that if the energy of this electron, εp, measured from the bottom of the spin down subband is much smaller than Δ, the wave vector of the emitted magnon, q lies in the interval q1≦q≦q2, where q1,2=custom character−1 (p0±p), p0=(2m Δ)1/2, p=(2m εp)1/2custom characterp0. The frequency of these magnons may be in the Terahertz region.


The ratio of the magnon generation rate, Γe({right arrow over (q)}), to the rate of Γm({right arrow over (q)}), their relaxation (in collisions with equilibrium magnons) is a function of the wave vector {right arrow over (q)}. Therefore the nonequilibrium magnon distribution function, N({right arrow over (q)}) has a maximum at some wave vector {right arrow over (q)}={right arrow over (q)}*. N({right arrow over (q)}) increases with the increase of the electron pumping, and because of the simulated emission of magnons, the function N({right arrow over (q)}) grows most rapidly at {right arrow over (q)} close to {right arrow over (q)}*.


When the pump reaches some critical value, N({right arrow over (q)}*) starts to increase very fast with the increase of the electron pumping. At some conditions the generation of magnons with {right arrow over (q)}={right arrow over (q)}* becomes avalanche-like, and the magnon system becomes unstable. For more details, please see U.S. Pat. No. 7,430,074 “GENERATION OF TERAHERTZ WAVES”, and equations below.


Basic Equations for Magnon Generation.


The system of equations which govern the behavior of the electron, f({right arrow over (p)}), and magnon, N({right arrow over (q)}) distribution functions were obtained in the following paper: I. Ya. Korenblit and B. G. Tankhilevich, Soy. Phys. -JETP, 46, 1167 (1977). They read











[

1
+

N


(

q
->

)



]





e



(

q
->

)




-


[


N


(

q
->

)


-


N

(
0
)




(

q
->

)



]





m




(

q
->

)

=


0







f




(

p
->

)





γ
em



(

p
->

)



=


g


(

ɛ
p

)


.









(

Eqs
.




1

)







Here Γe({right arrow over (q)}) is the rate of relaxation of magnons in collisions with electrons

Γe({right arrow over (q)})=4πcustom character−1I2Sv0∫d3p(2πcustom character)−3δ(γ({right arrow over (p)}−custom character{right arrow over (q)})|ε{right arrow over (p)}⇓custom characterω{right arrow over (q)}−ε{right arrow over (p)}−custom character{right arrow over (q)},⇑)f({tilde over (p)}),  (Eq. 2)

where v0 is the unit cell volume.


γem is the electron-magnon relaxation rate:

γem({right arrow over (p)})=4πcustom character−1I2Sv0∫d3q(2πcustom character)−3δ(γ({right arrow over (p)}−custom character{right arrow over (q)})|ε{right arrow over (p)}⇓custom characterω{right arrow over (q)}−ε{right arrow over (p)}−custom character{right arrow over (q)},⇑)(1+N({right arrow over (q)})),  (Eq. 3)


The smeared δ-function, δ(γ|ε), takes into account the finite lifetime of the electrons in the final state, caused by the interaction with electrons with spin-up (or by the interaction with optical phonons). In the case of electron thermalisation due to interaction with optical phonons










δ


(

γ
|
ɛ

)


=


1
π



ℏγ

(


ɛ
2

+



2



γ
2



)







(

Eq
.




4

)







The rate γ(p,εp) is the known electron damping rate due to the emission of longitudinal optical phonons (22 of FIG. 1). For electrons with energy εp close to Δ, this rate is given by

γp)=(π/2)αΩ(Ω/Δ)1/21n(4Δ/Ω)custom characterΔ.  (Eq. 5)

Here Ω is the energy of an optical phonon, and α is the strength of the electron-phonon interaction.


The function g(ε) is the generation function of electrons, with spin down. We shall treat it as a δ-function

gp)=g0εδ(ε−εp).  (Eq. 6)

We suppose in what follows that the energy ε is small, εcustom characterΔ.


The second term in the l.h.s. in the first of Eqs. (1) describes the relaxation of nonequilibrium magnons in collisions with equilibrium ones, under the assumption that N({right arrow over (q)}), is close to its equilibrium value,

N(0)({right arrow over (q)})=[ecustom characterωq/kT)−1]−1.  (Eq. 7)


Γm({right arrow over (q)}) is the magnon-magnon relaxation rate. From Eqs. (1) we obtain the following integral equation for N({right arrow over (q)}),

N({right arrow over (q)})=(N0({right arrow over (q)})+Γe({right arrow over (q)})/Γm({right arrow over (q)}))(1−Γe({right arrow over (q)})/Γm({right arrow over (q)}))−1,  (Eq. 8)

where

Γe({right arrow over (q)})=g0ε∫d3pδ(γ({right arrow over (p)}−custom character{right arrow over (q)})|ε{right arrow over (p)}⇓custom characterω{right arrow over (q)}−ε{right arrow over (p)}−custom character{right arrow over (q)},⇑)δ(ε−εp)Z−1({right arrow over (p)}),  (Eq. 9)

and

Z({right arrow over (p)})=∫d3qδ(γ({right arrow over (p)}−custom character{right arrow over (q)})|ε{right arrow over (p)}⇓custom characterω{right arrow over (q)}−ε{right arrow over (p)}−custom character{right arrow over (q)},⇑)(1+N({right arrow over (q)})).  (Eq. 10)


Eq. (8) is formally reminiscent of the expression for the magnon distribution function under conditions of parametric pumping. The difference is that here the rate Γe is itself a functional of N({right arrow over (q)}), since the number of the emitted magnons depends on the distribution function of the electrons with spin down, f, which according to Eqs. (2) and (3) is in its turn determined not only by the pump g(εp) but also by a certain average (10) over the magnon distribution function. The behavior of N({right arrow over (q)}) is therefore different from that in the case of parametric pumping.


N({right arrow over (q)}) For Strong Pumping. Isotropic case.


Let us assume for simplicity that the magnon and electron spectra are isotropic. Then Γe(q) and Γm(q) do not depend on the direction of {right arrow over (q)}. The relaxation rate Γ(q) is usually a power function of q, and it can be written as

Γm(q)=Γm(p0)(custom characterq/p0)t.  (Eq. 11)


More specifically, if Γm(q) is determined by magnon-magnon exchange scattering, then t=4 for magnons, with energy custom characterω(q0) larger than kT, and t=3 for magnons, with energy custom characterω(q0) smaller than kT.


The strong pumping regime sets in, when g0 exceeds a critical value Gc. If the damping of electrons is due to interaction with optical phonons (and is less than (εΔ)1/2), this critical value is given by

Gc=2gc/(t+1),
gc=(Δ/ε)3/2Γm(q0)[1+N(0)(q0)].  (Eqs. 12)


At g0>Gc the function N(q) increases exponentially with pumping

N(q)=[1+N(0)(q0)](p0/2pε(t+1))exp(g0/Gc),  (Eq. 13)

if q falls into the smooth region

p0−pεcustom characterq≦p0−pεcustom characterq,
δcustom characterq=2pε exp(−g0/Gc),  (Eqs. 14)

while N(q) with wave vectors outside of the above-given range does not depend on the pump. Thus, under sufficiently strong pumping the magnon distribution function has a sharp peak at custom characterq≈p0−pε.


Let us define the number of electrons, β, pumped per second per unit cell as:

β=v0(2πcustom character)−3∫d3pgp).  (Eq. 15)

One gets for the pumping given by Eq. (6)

β=(v0ε3/2m3/2g0/21/2π2custom character3)  (Eq. 16)

and the critical pumping βc, with g0=Gc is

βc=(v0q30/(2(t+1)π2))Γm(q0)[1+N(0)(q0)].  (Eq. 17)


Since we are interested in high-frequency magnons, we suppose that their relaxation is mainly due to four-magnon exchange interaction. Using the expressions for Γm given in the following reference (V. G. Vaks, A. I. Larkin and S. A. Pikin, JETP 53 (1967)), we estimated for T/Tc≈0.2, and custom characterω(q0)>kT, N(0)(q0)custom character1:Γm≈(108−109) sec−1.


Thus, it follows from Eq. (17) the estimate βc≈(105−107) sec−1, and we took into account that N(0)(q0) is small.


The physical meaning of the critical pumping Gc can be understood as follows. The ratio Γem of the rate of generation of the magnons to the rate of their relaxation reaches its maximum value at custom characterq=p0−pε and has its minimum at custom characterq=p0+pε, i.e. there is an excess generation on the left end of the interval in comparison with the right end. Stimulated emission causes the increase of this asymmetry. Nonlinear generation begins when the difference between the number of nonequilibrium magnons at the ends of the generation interval becomes equal to the number of equilibrium magnons, if N(0)>1. On the other hand, nonlinear generation begins when the difference between the number of nonequilibrium magnons at the ends of the generation interval becomes equal to 1, if the opposite inequality (N(0)<1) holds.


In an embodiment, FIG. 2 shows a diagram 30 that illustrates a four-level magnon laser of the present technology. In this embodiment of the present technology, the four-level magnon laser 30 further comprises a four-level energy structure further comprising: a lowest energy level 38 corresponding to a valence band, a highest energy level 34 corresponding to a spin-down subband, a first intermediate level 36 corresponding to the lower energy electron states in the spin-up subband, and a second intermediate energy level 32 corresponding to a spin-up subband.


The electrons pumped from the lowest energy level 38 into the highest energy level 34 move into the lower energy electron states (the first intermediate level 36) in the spin-up subband, wherein each pumped electron emits a magnon. The electrons in the spin-up subband move from the first intermediate state 36 into the bottom of the spin-up subband (the second intermediate energy level 32) by interacting with electrons with spin-up (or by emitting optical phonons). The electrons are pumped from the lowest energy level 38 into the highest energy level 34 by using a pumping means (not shown).


In an embodiment of the present technology, a conventional laser can be used as a pumping means to pump electrons form the lowest energy level (valence band) 38 into the highest energy level 34 (spin-down subband).


In an embodiment of the present technology, the four-level magnon laser (30 of FIG. 2) further comprises: a thermostat (not shown), wherein the ferromagnetic material is placed in the thermostat, and wherein the thermostat is configured to maintain temperature of the ferromagnetic material below a critical temperature.


In an embodiment, the four-level magnon laser of the present technology (30 of FIG. 2) can be used for generation of nonequilibrium magnons by performing the following steps (not shown): (A) providing the four-level magnon laser; and (B) pumping electrons into the four-level magnon laser from the lowest energy level into the highest energy level by using a pumping means.


Pumping Methods.


To implement the GS magnon laser of the present technology, one could use a conventional laser pumping means, as well as an electron injection means. To implement the four-level magnon laser of the present technology (30 of FIG. 2), one could use a conventional laser pumping means.


Although the subject matter has been described in a language specific to structural features and/or methodological acts, the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as exemplary forms of implementing the claims.

Claims
  • 1. A four-level magnon laser comprising: a ferromagnetic material having a conduction band that is split into two sub bands, a first said subband having spin up (along the direction of magnetization of said ferromagnetic material), and a second said subband having spin down (opposite to the direction of magnetization of said ferromagnetic material), and said ferromagnetic material further comprising:a four-level laser structure further comprising:a lowest energy level corresponding to a valence band;a highest energy level corresponding to a spin-down subband;a second intermediate energy level corresponding to a spin-up subband; wherein electrons from said lowest energy level pumped into said highest energy level move into the lower energy electron states in said spin -up subband, and wherein said pumped electrons emit magnons;anda first intermediate level corresponding to said lower energy electron states in said spin-up subband; and wherein said second intermediate energy level is placed in said energy space lower than said first intermediate level;and wherein said electrons in said spin-up subband move into the bottom of said spin-up subband by using an energy relaxation mechanism selected form the group consisting of: {emission of optical phonons; and electron-electron interaction};and wherein said electrons are pumped from said lowest energy level into said highest energy level by using a pumping means.
  • 2. The four-level magnon laser of claim 1 further comprising: said pumping means configured to pump said electrons from said lowest energy level into said highest energy level.
  • 3. The four-level magnon laser of claim 2, wherein said pumping means further comprises: a conventional laser means configured to pump said electrons from said lowest energy level into said highest energy level.
  • 4. The four-level magnon laser of claim 1, wherein said ferromagnetic material is selected from the group consisting of: a ferromagnetic semiconductor; a dilute magnetic semiconductor (DMS); a half-metallic ferromagnet(HMF); and a ferromagnetic conductor, with a gap in the density of states of the minority electrons around the Fermi energy.
  • 5. The four-level magnon laser of claim 4, wherein said half-metallic ferromagnet (HMF) is selected from the group consisting of: a spin-polarized Heusler alloy; a spin-polarized Colossal magnetoresistance material; CrO2; Sr2FeMoO6; and Fe3O4.
  • 6. The four-level magnon laser of claim 5, wherein said spin-polarized Heusler alloy is selected from the group consisting of: NiMnSb; Co2MnSi; Co2MnGe; Co2MnSn; and Co2FeS.
  • 7. The four-level magnon laser of claim 1 further comprising: a thermostat, wherein said ferromagnetic material is placed in said thermostat, and wherein said thermostat is configured to maintain temperature of said ferromagnetic material below a critical temperature.
  • 8. A method for generation of nonequilibrium magnons by using a four-level magnon laser, said method comprising: (A) providing said four-level magnon laser;and(B) pumping electrons into said four-level magnon laser;wherein said four-level magnon laser further comprises: a ferromagnetic material having a conduction band that is split into two sub bands, a first said subband having spin up (along the direction of magnetization of said ferromagnetic material), a second said subband having spin down (opposite to the direction of magnetization of said ferromagnetic material), said ferromagnetic material further comprising: a four-level laser structure further comprising: a lowest energy level corresponding to a valence band; a highest energy level corresponding to a spin-down subband; a second intermediate energy level corresponding to a spin-up subband; wherein electrons from said lowest energy level pumped into said highest energy level move into the lower energy electron states in said spin-up subband, and wherein said pumped electrons emit magnons; and a first intermediate level corresponding to said lower energy electron states in said spin-up subband; and wherein said electrons in said spin-up subband move into the bottom of said spin-up subband by using an energy relaxation mechanism selected form the group consisting of: {emission of optical phonons; and electron-electron interaction};and wherein said second intermediate energy level is placed in said energy space lower than said first intermediate level; and wherein said electrons are pumped from said lowest energy level into said highest energy level by using a pumping means.
  • 9. The method of claim 8 further comprising: (C) placing said four-level magnon laser into a thermostat; wherein said thermostat is configured to maintain temperature of said ferromagnetic material below a critical temperature.
  • 10. The method of claim 8, wherein said step (A) further comprises: (A1) selecting said ferromagnetic material from the group consisting of:a ferromagnetic semiconductor; a dilute magnetic semiconductor (DMS); a half-metallic ferromagnet(HMF); and a ferromagnetic conductor, with a gap in the density of states of the minority electrons around the Fermi energy.
  • 11. The method of claim 10, wherein said step (A1) further comprises: (A1, 1) selecting said half-metallic ferromagnet (HMF) from the group consisting of:a spin-polarized Heusler alloy; a spin-polarized Colossal magnetoresistance material; CrO2; Sr2FeMoO6; and Fe3O4.
  • 12. The method of claim 11, wherein said step (A1, 1) further comprises: (A1, 1, 1) selecting said spin-polarized Heusler alloy from the group consisting of:NiMnSb; Co2MnSi; Co2MnGe; Co2MnSn; and Co2FeS.
  • 13. The method of claim 1, wherein said step (B) further comprises: (B1) configuring said pumping means to pump said electrons from said lowest energy level into said highest energy level.
  • 14. The method of claim 13, wherein said step (B1) further comprises: (B1, 1) configuring a conventional laser means to pump said electrons from said lowest energy level into said highest energy level.
Parent Case Info

This is the divisional of the U.S. patent application Ser. No. 12/290,527, filed on Nov. 1, 2008 now U.S. Pat. No. 8,031,397, and entitled “MAGNON LASER AT ROOM TEMPERATURES”, which is the continuation-in-part of the U.S. patent application Ser. No. 11/701/284, filed Jan. 31, 2007, now U.S. Pat. No. 7,508,578 “MAGNON LASER”, which is a continuation-in-part of U.S. patent application Ser. No. 11/481,197, filed Jul. 3, 2006, now the parent U.S. Pat. No. 7,430,074 “GENERATION OF TERAHERTZ WAVES”.

US Referenced Citations (21)
Number Name Date Kind
3822410 Madey Jul 1974 A
3986194 Masumoto Oct 1976 A
4626800 Murakami Dec 1986 A
4679023 Nelson Jul 1987 A
4914665 Sorin Apr 1990 A
6111416 Zhang Aug 2000 A
6230038 von Gutfeld May 2001 B1
6365286 Inomata Apr 2002 B1
6614827 Mooradian Sep 2003 B1
6912148 Hannah Jun 2005 B2
6988058 Sherwin Jan 2006 B1
20010031547 Ohno Oct 2001 A1
20020058120 Uchida May 2002 A1
20030021908 Nickel Jan 2003 A1
20040094801 Liang May 2004 A1
20050242287 Hakimi Nov 2005 A1
20060060815 Punnoose Mar 2006 A1
20060088324 Fujimoto Apr 2006 A1
20060108619 Yoshida May 2006 A1
20060238191 Saito Oct 2006 A1
20060292704 Bailleul et al. Dec 2006 A1
Non-Patent Literature Citations (24)
Entry
JP Appl. No. Tokugan-2009-548242 Office Action dated Jan. 21, 2013.
U.S. Appl. No. 12/661,153: Notice of Allowance dated Mar. 17, 2011.
U.S. Appl. No. 12/315,424: Notice of Allowance dated Mar. 21, 2011.
JP Appl. No. Tokugan-2009-548242, Office Action mailing date Jan. 21, 2013.
Tankhilevich et al. “Novel spintronic device: terahertz magnon-photon laser”, Journal of Physics: Conf. Ser. 263 012004, 1st International Symposium on Spintronic Devices and Commercialization (ISSDC2010), IOP Publishing, Feb. 2011.
Tankhilevich et al. “Terahertz Imaging and spectroscopy: Advances in Power and Tunability”, Proceedings of the 2010 World Molecular Imaging Congress, vol. 12, Suppl 2, pp. S1340, Dec. 2010.
M. Tsoi; A. G. M Jansen; J. Bass; W.-C. Chiang; V. TSOI; P. Wyder, “Generation and Detection of Phase-Coherent Current-Driven Magnons in Magnetic Multilayers”, Letters to Nature, Nature, Jul. 6, 2000, p. 46-48, vol. 406, Macmillan Magazines Ltd.
M. Belhadi; A. Khater, “Spin Wave Modes and Magnon Scattering At Surface Nanostructure on 2D Heisenberg Ferromagnets”, Surface Review and Letters, 2004, p. 99-109, vol. 11, No.
R. Srivastava, “Optically Detected Terahertz Resonance Spectroscopy of Semiconductor Nanostructures”, Thesis, Rice University, Apr. 2005, Houston Texas.
I. E. Radu, “Ultrafast Electron, Lattice and Spin Dynamics on Rare-Earth Metal Surfaces”, Thesis, Freie Universitat Berlin, Mar. 2006, Berlin Germany.
M. J. Lisowski, “Electron and Magnetisation Dynamics in Metals Studied by Time-Resolved Photoemission”, Dissertation Abstract, Freie Universitat Berlin, Jan. 2006, Berlin Germany.
U.S. Appl. No. 11/481,197: Office Action—Election/Restrictions dated Jun. 5, 2007.
U.S. Appl. No. 11/481,197: Office Action dated Aug. 31, 2007.
U.S. Appl. No. 11/481,197: Notice of Allowance and Fee(s) Due dated Feb. 22, 2008.
U.S. Appl. No. 11/496,889: Notice of Allowance and Fee(s) Due dated Jun. 30, 2008.
U.S. Appl. No. 11/701,284: Office Action dated Mar. 6, 2008.
U.S. Appl. No. 11/701,284: Notice of Allowance and Fee(s) Due dated Oct. 6, 2008.
U.S. Appl. No. 11/799,937: Notice of Allowance and Fee(s) Due dated Oct. 9, 2008.
U.S. Appl. No. 12/290,527: Office Action—Election/Restrictions dated Oct. 1, 2010.
U.S. Appl. No. 12/290,527: Office Action dated Dec. 3, 2010.
Korenblit et al. “High Frequency Magnon Generation by NonEquilibrium Electrons and the Instability of the Magnon System”, Physics Letters, vol. 64A, No. 3, pp. 307-330, Dec. 1977.
U.S. Appl. No. 12/290,527: Notice of Allowance and Fee(s) Due dated Jun. 27, 2011.
Tankhilevich et al. “Magnon Laser”, 6th International Workshop on Multifunctional Materials, Jul. 31-Aug. 3, 1920, Kodiak, Alaska, pp. 33.
Tankhilevich et al. “The Terahertz Magnon Photon Laser Imaging System (TERMAPLIS)”, NCI Conference: Cancer Detection and Diagnostic Technologies for Global Health, Aug. 22-23, 2011, Rockville, Maryland, p. 87 (TTT-55).
Divisions (1)
Number Date Country
Parent 12290527 Nov 2008 US
Child 13043470 US
Continuation in Parts (2)
Number Date Country
Parent 11701284 Jan 2007 US
Child 12290527 US
Parent 11481197 Jul 2006 US
Child 11701284 US