The present invention is generally directed to the field of valves, and more particularly to the field of recirculation valves for aircraft fuel systems.
The inventors of the present invention have determined that there are numerous shortcomings with the methods and apparatus of the background art relating to aircraft fuel systems, specifically relating to the method and apparatus relating to the maintenance of optimum fuel system operating temperature for aircraft.
The present invention overcomes several shortcomings associated with the background art and achieves other advantages not realized by the background art. The present invention is intended to alleviate one or more of the following problems and shortcomings of the background art specifically identified hereinabove by the inventors with respect to the background art.
The present invention, in part, is a recognition that it will be advantageous to maintain optimum fuel system operating temperatures on an aircraft by returning a controlled amount of relatively hot fuel to the relatively cool fuel residing in aircraft fuel tank(s).
The present invention, in part, is a recognition that a thermal recirculation valve can be arranged in a Thermal Management System (TMS) to return a controlled amount of relatively hot fuel to aircraft fuel tank(s), allowing the relatively hot fuel to be replaced by relatively cool fuel residing in aircraft fuel tank(s), for the purpose of maintaining optimum fuel system operating temperature(s).
The present invention, in part, is a recognition that a thermal recirculation valve used for maintaining optimum fuel system operating temperature(s) must provide features aimed at improving flight safety.
The present invention, in part, is a recognition that a thermal recirculation valve should provide for fail-safe flows of fuel during period(s) in which the thermal recirculation valve is commanded to, or fails in either a fully open or a fully closed operating position.
The present invention, in part, is a recognition that it will be advantageous to reduce the required number of control valves and related equipment in aircraft fuel systems for the purposes of reducing aircraft weight, reducing system complexity, and improving aircraft safety, reliability and ease of operation.
The present invention, in part, provides a thermal recirculation throttle valve for an aircraft fuel system comprising a housing having a throttling valve chamber; a cover operatively engaging a first side of the housing; a power piston within a power piston sleeve, the power piston having a first and a second face for control pressure to act upon, the power piston and power piston sleeve operatively engaged with the housing within the throttling valve chamber; a Linear Variable Differential Transformer for measuring a linear position of the power piston within the housing; a throttling valve within a throttling valve sleeve, the throttling valve operatively engaged with the power piston to transfer the linear movement of the piston between a fully extended and a fully retracted operating position; and a flow deflector engaged with the throttling valve for protecting the housing from flow erosion from fuel exiting an outlet flow window within the throttling valve sleeve.
The present invention, in part, provides a method of assembling the thermal recirculation throttle valve described hereinabove, the method comprising sub-assembling the throttling valve and the throttling valve sleeve with the flow deflector in a frozen assembly within the housing; and sub-assembling the power piston, power piston sleeve, cover and linear variable differential transformer probe within the throttling valve chamber of the housing.
The present invention, in part, provides a main fuel throttle valve assembly for an aircraft fuel system comprising a main valve housing having a main fuel throttle valve for throttling a supply of fuel to an engine fuel system; a thermal recirculation throttle valve for a thermal management system, the thermal recirculation throttle valve including a cover operatively engaging a first side of a housing; a power piston within a power piston sleeve, the power piston having a first face and a second face for control pressure to act upon, the power piston and power piston sleeve operatively engaged with the housing within the throttling valve chamber; a Linear Variable Differential Transformer for measuring a linear position of the power piston within the housing; a throttling valve within a throttling valve sleeve, the throttling valve operatively engaged with the power piston to transfer the linear movement of the piston between a fully extended and a fully retracted operating position; and a flow deflector engaged with the throttling valve for protecting the housing from flow erosion from fuel exiting the throttling valve.
The present invention, in part, provides a fuel system for an aircraft comprising a fuel storage tank; a fuel booster pump having an inlet connected to the fuel storage tank and an outlet; a main fuel pump having an inlet connected to the outlet of the fuel booster pump and an outlet operatively connected to a main fuel throttle valve and a thermal recirculation throttle valve, the main fuel pump providing a supply of fuel to an engine fuel system and a thermal management system via the main fuel throttle valve and the thermal recirculation throttle valve, respectively; the main valve housing having a main fuel throttle valve for throttling a supply of fuel to the engine fuel system from the main fuel pump; the thermal recirculation throttle valve for the thermal management system, the thermal recirculation throttle valve including a cover operatively engaging a first side of a housing; a power piston within a power piston sleeve, the power piston having a first and a second face for control pressure to act upon, the power piston and power piston sleeve operatively engaged with the housing; a Linear Variable Differential Transformer for measuring a linear position of the power piston within the housing; a throttling valve within a throttling valve sleeve, the throttling valve operatively engaged with the power piston to transfer the linear movement of the piston between a fully extended and a fully retracted operating position; and a flow deflector engaged with the throttling valve for protecting the housing from flow erosion from fuel exiting the throttling valve.
The present invention will become more fully understood from the detailed description given hereinafter and the accompanying drawings that are given by way of illustration only, and thus do not limit the present invention.
The present invention will now be described in detail with reference to the accompanying drawings. As discussed hereinabove, the present inventors have determined that an effective, integrated Thermal Management System (TMS) for an aircraft using relatively cool fuel from an aircraft fuel tank to maintain optimum fuel system operating temperatures should incorporate several safety features. A thermal recirculation throttle valve (TRTV) 1 according to the present invention provided in a fuel system controlled by this type of Thermal Management System addresses several safety and operational features.
The unique thermal recirculation throttle valve 1 of the present invention is designed to limit a relatively low leakage flow to the fuel storage tank(s) 100 when the TRTV 1 is in a low leakage shutoff position. In the present invention, the low leakage shutoff position can be accomplished by venting the low leakage shutoff position to a relatively low system pressure, e.g., fuel booster pump outlet pressure as discussed hereinabove. In addition, the TRTV 1 should include a fully open position, e.g., maximum flow of fuel through the TRTV 1 to maintain fuel system operating temperature(s) to an optimum value during normal operation. Further, if the TRTV 1 is commanded to, or fails to either a fail-safe fully extended or a fail-safe fully retracted position, the TRTV 1 will also provide a fail-safe flow of fuel to return a predetermined supply of fuel to the fuel tank, e.g. aircraft fuel tank(s).
In
The TRTV 1 includes an LVDT 15 as mentioned hereinabove that measures linear position of the valve. The LVDT 15 may include a magnetic core inside a coil winding assembly. The magnetic core provides a magnetic flux linking primary and secondary coils of the LVDT 15. An excitation signal is applied to the primary coil and induces voltages within the two secondary coils. The center or zero position of the LVDT is extremely reliable and stable for providing precise linear position measurement of the TRTV 1. This measurement is electronically communicated to the FADEC, which in turn commands the EHSV 16 to accurately position the TRTV 1 by way of hydraulic channels 28 and 29.
The TRTV 1 also includes a cover 5 enclosing a first side of the TRTV 1 within a housing 11. The housing 11 may be a separate housing for the TRTV or the TRTV 1 may be provided in a portion of the housing of the main fuel throttle valve 40. A power piston 6 is operatively engaged with a throttling valve 8 that are capable of a linear movement between a variety of operating positions throughout the stroke of the valve 8 and power piston 6. The throttling valve 8 and the power piston 6 are engaged with a throttling valve sleeve 9 and a power piston sleeve 7, respectively. The power piston 6 includes a first face 21 and a second face 22. Pressurized fuel (control pressures) flowing to or from EHSV 16 creates a force acting on the surface area of these faces which influences power piston 6 and throttling valve 8 to linearly translate to the variety of operating positions. The control pressures communicate to the faces by way of channels 28 and 29, that are connected to annuli 26 and 27 in housing 11, then pass through side wall aperture 23 in cover 5, and side wall aperture 24 in power piston sleeve 7, into chambers that are bounded in part by the faces. It should be noted that the TRTV 1 has no other areas that influence the position of the power piston 6 and throttling valve 8.
One of skill in the art will appreciate that a variety of O-rings and seals are provided and shown in the enclosed figures at various interfaces, e.g., between the housing 11 and TRTV 1 components and between the individual TRTV 1 components to provide a variety of sealed fuel paths and operating positions. As seen in
Although the TRTV 1 and its components may be constructed for a wide range of materials, a TRTV 1 of a preferred embodiment includes valve components constructed of Grade 440C stainless steel, e.g., having a high carbon content that makes this material well suited for the wide ranges of pressure, linear movement and application of the TRTV 1. Although Grade 440 C is generally capable of attaining the highest strength, e.g., HRC 55-62, hardness and wear resistance of all the stainless alloys, alternative materials may be substituted depending on desired variations in material properties such as strength, hardness and wear resistance.
The thermal recirculation throttling valve (TRTV) 1 is specifically designed to have main pump 30 discharge fuel PF2F be throttled as it enters the TRTV 1, and have the throttled fuel PFTR exit the TRTV 1, returning the fuel to the fuel storage tank 100, to control fuel temperature entering the MFTV 40 (see
It should be noted that leakage to the fuel tank is minimized by having high pressure PF2F routed from out to in on the valve, minimizing the high pressure leak path area bounded by inlet throttling windows 36 and land 41, and by venting the inside of the valve with low pressure PF1, minimizing the pressure drop to PFTR (return to fuel tank pressure) in the leak path area bounded by exit flow windows 37 and land 42. To further restrict leakage, the OD of valve 8 is match ground to the ID of throttling valve sleeve 9 to minimize the diametrical clearance, e.g., 0.0003-0.0005 OD to ID diametrical clearance. If the TRTV fails toward either end of travel, the flow windows are opened to the fail-safe mode, and the vent to PF1 is closed. In the fail-safe mode, the flow windows are only partially opened depending on the setting for the desired flow of the TMS.
In order to expedite the assembly of the various components of the TRTV 1 into a housing 11, the relatively tight clearances of the sleeves 7, 9 and flow deflector 10 may require a frozen assembly process with the main body housing 11. The flow deflector 10 may be assembled to the throttling valve sleeve 9 with petroleum jelly that will secure the flow deflector position once it is frozen. The valve sleeve 9 with its outer diameter seals and O-rings are compressed and frozen to prevent damage to the seals and O-rings during installation. These components may be frozen with refrigerant, dry ice or liquid nitrogen baths to expedite this portion of the sub-assembly. The valve 9, power piston 6, power piston sleeve 7 and LVDT probe 15 are then sub-assembled prior to installation into the housing 11. The TRTV 1 is installed for providing a flow of fuel to the TMS as scheduled by an on-board Full Authority Digital Electronic Control (FADEC) system.
This nonprovisional application claims the benefit under 35 U.S.C. § 119 of U.S. Provisional Patent Application No. 60/491,531 filed on Aug. 1, 2003, the entirety of which is hereby incorporated by reference.
This invention was made with Government support under Contract No. N00019-02-C-3003 awarded by the United States Navy. The Government has certain rights in this invention.
Number | Date | Country | |
---|---|---|---|
60491531 | Aug 2003 | US |