The present invention relates to a four stage steam reformer suitable for producing a synthetic gaseous stream from a feedstock comprised of a carbonaceous material. Each stage is capable of operating at a progressively higher temperature than the immediate preceding stage.
The steam reforming of carbonaceous materials into carbon oxides and hydrogen is the heart of synthesis gas plants, particularly hydrogen-rich gas plants. The technology has been known for many decades and new developments are continually being made, both in equipment and related catalyst technology. Steam reforming technologies can generally be distinguished by the type of heat input. Such technologies include adiabatic (prereforming), convection heat transfer, radiant heat transfer (side fired tubular reformer), and internal combustion (autothermal reformer).
Until recently most steam reforming technology was used for reforming methane to produce methanol. There has been substantial activity in recent years in the field of biofuels, such as the production of ethanol from a biomass, such as corn. There is also interest in producing ethanol and ethylene from coal using a steam reformer as disclosed in co-pending U.S. Patent Application filed concurrent with this application and having an attorney docket number of 196353, and based on U.S. Provisional Application 60/995,192 which was filed Sep. 25, 2007 and which is incorporated herein by reference.
While conventional reformer technology has met with a commercial success for converting biomass to synthetic gas, there are problems associated with effectively converting such feedstocks to synthetic gas without undesirable side reactions occurring. Therefore, there is a need in the art for improved steam reforming technology to accommodate complex biomass feedstocks.
In accordance with the present invention there is provided a four stage steam reformer comprising:
a) a first reactor vessel comprised of an enclosing wall thereby defining an enclosure, a first inlet to the interior of said enclosure, a first outlet leading out of said interior of said enclosure, an tubular arrangement having a first end and a second end and secured within said interior of said enclosure which first end is fluidly connected to an inlet port of said enclosing wall and said second end fluidly connected to an outlet port of said enclosing wall;
b) a second stage reactor vessel fluidly connected to said outlet port of said enclosing wall of said first stage reactor vessel at an inlet which is comprised of a plurality of flow divider tubes and which is secured to the underside of said second stage reactor vessel which is cylindrical in shape and wherein each divider tube is fluidly connected to a reaction tube that extends vertically throughout said second reactor vessel and further extending through a top plate of said second reactor vessel;
c) a third stage reactor vessel which is cylindrical in shape and which contains a plurality of vertically oriented reaction tubes each fluidly connected to a vertically oriented reactor tube of said second reactor vessel and extending through a bottom plate of said third reactor vessel, which third reactor vessel contains a burner at its bottom for providing heat to all of stage 1, stage 2 and stage 3 reaction vessels;
d) a manifold having a inlet and an outlet wherein said inlet is in fluid communication with the plurality of reactor tubes extending through the bottom of said third reactor vessel whose outlet is a single port;
e) a fourth stage reactor vessel which is cylindrical in shape and which has a first inlet in fluid communication with said outlet port of said manifold and a second inlet which is in fluid communication with said first inlet, which fourth stage reactor vessel also contains a an outlet port for exhausting flue gas and an outlet for removing solids.
Referring to
The divided feedstreams are transported through reactor vessel V1 through feed tubes and are fluidly connected to outlet ports OP which are fluidly connected to feed tubes within the interior of reactor vessel V1. In fact, all individual feed tubes are fluidly connected from the flow divider FD to manifold MF. Reactor vessel V1 is preferably a shell and tube type vessel and will be run during the stream reforming reaction at a temperature from about 650° F. to about 800° F. The heat used to run reactor vessel V1 is derived from flue gas stream FGS that originates in stage 3 reactor vessel V3 by burner B which is fueled via line 16 preferably with natural gas, or a portion of the synthesis gas produced in the apparatus of the present invention. Feed tubes exit reactor vessel V1 at outlet ports OP and are fluidly connected to inlet ports at the bottom of stage 2 reactor vessel V2 which are fluidly connected to a plurality of feed tubes extending vertically throughout the length of reactor vessel V2. Reactor vessel V2 will be operated in the temperature range of about 1300° F. to about 1450° F. The heat to run reactor vessel V2 is also obtained from the flue gas stream FGS produced by burner B located at the bottom of reactor vessel V3. In the event flue gas stream FGS does not provide an adequate amount of heat to maintain reactor vessel at a temperature from about 1300° F. to about 1450° F. trim burner 18 may be used to add heat to flue gas stream FGS. It is preferred that trim burner 18 also be fueled by use of natural gas or a portion of the product synthesis gas stream. It is also preferred that the trim burner be an annular shaped burner situated on the perimeter of the opening of flue gas pipe FGP which is fluidly connected to the top of reactor vessel V2 to receive flue gas from reactor vessel V3.
The reaction product of reactor vessel V2 continues flowing downstream through a plurality of feed tubes that fluidly connect vertically oriented feed tubes in reactor vessel V2 and the plurality of feed tubes vertically oriented in reactor vessel V3. Reactor vessel V3 is operated at a temperature in the range of about 1450° F. to about 1750° F. where further reaction of the hydrocarbons in the reaction product from V2 takes place. An insulating top, or cover, IT is provided that encloses the tops of reactor vessels V2 and V3 to prevent an undesirable amount of heat loss from feed tubes extending from reactor vessel V2 to V3. The tubular members exit the bottom the reactor vessel V3 and into manifold MF where the reaction product streams are combined and exit manifold MF via line 20. If a feedstock, such as natural gas or methanol, is used and the steam reforming reaction is completed in reactor vessel V3, the product synthesis gas can be collected and stored or sent for further downstream processing. If the hydrocarbon feedstock is relatively refractory and contains a high carbon content, such as anthracite, then the reaction product exiting manifold MF is sent via line 22 to a fourth stage reactor vessel V4 by first conducting it to a mixer 26 where it is mixed with an effective amount of an oxygen-containing gas, preferably substantially pure oxygen via line 24. It will be understood that mixer 26 can be either external or internal to reactor vessel V4. It is preferred that it be external. The mixture of reaction product from reactor vessel V3 and oxygen-containing gas enter reactor vessel V4 at 28 where it further combusts at temperatures from about 1750° F. to about 2100° F., preferably at a temperature from about 1800° F. to about 2000° F. The final reaction product synthesis gas exits the four stage steam reformer at outlet 32 and is collected and stored, or transported off site, or passed to a downstream process unit for further processing. Such further processing can include syn gas clean-up technology as described in U.S. Pat. No. 7,375,142 which is incorporated herein by reference to produce a clean product that can be used to further process into synthetic natural gas, alcohols, and hydrocarbons.
This application is based on Provisional Application U.S. Ser. No. 60/995,191 filed Sep. 25, 2007.
Number | Date | Country | |
---|---|---|---|
60995191 | Sep 2007 | US |