Information
-
Patent Grant
-
6486749
-
Patent Number
6,486,749
-
Date Filed
Friday, May 5, 200024 years ago
-
Date Issued
Tuesday, November 26, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Pascal; Robert
- Glenn; Kimberly E
Agents
- Blakely, Sokoloff, Taylor & Zafman LLP
-
CPC
-
US Classifications
Field of Search
US
- 333 125
- 333 127
- 333 26
- 333 4
- 333 123
- 333 136
-
International Classifications
-
Abstract
A four-way power combiner/splitter is disclosed that includes a first transmission line having a first non-grounding conductor and a first grounding conductor, wherein the first grounding conductor is grounded at a first end of the first transmission line. The combiner/splitter also has a second transmission line having a second non-grounding conductor and a second grounding conductor, wherein the second grounding conductor is grounded at a first end of the second transmission line. The non-grounding conductors of the first and second transmission lines are electrically coupled together at the respective first ends of the first and second transmission lines. An output/input port is provided that is electrically coupled to the first and second non-grounding conductors at the respective first ends of the first and second transmission lines. Additionally provided are a first input/output port electrically coupled to the first non-grounding conductor at a second end of the first transmission line, a second input/output port electrically coupled to the first grounding conductor at the second end of the first transmission line, a third input/output port electrically coupled to the second non-grounding conductor at a second end of the second transmission line, and a fourth input/output port electrically coupled to the second grounding conductor at a second end of the second transmission line.
Description
FIELD OF THE INVENTION
This invention relates generally to radio frequency (RF)/microwave circuits, and in particular, to a unique four-way power combiner/splitter.
BACKGROUND OF THE INVENTION
Power combiners and splitters have many applications in the RF/microwave field. They are particularly useful in power amplification applications. For example, often an input signal to be amplified is split using a power splitter into several components and applied separately to a plurality of amplification stages. Each of the amplification stages amplifies each of the components of the input signal. Then, the amplified components of the input signals are applied to a power combiner to recombine the amplified components into a relatively higher power and gain output signals.
Prior art power combiners and splitters typically operate over a relatively narrow bandwidth. This is because many prior art power combiners and splitter use transmission lines of particular electrical lengths to adjust the phases of the signals so that the signals are properly combined or split. Since the electrical length of a transmission line is dependent on the frequency of the signal, these prior art combiners and splitters do not work well with frequencies outside the intended operating frequency. As a result, most prior art power combiners and splitters have relatively narrow bandwidth.
Thus, there is a need for a power combiner and splitter that does not depend on a transmission line or lines being a particular electrical length in order to provide much greater operating bandwidths. Such a need is met by the invention described herein.
SUMMARY OF THE INVENTION
An aspect of the invention includes a four-way power combiner/splitter that includes a first transmission line having a first non-grounding conductor and a first grounding conductor, wherein the first grounding conductor is grounded at a first end of the first transmission line. The combiner/splitter also has a second transmission line having a second non-grounding conductor and a second grounding conductor, wherein the second grounding conductor is grounded at a first end of the second transmission line. The non-grounding conductors of the first and second transmission lines are electrically coupled together at the respective first ends of the first and second transmission lines. An output/input port is provided that is electrically coupled to the first and second non-grounding conductors at the respective first ends of the first and second transmission lines. Additionally provided are a first input/output port electrically coupled to the first non-grounding conductor at a second end of the first transmission line, a second input/output port electrically coupled to the first grounding conductor at the second end of the first transmission line, a third input/output port electrically coupled to the second non-grounding conductor at a second end of the second transmission line, and a fourth input/output port electrically coupled to the second grounding conductor at a second end of the second transmission line.
The four-way power combiner/splitter may include a first impedance element electrically connecting the first and second non-grounding conductors at the respective second ends of the transmission lines, and a second impedance element electrically connecting the second and fourth grounding conductors at the respective second ends of the transmission lines. The first and second impedance elements are selected to improve the balance of currents flowing through the first and second transmission lines. In addition, the four-way power combiner/splitter may include first and second ferrites coupled respectively to the first and second transmission lines to increase the effective electrical lengths of the lines. The transmission lines each may be configured into a twisted pair of wires, a coaxial transmission line, a microstrip, a striplines, or other forms of transmission line mediums.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
illustrates a schematic diagram of an exemplary four-way power combiner/splitter in accordance with the invention;
FIG. 2
illustrates a schematic diagram of another exemplary four-way power combiner/splitter in accordance with the invention;
FIG. 3
illustrates a schematic diagram of yet another exemplary four-way power combiner/splitter in accordance with the invention;
FIG. 4
illustrates a schematic diagram of still another exemplary four-way power combiner/splitter in accordance with the invention; and
FIG. 5
illustrates a perspective view of an exemplary ferrite with two sections that can be used in connection with the four-way power combiner/splitters of FIGS.
4
and
5
.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1
illustrates a schematic diagram of an exemplary four-way power combiner/splitter
100
in accordance with the invention. The four-way combiner/splitter
100
comprises a pair of transmission lines
104
and
106
. As typical of many transmission lines, transmission line
104
comprises a non-grounding conductor
104
a
and a grounding conductor
104
b.
Likewise, transmission line
106
comprises a non-grounding conductor
106
a
and a grounding conductor
106
b.
At or near a first end, the non-grounding conductors
104
and
106
a
of transmission lines
104
and
106
are electrically coupled together to form an output/input port
108
. Also at or near the first end, the grounding conductors
104
b
and
106
b
of the transmission lines
104
and
106
are electrically connected to ground.
At a second end opposite the first end, the non-grounding and grounding conductors
104
a
-
b
of the transmission line
104
form first and second input/output ports
110
and
112
of the four-way power combiner/splitter
100
. Also, at the second end, the non-grounding and grounding conductors
106
a
-
b
of the transmission line
106
form third and fourth input/output ports
114
and
116
of the four-way combiner/splitter
100
. In order for the four-way power combiner/splitter
100
to operate in a balanced condition, the signals at the first and third input/output ports
110
and
114
are substantially in-phase with the signal at the output/input port
108
, and the signals at the second and fourth input/output ports
112
and
116
are approximately 180 degrees out-of-phase with the signal at the output/input port
108
.
Each of the ports
108
,
110
,
112
,
114
and
116
of the four-way power combiner/splitter
100
has a characteristic impedance defined as Zo. The characteristic impedance of the transmission lines
104
and
106
, however, is approximately 2 Zo (i.e. approximately twice the characteristic impedance of the ports
108
,
110
,
112
,
114
and
116
). The electrical lengths of the transmission lines
104
and
106
are substantially equal to each other. In addition, the electrical lengths of the transmission lines
104
and
106
are below a quarter wavelength at the lowest operating frequency of the four-way power combiner/splitter
100
. The transmission lines
104
and
106
can be a twisted pair of wires, a coaxial transmission line, microstrip, stripline, and other forms of transmission lines.
FIG. 2
illustrates a schematic diagram of another exemplary four-way power combiner/splitter
200
in accordance with the invention. The four-way power combiner/splitter
200
has many of the same elements as four-way power combiner/splitter
100
, which are designated with the same reference numbers but with the most significant digit being a “2” instead of a “1”. The four-way power combiner/splitter
200
further includes an impedance element
218
(Z
1
) electrically connecting input/output port
210
with input/output port
214
. Likewise, the four-way power combiner/splitter
200
also includes another impedance element
220
(Z
1
) electrically connecting input/output port
212
with input/output port
216
. The impedance elements, preferably being substantially resistive,
218
and
220
improve the balance of the currents through the transmission lines
104
and
106
to account for imperfections in the four-way power combiner/splitter
200
.
FIG. 3
illustrates a schematic diagram of yet another exemplary four-way power combiner/splitter
300
in accordance with the invention. The four-way power combiner/splitter
300
also has many of the same elements as four-way power combiner/splitter
100
, which are designated with the same reference numbers but with the most significant digit being a “3” instead of a “1”. The four-way power combiner/splitter
300
further includes a ferrite
322
magnetically coupled to the transmission line
304
and a ferrite
324
magnetically coupled to transmission line
306
. The ferrites
322
and
324
increase the effective electrical lengths of the transmission lines
304
and
306
, respectively. This is particularly useful for relatively low frequency applications where the wavelengths of the operating signals are relatively long.
FIG. 4
illustrates a schematic diagram of still another exemplary four-way power combiner/splitter
400
in accordance with the invention. The four-way power combiner/splitter
400
is a combination of combiner/splitter
200
and
300
, and the reference numbers for designating the same elements are same but with the most significant digit being a “4” instead of a “2” or “3”. Specifically, the four-way power combiner/splitter
400
includes the impedance elements
418
and
420
to improve the balance of the currents through the transmission lines
404
and
406
to account for imperfections in the four-way power combiner/splitter
400
. In addition, the four-way power combiner/splitter
400
includes ferrites
422
and
424
to increase the effective electrical lengths of the transmission lines
404
and
406
, respectivelyl.
FIG. 5
illustrates a perspective view of an exemplary ferrite
500
with two sections that can be used in connection with the four-way power combiner/splitters of
FIGS. 4 and 5
. The ferrite
500
comprises a housing
502
made of ferrite material. The housing
502
includes two through-channels
504
and
506
for respectively receiving therein the transmission lines
304
and
306
of four-way power combiner/splitter
300
or transmission lines
404
and
406
of four-way power combiner/splitter
400
. Although the ferrite
500
accommodates both transmission lines of the four-way combiner/splitters
300
and
400
, it shall be understood that separate ferrites can be used to accommodate the transmission lines individually.
In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto departing from the broader spirit and scope of the invention. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
Claims
- 1. A four-way power combiner/splitter, comprising:a first transmission line including a first non-grounding conductor and a first grounding conductor, wherein said first grounding conductor is grounded at a first end of said first transmission line; a second transmission line including a second non-grounding conductor and a second grounding conductor, wherein said second grounding conductor is grounded at a first end of said second transmission line, and further wherein said first and second non-grounding conductors are electrically coupled together at respective first ends of said first and second transmission lines, wherein said first and second transmission lines have substantially the same electrical lengths extending from respective first ends to respective second ends, and wherein said lengths of said first and second transmission lines extending from respective first ends to respective second ends are each less than a quarter wavelength at an operating frequency; an output/input port electrically coupled to said first and second non-grounding conductor at respective first ends of said first and second transmission lines; a first input/output port electrically coupled to said first non-grounding conductor at a second end of said first transmission line; a second input/output port electrically coupled to said first grounding conductor at said second end of said first transmission line; a third input/output port electrically coupled to said second non-grounding conductor at a second end of said second transmission line; and a fourth input/output port electrically coupled to said second grounding conductor at a second end of said second transmission line.
- 2. A four-way power combiner/splitter, comprising:a first transmission line including a first non-grounding conductor and a first grounding conductor, wherein said first grounding conductor is grounded at a first end of said first transmission line; a second transmission line including a second non-grounding conductor and a second grounding conductor, wherein said second grounding conductor is grounded at a first end of said second transmission line, and further wherein said first and second non-grounding conductors are electrically coupled together at respective first ends of said first and second transmission lines, an output/input port electrically coupled to said first and second non-grounding conductor at respective first ends of said first and second transmission lines; a first input/output port electrically coupled to said first non-grounding conductor at a second end of said first transmission line; a second input/output port electrically coupled to said first grounding conductor at said second end of said first transmission line; a third input/output port electrically coupled to said second non-grounding conductor at a second end of said second transmission line; a fourth input/output port electrically coupled to said second grounding conductor at a second end of said second transmission line; and a ferrite having two separate channels for receiving therein said first and second transmission lines respectively, wherein said ferrite is capable of increasing electrical lengths of said first and second transmission lines.
- 3. A four-way power combiner, comprising:a first transmission line including a first non-grounding conductor and a first grounding conductor, wherein said first grounding conductor is grounded at a first end of said first transmission line; a second transmission line including a second non-grounding conductor and a second grounding conductor, wherein said second grounding conductor is grounded at a first end of said second transmission line, and further wherein said first and second non-grounding conductors are electrically coupled together at respective first ends of said first and second transmission lines, wherein said first and second transmission lines have substantially the same electrical lengths extending from respective first ends to respective second ends, and wherein said lengths of said first and second transmission lines extending from respective first ends to respective second ends are each less than a quarter wavelength at an operating frequency; an output port electrically coupled to said first and second non-grounding conductor at respective first ends of said first and second transmission lines; a first input port electrically coupled to said first non-grounding conductor at a second end of said first transmission line; a second input port electrically coupled to said first grounding conductor at said second end of said first transmission line; a third input port electrically coupled to said second non-grounding conductor at a second end of said second transmission line; and a fourth input port electrically coupled to said second grounding conductor at a second end of said second transmission line.
- 4. A four-way power combiner, comprising:a first transmission line including a first non-grounding conductor and a first grounding conductor, wherein said first grounding conductor is grounded at a first end of said first transmission line; a second transmission line including a second non-grounding conductor and a second grounding conductor, wherein said second grounding conductor is grounded at a first end of said second transmission line, and further wherein said first and second non-grounding conductors are electrically coupled together at respective first ends of said first and second transmission lines; an output port electrically coupled to said first and second non-grounding conductor at respective first ends of said first and second transmission lines; a first input port electrically coupled to said first non-grounding conductor at a second end of said first transmission line; a second input port electrically coupled to said first grounding conductor at said second end of said first transmission line; a third input port electrically coupled to said second non-grounding conductor at a second end of said second transmission line; a fourth input port electrically coupled to said second grounding conductor at a second end of said second transmission line; and a ferrite having two separate channels for receiving therein said first and second transmission lines respectively, wherein said ferrite is capable of increasing electrical lengths of said first and second transmission lines.
- 5. A four-way power splitter, comprising:a first transmission line including a first non-grounding conductor and a first grounding conductor, wherein said first grounding conductor is grounded at a first end of said first transmission line; a second transmission line including a second non-grounding conductor and a second grounding conductor, wherein said second grounding conductor is grounded at a first end of said second transmission line, and further wherein said first and second non-grounding conductors are electrically coupled together at respective first ends of said first and second transmission lines, wherein said first and second transmission lines have substantially the same electrical lengths extending from respective first ends to respective second ends, and wherein said lengths of said first and second transmission lines extending from respective first ends to respective second ends are each less than a quarter wavelength at an operating frequency; an input port electrically coupled to said first and second non-grounding conductor at respective first ends of said first and second transmission lines; a first output port electrically coupled to said first non-grounding conductor at a second end of said first transmission line; a second output port electrically coupled to said first grounding conductor at said second end of said first transmission line; a third output port electrically coupled to said second non-grounding conductor at a second end of said second transmission line; and a fourth output port electrically coupled to said second grounding conductor at a second end of said second transmission line.
- 6. A four-way power splitter, comprising:a first transmission line including a first non-grounding conductor and a first grounding conductor, wherein said first grounding conductor is grounded at a first end of said first transmission line; a second transmission line including a second non-grounding conductor and a second grounding conductor, wherein said second grounding conductor is grounded at a first end of said second transmission line, and further wherein said first and second non-grounding conductors are electrically coupled together at respective first ends of said first and second transmission lines; an input port electrically coupled to said first and second non-grounding conductor at respective first ends of said first and second transmission lines; a first output port electrically coupled to said first non-grounding conductor at a second end of said first transmission line; a second output port electrically coupled to said first grounding conductor at said second end of said first transmission line; a third output port electrically coupled to said second non-grounding conductor at a second end of said second transmission line; a fourth output port electrically coupled to said second grounding conductor at a second end of said second transmission line; and a ferrite having two separate channels for receiving therein said first and second transmission lines respectively, wherein said ferrite is capable of increasing electrical lengths of said first and second transmission lines.
US Referenced Citations (19)