Descriptions are generally related to computer memory, and more particular descriptions are related to psuedo split die dynamic random access memory (DRAM) devices and modules.
The performance of computing systems is highly dependent on the performance of their system memory. Memory, such as DRAM, is often provided in a system via memory modules, which include multiple DRAM chips or devices. Memory modules come in a variety of form factors, such as dual inline memory modules (DIMMs), stacked memory modules, and other form factors. Various memory subsystem applications have different requirements and priorities. For example, some applications require memory subsystems that provide RAS capabilities, such as error detection and correction.
The following description includes discussion of figures having illustrations given by way of example of implementations of embodiments of the invention. The drawings should be understood by way of example, and not by way of limitation. As used herein, references to one or more “embodiments” or examples are to be understood as describing a particular feature, structure, and/or characteristic included in at least one implementation of the invention. Thus, phrases such as “in one embodiment” or “in an alternate embodiment” appearing herein describe various embodiments and implementations of the invention, and do not necessarily all refer to the same embodiment. However, they are also not necessarily mutually exclusive.
Descriptions of certain details and implementations follow, including a description of the figures, which may depict some or all of the embodiments described below, as well as discussing other potential embodiments or implementations of the inventive concepts presented herein.
Four-way pseudo split DRAM architectures and techniques are described herein.
Single Device Data Correction (SDDC) techniques involve checking for and correcting (single or multi-bit) errors in a single device (e.g., errors affecting one entire DRAM chip). For SDDC solutions today, a memory subsystem requires two ECC devices in addition to other N DRAM devices per subchannel within a memory configuration. These ECC devices provide an equal number of bits as written or read from a data device. For example, in DDR5 (Double Data Rate version 5), 8 data devices plus 2 ECC devices per sub-channel are needed to achieve SDDC. For other memory technologies, the total number of devices varies, but conventionally 2 additional devices are used to provide ECC.
Although conventional SDDC solutions may provide sufficient reliability, availability, and serviceability (RAS) support, the total number of devices needed to support higher DRAM densities while maintaining SDDC can be prohibitively high, especially for some form factors such as stacked memory modules.
In contrast, a 4-way pseudo split DRAM architecture can enable an SDDC memory configuration with fewer devices than conventional memory subsystems.
In the example illustrated in
In one example, two of the four PCH slices will share a CA bus. Referring to
Similarly, the example illustrated in
Each of the slices 102A-102D includes a plurality of data lanes (e.g., data lanes 108A-108D) to couple with a data bus via the I/O interface circuitry of the DRAM device 100. In one example, each slice 102A-102D will have up to four I/O lanes (e.g., data lanes). For example, in one mode, each of the four slices 102A-102D will enable only 2 I/Os (x2) of their I/Os and in another mode each of the four slices will enable all 4 I/Os (x4) of it's I/Os. Thus, in one example, each of the slices is configurable to enable different data lane widths (e.g., 2 or 4 data lanes). In one such example, the DRAM device 100 includes one or more registers (e.g., mode registers) to store a value to enable different lane widths for each of the slices 102A-102D. Thus, in one example, the memory controller can program a register on the DRAM device 100 (and/or on a module that includes the DRAM device 100) to set the data lane width for the slices 102A-102D.
The DRAM device 100 includes banks of memory resources (e.g., arrays of memory locations). In one example, each of the slices 102A-102D includes the same number of banks. For example, each slice can include 16 banks, 32 banks, 64 banks, or another number of banks. In one example, the DRAM device 100 includes 32 banks and uses a burst length of 32. For example, the DRAM device 100 includes circuitry to enable each of the slices 102A-102D to transmit or receive data over a burst (e.g., 32 cycles or another number of cycles).
Given this DRAM die structure, in one example, an SDDC memory configuration can be achieved out of either 10 (1-Rank) or 20 (2-Rank) devices.
Turning first to
In one example, the memory module 201-A includes a memory channel with four pseudo channels (or sub-channels). In one example, each of the four pseudo channels includes a number of slices equal to the number of DRAM devices.
Accordingly,
The example in
Turning now to
In the example illustrated in
Thus,
For example,
In the illustrated example, each of the slices has 4 data lanes (shown with the x4). Consider an example in which each slice outputs (or inputs) a burst for 32 cycles. If each slice has 4 I/Os (e.g., 4 data lanes, shown by the x4), then each slice outputs (or inputs) 128 bits. Therefore, each device, 4 slices x 128 bits=512bits or 64 Bytes per burst. In one example, another 4 devices can be added to these devices to get a 2-rank memory configuration. Thus,
Unlike the example in
Thus, in the example illustrated in
The memory module 501 of
Although one rank is shown in
Thus,
The memory module 728 includes holes 708 and 713 that correspond to holes in the motherboard and the compression connector. The holes 708, 713 are to receives fasteners, such as screws, to compressibly attach the memory module 728 to the motherboard via the compression connector.
In one example, the pins are supported and kept in alignment by an array of holes or openings in the housing. In the example illustrated in
Reference to memory devices can apply to different memory types. “Memory devices” often refers to volatile memory technologies. Volatile memory is memory whose state (and therefore the data stored in it) is indeterminate if power is interrupted to the device. Dynamic volatile memory requires refreshing the data stored in the device to maintain state. One example of dynamic volatile memory incudes DRAM (Dynamic Random Access Memory), or some variant such as Synchronous DRAM (SDRAM). A memory subsystem as described herein may be compatible with a number of memory technologies, such as DDR3 (Double Data Rate version 3, original release by JEDEC (Joint Electronic Device Engineering Council) on Jun. 27, 2007). DDR4 (DDR version 4, originally published in September 2012 by JEDEC), DDR5 (DDR version 5, originally published in July 2020), DDR6, LPDDR3 (Low Power DDR version 3, JESD209-3B, August 2013 by JEDEC), LPDDR4 (LPDDR version 4, JESD209-4, originally published by JEDEC in August 2014), LPDDR5 (LPDDR version 5, JESD209-5A, originally published by JEDEC in January 2020), WIO2 (Wide Input/Output version 2, JESD229-2 originally published by JEDEC in August 2014), HBM (High Bandwidth Memory, JESD235, originally published by JEDEC in October 2013), HBM2 (HBM version 2, JESD235C, originally published by JEDEC in January 2020), or HBM3 (HBM version 3 currently in discussion by JEDEC), or others or combinations of memory technologies, and technologies based on derivatives or extensions of such specifications. The JEDEC standards are available at www.jedec.org.
Descriptions herein referring to a “RAM” or “RAM device” can apply to any memory device that allows random access, whether volatile or nonvolatile. Descriptions referring to a “DRAM” or a “DRAM device” can refer to a volatile random access memory device. The memory device or DRAM can refer to the die itself, to a packaged memory product that includes one or more dies, or both. In one embodiment, a system with volatile memory that needs to be refreshed can also include nonvolatile memory.
Memory controller 820 represents one or more memory controller circuits or devices for system 800. Memory controller 820 represents control logic that generates memory access commands in response to the execution of operations by processor 810. Memory controller 820 accesses one or more memory devices 840. Memory devices 840 can be DRAM devices in accordance with any referred to above. In one embodiment, memory devices 840 are organized and managed as different channels, where each channel couples to buses and signal lines that couple to multiple memory devices in parallel. Each channel is independently operable. Thus, each channel is independently accessed and controlled, and the timing, data transfer, command and address exchanges, and other operations are separate for each channel. Coupling can refer to an electrical coupling, communicative coupling, physical coupling, or a combination of these. Physical coupling can include direct contact. Electrical coupling includes an interface or interconnection that allows electrical flow between components, or allows signaling between components, or both. Communicative coupling includes connections, including wired or wireless, that enable components to exchange data.
In one embodiment, settings for each channel are controlled by separate mode registers or other register settings. In one embodiment, each memory controller 820 manages a separate memory channel, although system 800 can be configured to have multiple channels managed by a single controller, or to have multiple controllers on a single channel. In one embodiment, memory controller 820 is part of host processor 810, such as logic implemented on the same die or implemented in the same package space as the processor.
Memory controller 820 includes I/O interface logic 822 to couple to a memory bus, such as a memory channel as referred to above. I/O interface logic 822 (as well as I/O interface logic 842 of memory device 840) can include pins, pads, connectors, signal lines, traces, or wires, or other hardware to connect the devices, or a combination of these. I/O interface logic 822 can include a hardware interface. As illustrated, I/O interface logic 822 includes at least drivers/transceivers for signal lines. Commonly, wires within an integrated circuit interface couple with a pad, pin, or connector to interface signal lines or traces or other wires between devices. I/O interface logic 822 can include drivers, receivers, transceivers, or termination, or other circuitry or combinations of circuitry to exchange signals on the signal lines between the devices. The exchange of signals includes at least one of transmit or receive. While shown as coupling I/O 822 from memory controller 820 to I/O 842 of memory device 840, it will be understood that in an implementation of system 800 where groups of memory devices 840 are accessed in parallel, multiple memory devices can include I/O interfaces to the same interface of memory controller 820. In an implementation of system 800 including one or more memory modules 870, I/O 842 can include interface hardware of the memory module in addition to interface hardware on the memory device itself. Other memory controllers 820 will include separate interfaces to other memory devices 840.
The bus between memory controller 820 and memory devices 840 can be implemented as multiple signal lines coupling memory controller 820 to memory devices 840. The bus may typically include at least clock (CLK) 832, command/address (CMD) 834, and write data (DQ) and read data (DQ) 836, and zero or more other signal lines 838. In one embodiment, a bus or connection between memory controller 820 and memory can be referred to as a memory bus. The signal lines for CMD can be referred to as a “C/A bus” (or ADD/CMD bus, or some other designation indicating the transfer of commands (C or CMD) and address (A or ADD) information) and the signal lines for write and read DQ can be referred to as a “data bus.” In one embodiment, independent channels have different clock signals, C/A buses, data buses, and other signal lines. Thus, system 800 can be considered to have multiple “buses,” in the sense that an independent interface path can be considered a separate bus. It will be understood that in addition to the lines explicitly shown, a bus can include at least one of strobe signaling lines, alert lines, auxiliary lines, or other signal lines, or a combination. It will also be understood that serial bus technologies can be used for the connection between memory controller 820 and memory devices 840. An example of a serial bus technology is 8B10B encoding and transmission of high-speed data with embedded clock over a single differential pair of signals in each direction. In one embodiment, CMD 834 represents signal lines shared in parallel with multiple memory devices. In one embodiment, multiple memory devices share encoding command signal lines of CMD 834, and each has a separate chip select (CS_n) signal line to select individual memory devices.
It will be understood that in the example of system 800, the bus between memory controller 820 and memory devices 840 includes a subsidiary command bus CMD 834 and a subsidiary bus to carry the write and read data, DQ 836. In one embodiment, the data bus can include bidirectional lines for read data and for write/command data. In another embodiment, the subsidiary bus DQ 836 can include unidirectional write signal lines for write and data from the host to memory and can include unidirectional lines for read data from the memory to the host. In accordance with the chosen memory technology and system design, other signals 838 may accompany a bus or sub bus, such as strobe lines DQS. Based on design of system 800, or implementation if a design supports multiple implementations, the data bus can have more or less bandwidth per memory device 840. For example, the data bus can support memory devices that have either a x32 interface, a x16 interface, a x8 interface, or other interface. The convention “xW,” where W is an integer that refers to an interface size or width of the interface of memory device 840, which represents a number of signal lines to exchange data with memory controller 820. The interface size of the memory devices is a controlling factor on how many memory devices can be used concurrently per channel in system 800 or coupled in parallel to the same signal lines. In one embodiment, high bandwidth memory devices, wide interface devices, or stacked memory configurations, or combinations, can enable wider interfaces, such as a x128 interface, a x256 interface, a x512 interface, a x1024 interface, or other data bus interface width.
In one embodiment, memory devices 840 and memory controller 820 exchange data over the data bus in a burst, or a sequence of consecutive data transfers. The burst corresponds to a number of transfer cycles, which is related to a bus frequency. In one embodiment, the transfer cycle can be a whole clock cycle for transfers occurring on a same clock or strobe signal edge (e.g., on the rising edge). In one embodiment, every clock cycle, referring to a cycle of the system clock, is separated into multiple unit intervals (UIs), where each UI is a transfer cycle. For example, double data rate transfers trigger on both edges of the clock signal (e.g., rising and falling). A burst can last for a configured number of UIs, which can be a configuration stored in a register, or triggered on the fly. For example, a sequence of eight consecutive transfer periods can be considered a burst length 8 (BL8), and each memory device 840 can transfer data on each UI. Thus, a x8 memory device operating on BL8 can transfer 64 bits of data (8 data signal lines times 8 data bits transferred per line over the burst). It will be understood that this simple example is merely an illustration and is not limiting.
Memory devices 840 represent memory resources for system 800. In one embodiment, each memory device 840 is a separate memory die. In one embodiment, each memory device 840 can interface with multiple (e.g., 2) channels per device or die. Each memory device 840 includes I/O interface logic 842, which has a bandwidth determined by the implementation of the device (e.g., x16 or x8 or some other interface bandwidth). I/O interface logic 842 enables the memory devices to interface with memory controller 820. I/O interface logic 842 can include a hardware interface and can be in accordance with I/O 822 of memory controller, but at the memory device end. In one embodiment, multiple memory devices 840 are connected in parallel to the same command and data buses. In another embodiment, multiple memory devices 840 are connected in parallel to the same command bus and are connected to different data buses. For example, system 800 can be configured with multiple memory devices 840 coupled in parallel, with each memory device responding to a command, and accessing memory resources 860 internal to each. For a Write operation, an individual memory device 840 can write a portion of the overall data word, and for a Read operation, an individual memory device 840 can fetch a portion of the overall data word. As non-limiting examples, a specific memory device can provide or receive, respectively, 8 bits of a 128-bit data word for a Read or Write transaction, or 8 bits or 16 bits (depending for a x8 or a x16 device) of a 256-bit data word. The remaining bits of the word will be provided or received by other memory devices in parallel.
In one embodiment, memory devices 840 are disposed directly on a motherboard or host system platform (e.g., a PCB (printed circuit board) on which processor 810 is disposed) of a computing device. In one embodiment, memory devices 840 can be organized into memory modules 870. In one embodiment, memory modules 870 represent dual inline memory modules (DIMMs).
In one embodiment, memory modules 870 represent other organization of multiple memory devices to share at least a portion of access or control circuitry, which can be a separate circuit, a separate device, or a separate board from the host system platform. Memory modules 870 can include multiple memory devices 840, and the memory modules can include support for multiple separate channels to the included memory devices disposed on them. In another embodiment, memory devices 840 may be incorporated into the same package as memory controller 820, such as by techniques such as multi-chip-module (MCM), package-on-package, through-silicon via (TSV), or other techniques or combinations. Similarly, in one embodiment, multiple memory devices 840 may be incorporated into memory modules 870, which themselves may be incorporated into the same package as memory controller 820. It will be appreciated that for these and other embodiments, memory controller 820 may be part of host processor 810.
Memory devices 840 each include memory resources 860. Memory resources 860 represent individual arrays of memory locations or storage locations for data. Typically, memory resources 860 are managed as rows of data, accessed via wordline (rows) and bitline (individual bits within a row) control. Memory resources 860 can be organized as separate channels, ranks, and banks of memory. Channels may refer to independent control paths to storage locations within memory devices 840. A rank refers to memory devices coupled with the same chip select. Ranks may refer to common locations across multiple memory devices (e.g., same row addresses within different devices). Banks may refer to arrays of memory locations within a memory device 840. In one embodiment, banks of memory are divided into sub-banks with at least a portion of shared circuitry (e.g., drivers, signal lines, control logic) for the sub-banks, allowing separate addressing and access. It will be understood that channels, ranks, banks, sub-banks, bank groups, or other organizations of the memory locations, and combinations of the organizations, can overlap in their application to physical resources. For example, the same physical memory locations can be accessed over a specific channel as a specific bank, which can also belong to a rank. Thus, the organization of memory resources will be understood in an inclusive, rather than exclusive, manner.
In one embodiment, memory devices 840 include one or more registers 844. Register 844 represents one or more storage devices or storage locations that provide configuration or settings for the operation of the memory device. In one embodiment, register 844 can provide a storage location for memory device 840 to store data for access by memory controller 820 as part of a control or management operation. In one embodiment, register 844 includes one or more Mode Registers. In one embodiment, register 844 includes one or more multipurpose registers. The configuration of locations within register 844 can configure memory device 840 to operate in different “modes,” where command information can trigger different operations within memory device 840 based on the mode. Additionally, or in the alternative, different modes can also trigger different operation from address information or other signal lines depending on the mode. Settings of register 844 can indicate configuration for I/O settings (e.g., timing, termination or ODT (on-die termination), driver configuration, or other I/O settings).
Memory device 840 includes controller 850, which represents control logic within the memory device to control internal operations within the memory device. For example, controller 850 decodes commands sent by memory controller 820 and generates internal operations to execute or satisfy the commands. Controller 850 can be referred to as an internal controller and is separate from memory controller 820 of the host. Controller 850 can determine what mode is selected based on register 844 and configure the internal execution of operations for access to memory resources 860 or other operations based on the selected mode. Controller 850 generates control signals to control the routing of bits within memory device 840 to provide a proper interface for the selected mode and direct a command to the proper memory locations or addresses. Controller 850 includes command logic 852, which can decode command encoding received on command and address signal lines. Thus, command logic 852 can be or include a command decoder. With command logic 852, memory device can identify commands and generate internal operations to execute requested commands.
Referring again to memory controller 820, memory controller 820 includes command (CMD) logic 824, which represents logic or circuitry to generate commands to send to memory devices 840. The generation of the commands can refer to the command prior to scheduling, or the preparation of queued commands ready to be sent. Generally, the signaling in memory subsystems includes address information within or accompanying the command to indicate or select one or more memory locations where the memory devices should execute the command. In response to scheduling of transactions for memory device 840, memory controller 820 can issue commands via I/O 822 to cause memory device 840 to execute the commands. In one embodiment, controller 850 of memory device 840 receives and decodes command and address information received via I/O 842 from memory controller 820. Based on the received command and address information, controller 850 can control the timing of operations of the logic and circuitry within memory device 840 to execute the commands. Controller 850 is responsible for compliance with standards or specifications within memory device 840, such as timing and signaling requirements. Memory controller 820 can implement compliance with standards or specifications by access scheduling and control.
Memory controller 820 includes scheduler 830, which represents logic or circuitry to generate and order transactions to send to memory device 840. From one perspective, the primary function of memory controller 820 could be said to schedule memory access and other transactions to memory device 840. Such scheduling can include generating the transactions themselves to implement the requests for data by processor 810 and to maintain integrity of the data (e.g., such as with commands related to refresh). Transactions can include one or more commands, and result in the transfer of commands or data or both over one or multiple timing cycles such as clock cycles or unit intervals. Transactions can be for access such as read or write or related commands or a combination, and other transactions can include memory management commands for configuration, settings, data integrity, or other commands or a combination.
Memory controller 820 typically includes logic such as scheduler 830 to allow selection and ordering of transactions to improve performance of system 800. Thus, memory controller 820 can select which of the outstanding transactions should be sent to memory device 840 in which order, which is typically achieved with logic much more complex that a simple first-in first-out algorithm. Memory controller 820 manages the transmission of the transactions to memory device 840, and manages the timing associated with the transaction. In one embodiment, transactions have deterministic timing, which can be managed by memory controller 820 and used in determining how to schedule the transactions with scheduler 830.
In one example, the memory module(s) 870 can include 4-way pseudo split DRAM devices in accordance with examples described herein.
System 900 includes processor 910, which provides processing, operation management, and execution of instructions for system 900. Processor 910 can include any type of microprocessor, central processing unit (CPU), graphics processing unit (GPU), processing core, or other processing hardware to provide processing for system 900, or a combination of processors. Processor 910 controls the overall operation of system 900, and can be or include, one or more programmable general-purpose or special-purpose microprocessors, digital signal processors (DSPs), programmable controllers, application specific integrated circuits (ASICs), programmable logic devices (PLDs), or the like, or a combination of such devices.
In one embodiment, system 900 includes interface 912 coupled to processor 910, which can represent a higher speed interface or a high throughput interface for system components that needs higher bandwidth connections, such as memory subsystem 920 or graphics interface components 940. Interface 912 represents an interface circuit, which can be a standalone component or integrated onto a processor die. Where present, graphics interface 940 interfaces to graphics components for providing a visual display to a user of system 900. In one embodiment, graphics interface 940 can drive a high definition (HD) display that provides an output to a user. High definition can refer to a display having a pixel density of approximately 100 PPI (pixels per inch) or greater and can include formats such as full HD (e.g., 1080p), retina displays, 4K (ultra-high definition or UHD), or others. In one embodiment, the display can include a touchscreen display. In one embodiment, graphics interface 940 generates a display based on data stored in memory 930 or based on operations executed by processor 910 or both. In one embodiment, graphics interface 940 generates a display based on data stored in memory 930 or based on operations executed by processor 910 or both.
Memory subsystem 920 represents the main memory of system 900 and provides storage for code to be executed by processor 910, or data values to be used in executing a routine. Memory subsystem 920 can include one or more memory devices 930 such as read-only memory (ROM), flash memory, one or more varieties of random-access memory (RAM) such as DRAM, or other memory devices, or a combination of such devices. Memory 930 stores and hosts, among other things, operating system (OS) 932 to provide a software platform for execution of instructions in system 900. Additionally, applications 934 can execute on the software platform of OS 932 from memory 930. Applications 934 represent programs that have their own operational logic to perform execution of one or more functions. Processes 936 represent agents or routines that provide auxiliary functions to OS 932 or one or more applications 934 or a combination. OS 932, applications 934, and processes 936 provide software logic to provide functions for system 900. In one embodiment, memory subsystem 920 includes memory controller 922, which is a memory controller to generate and issue commands to memory 930. It will be understood that memory controller 922 could be a physical part of processor 910 or a physical part of interface 912. For example, memory controller 922 can be an integrated memory controller, integrated onto a circuit with processor 910.
While not specifically illustrated, it will be understood that system 900 can include one or more buses or bus systems between devices, such as a memory bus, a graphics bus, interface buses, or others. Buses or other signal lines can communicatively or electrically couple components together, or both communicatively and electrically couple the components. Buses can include physical communication lines, point-to-point connections, bridges, adapters, controllers, or other circuitry or a combination. Buses can include, for example, one or more of a system bus, a Peripheral Component Interconnect (PCI) bus, a HyperTransport or industry standard architecture (ISA) bus, a small computer system interface (SCSI) bus, a universal serial bus (USB), or an Institute of Electrical and Electronics Engineers (IEEE) standard 1394 bus.
In one embodiment, system 900 includes interface 914, which can be coupled to interface 912. Interface 914 can be a lower speed interface than interface 912. In one embodiment, interface 914 represents an interface circuit, which can include standalone components and integrated circuitry. In one embodiment, multiple user interface components or peripheral components, or both, couple to interface 914. Network interface 950 provides system 900 the ability to communicate with remote devices (e.g., servers or other computing devices) over one or more networks. Network interface 950 can include an Ethernet adapter, wireless interconnection components, cellular network interconnection components, USB (universal serial bus), or other wired or wireless standards-based or proprietary interfaces. Network interface 950 can exchange data with a remote device, which can include sending data stored in memory or receiving data to be stored in memory.
In one embodiment, system 900 includes one or more input/output (I/O) interface(s) 960. I/O interface 960 can include one or more interface components through which a user interacts with system 900 (e.g., audio, alphanumeric, tactile/touch, or other interfacing). Peripheral interface 970 can include any hardware interface not specifically mentioned above. Peripherals refer generally to devices that connect dependently to system 900. A dependent connection is one where system 900 provides the software platform or hardware platform or both on which operation executes, and with which a user interacts.
In one embodiment, system 900 includes storage subsystem 980 to store data in a nonvolatile manner. In one embodiment, in certain system implementations, at least certain components of storage 980 can overlap with components of memory subsystem 920. Storage subsystem 980 includes storage device(s) 984, which can be or include any conventional medium for storing large amounts of data in a nonvolatile manner, such as one or more magnetic, solid state, or optical based disks, or a combination. Storage 984 holds code or instructions and data 986 in a persistent state (i.e., the value is retained despite interruption of power to system 900). Storage 984 can be generically considered to be a “memory,” although memory 930 is typically the executing or operating memory to provide instructions to processor 910. Whereas storage 984 is nonvolatile, memory 930 can include volatile memory (i.e., the value or state of the data is indeterminate if power is interrupted to system 900). In one embodiment, storage subsystem 980 includes controller 982 to interface with storage 984. In one embodiment controller 982 is a physical part of interface 914 or processor 910 or can include circuits or logic in both processor 910 and interface 914.
Power source 902 provides power to the components of system 900. More specifically, power source 902 typically interfaces to one or multiple power supplies 904 in system 900 to provide power to the components of system 900. In one embodiment, power supply 904 includes an AC to DC (alternating current to direct current) adapter to plug into a wall outlet. Such AC power can be renewable energy (e.g., solar power) power source 902. In one embodiment, power source 902 includes a DC power source, such as an external AC to DC converter. In one embodiment, power source 902 or power supply 904 includes wireless charging hardware to charge via proximity to a charging field. In one embodiment, power source 902 can include an internal battery or fuel cell source.
In one example, the memory 930 can be implemented with 4-way psuedo split DRAM devices in accordance with examples described herein.
Thus, a 4-way Pseudo Split Die DRAM architecture is described herein. In one example, each slice of the DRAM will be either a x2 or x4 depending on the desired width of the DRAM memory channel to provide an SDDC memory configuration within fewer devices than a conventional SDDC compliant memory module. From a form factor perspective, the 4-way pseudo split architecture enables stacking 10 devices into a package to create a memory channel with 2 packages. In one example, the capacity per memory channel can be reduced to improve the memory bandwidth to capacity ratio without sacrificing full SDDC. An alternative advantage is this DRAM style will allow higher bandwidth MRDIMM and CXL DIMM concepts by allowing a lower capacity rank behind the buffer, thereby lowering power while promoting higher speed.
Examples of four way pseudo split die DRAM architectures follow.
Flow diagrams as illustrated herein provide examples of sequences of various process actions. The flow diagrams can indicate operations to be executed by a software or firmware routine, as well as physical operations. In one embodiment, a flow diagram can illustrate the state of a finite state machine (FSM), which can be implemented in hardware and/or software. Although shown in a particular sequence or order, unless otherwise specified, the order of the actions can be modified. Thus, the illustrated embodiments should be understood only as an example, and the process can be performed in a different order, and some actions can be performed in parallel. Additionally, one or more actions can be omitted in various embodiments; thus, not all actions are required in every embodiment. Other process flows are possible.
To the extent various operations or functions are described herein, they can be described or defined as software code, instructions, configuration, and/or data. The content can be directly executable (“object” or “executable” form), source code, or difference code (“delta” or “patch” code). The software content of the embodiments described herein can be provided via an article of manufacture with the content stored thereon, or via a method of operating a communication interface to send data via the communication interface. A machine readable storage medium can cause a machine to perform the functions or operations described and includes any mechanism that stores information in a form accessible by a machine (e.g., computing device, electronic system, etc.), such as recordable/non-recordable media (e.g., read only memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage media, flash memory devices, etc.). A communication interface includes any mechanism that interfaces to any of a hardwired, wireless, optical, etc., medium to communicate to another device, such as a memory bus interface, a processor bus interface, an Internet connection, a disk controller, etc. The communication interface can be configured by providing configuration parameters and/or sending signals to prepare the communication interface to provide a data signal describing the software content. The communication interface can be accessed via one or more commands or signals sent to the communication interface.
Various components described herein can be a means for performing the operations or functions described. Each component described herein includes software, hardware, or a combination of these. The components can be implemented as software modules, hardware modules, special-purpose hardware (e.g., application specific hardware, application specific integrated circuits (ASICs), digital signal processors (DSPs), etc.), embedded controllers, hardwired circuitry, etc.
The hardware design embodiments discussed above may be embodied within a semiconductor chip and/or as a description of a circuit design for eventual targeting toward a semiconductor manufacturing process. In the case of the later, such circuit descriptions may take of the form of a (e.g., VHDL or Verilog) register transfer level (RTL) circuit description, a gate level circuit description, a transistor level circuit description or mask description or various combinations thereof. Circuit descriptions are typically embodied on a computer readable storage medium (such as a CD-ROM or other type of storage technology).
Besides what is described herein, various modifications can be made to the disclosed embodiments and implementations of the invention without departing from their scope. Therefore, the illustrations and examples herein should be construed in an illustrative, and not a restrictive sense. The scope of the invention should be measured solely by reference to the claims that follow.