The present invention relates to a separately recoverable product, which is disassemblable to respective separately recoverable materials, such as metal or plastics.
In the past, for disposal of home appliances (e.g., televisions, personal computers, and mobile phones), waste collectors, waste-disposal service vendors, and recycling operators of such disposed home appliances ordinarily had disassembled and separated them to respective separable materials, followed by waste disposal or recycling. With the advent of the enforcement of the recycling laws, large appliances, such as televisions, refrigerators, and air conditioners, are generally now designed in such a way to facilitate disposal and recycling as such by recycling operators.
As a conventional art, for example, there is an easily disassemblable high-voltage transformer of a microwave oven, which enables separation of an iron core formed by overlapping silicon steel sheets and copper wires (Japanese Patent Publication No. H11-273962). Doing away with the conventional practice of welding the silicon steel sheet, the above conventional art takes the approach of fixing the silicon steel sheet by sandwiching the same with the plate springs. By removing the plate springs, the transformer can be easily disassembled along with copper wires, thereby enabling recovery of highly-pure copper wires as resources. Meanwhile, with regard to small appliances such as mobile apparatuses as in mobile phones, since they are not subject to the above recycling laws, etc., the disassemblable system as such has not yet been established. However, small appliances generate a massive amount of wastes as compared to large appliances. Accordingly, even if the recovery system of facilitated separation as in large appliances were to be adopted for small appliances, there would be a heavy burden of tasks of separation of these wastes, imposed on waste collectors, waste-disposal service vendors, and recycling operators. In other words, even if the system were to be in place to enable physical separation, as in Japanese Patent Publication No. H11-273962, such system may facilitate the work of recycling operators but cannot nonetheless reduce the overall burden involved in waste disposal and recycling of small appliances such as mobile phones. In particular, for example, there is a trend in supply and demand of mobile phones to the effect that consumers frequently replace them before reaching the end of their physical lifespan by purchasing ones with new functions. Accordingly, these old mobile phones turn into wastes one after another, and as such, there is a significant trend in generation of a massive amount of wastes thereby. Hence, there is a need to transfer some of the tasks of separation of such small appliances before they fall into the hands of waste collectors, waste-disposal service vendors, and recycling operators.
With respect to products, including these small appliances, the present invention purports to provide a product easily separable into respective separable materials in the hands of a user of a product. Accordingly, before small appliances such as mobile phones are disposed and handed over to the waste collectors as waste, the present invention enables separation of waste to a certain degree and reduction of overall burden of waste disposal and recycling.
In order to solve these problems, the product herein comprises a connection member for materials to be separately recovered, and a detachment member for detaching said connection member. Now, a detachment member utilizes a mechanism of deforming a screw member using an explosion means, a melting means, or a shape-memory alloy.
Hereinafter, the embodiments of the present invention will be described by using FIGS. 1 to 5.
In relation to a product comprising a plurality of materials (e.g., a mobile phone), the present invention is a separately recoverable product, which is separable to its respective constituent components and materials. In other words, it is a product, which is disassemblable into respective separately recoverable materials.
As shown in
(Construction)
Mindful in particular of small appliances as in mobile phones generating a massive amount of waste, the present invention not only facilitates easy disassembly and separation by waste-disposal service vendors and recycling operators, it also provides a construction, which enables easy disassembly by a user of a mobile phone, etc. In particular, in order to enable disassembly into respective separately recoverable materials, the present invention is of construction of a separately recoverable product comprising a connection member and a detachment member. Hereinafter, the respective components thereof will be described.
(Connection Member)
First, a connection member will be described as below.
A connection member connects the separately recoverable materials. For example, in case of a mobile phone, a connection member connects respectively: (1) an upper cover made of a plastic material with a liquid-crystal panel containing a metal material; (2) operation buttons made of a plastic material with a main circuit board containing metal materials; and (3) a lower cover made of a plastic material with components containing metal materials, i.e., a main circuit board, components for vibration, and a lithium-ion battery.
The “separately recoverable materials” are respective components of a product consisting of a plurality of components, which are separable by unit by a “process” during collection and waste disposal. Here, the “process” refers to crushing, melting, incinerating, etc. In particular, if one of the materials to be separated is a cover of a mobile phone formed of plastic, the “process” refers to a process of crushing it into small pieces after collection. Moreover, if another material to be separated is a main circuit board of a mobile phone, containing metal materials, the “process” refers to a process of removal by incinerating the materials other than the metal materials. In other words, separation is carried out by categorical unit of the same chemical properties, i.e., metal (iron, copper, aluminum, lead, etc.), glass, or plastic. Moreover, in addition to the simple separation by unit of the same chemical properties as above, the “process” may include provision for reuse by way of collection as unit of components composed of a plurality of materials of chemically different properties, e.g., a disposable camera case. In particular, in case of a disposable camera, a cover component formed of plastic material and a main circuit board for a flash unit is collected as a unit of components. Nevertheless, the materials to be separated are not to be limited to the above examples and may include any components as long as they are units of components generally handled by way of disassembly, etc.
Moreover, separately recoverable products according to the present invention are not limited to home appliances. For example, in the assembly of a PET bottle, the main body component of a PET bottle, which is formed of hard plastic materials, is covered with a soft film component. The soft film component, on which a package design is printed, is made of a thermal expandable material. In such cases, by expanding the film component by way of heating the PET bottle, this peels away the film component from the main body component by forming a gap there-between.
Nevertheless, the above PET bottle case is merely an example. The separately recoverable products according to the present invention are not limited to these embodiments, and could be any products as long as they are of construction using a plurality of separately recoverable materials. Examples other than the above embodiments include automobiles, and fabricated houses. The separately recoverable products many include any products as long as they are of construction enabling detachment via a detachment member without requiring a direct physical force manually onto the connection member connecting these separable materials.
(Detachment Member)
Next, a detachment member will be described.
The “detachment member” detaches said connection member in order to enable disassembly of respectively separable materials. The detachment member may include an explosion means, a melting means, and a heating means for deforming the members connected by a connection member of a shape-memory alloy deformable at a certain temperature. As described hereinafter, the detachment member may be formed as a part of a structure of separable materials forming into a connection member, or maybe formed separately from said connection member. In the former case, the connection member and the detachment member are integrated into a unit. Now, the detachment of said connection member by a detachment member does not necessarily mean complete detachment. In other words, it may refer to detachment of separation with other unseparated materials still remaining to the extent not hindering recycling of separable materials.
(Explosion Means)
The “explosion means” carries out detachment by breaking said connection member.
Moreover, if the explosive is a chemical substance generating gas, a structure may be installed in place, in which said chemical substance can be mixed with the necessary substances at the part of the material 03A1 with the sandwiched explosive.
Moreover,
Moreover,
As described above, if the connection member is connected by a screw structure, or if the one material is connected to the other material of the connection member by press-fitting thereto, it may be too burdensome to disassemble the same by unscrewing a screw with a screw driver in the hands of a user of a separately recoverable product, or to detach the portion connected by press-fitting by manually pulling apart with hands. However, even when carried out by a user of a separately recoverable product, this may be easily carried out if the detachment is possible with breakage by an explosion means as above. Further, as described above, if the connection is made by soldering, it is much too burdensome to carry out detachment by heat-melting the connection member with a tool or the like in the hands of a user of a separately recoverable product. Moreover, with the advent of implementation of the recycling laws, there is a current trend for not using harmful substances such as soldering materials. For example, in lieu of lead which is generally used for soldering materials, under review is a use of tin (Sn), silver (Ag), copper (Cu), etc. as soldering materials. As for soldering materials of tin (Sn), silver (Ag), and/or copper (Cu), the melting point thereof is approximately 220° C., which is comparatively higher than the melting point of approximately 183° C. of the lead soldering materials. Accordingly, it is not so easy for a user of a separately recoverable product to carry out detachment of a connection member connected with the soldering materials of a high melting point as such. However, even in case of such a user, the detachment can be easily carried out if it is possible by breaking the connection member by an explosion member as described above.
(A Melting Means, Relating Mainly to claims 3 and 4)
The “melting means” detaches said connection member by melting.
As a method of heating by said resistance-heating means, via having a conductive connection member as a heating element, there is a method of heating by direct electrification by installing an electrode at said connection member. Alternatively, there is a method of heating the connection member by radiation, conduction or convection from a heating element of a nichrome wire. Alternatively, there is a method of heating by far-infrared radiation. In this case, far-infrared radiation is generated by a heater having a resistance-heating element in contact with ceramics or the like. Then, the far-infrared radiation so generated oscillates the molecules of the soldering material of the connection member to be heated, thereby melting the connection member by heating the same by raising its temperature. A heater may be installed within or outside the separately recoverable product according to the present invention. If the heater is installed outside the separately recoverable product according to the present invention, a conductive wire, comprising substances of high heat-conductivity (copper, etc.), is put in place from said connection member to the outer case of the separately recoverable product according to the present invention for efficiently conducting heat to said connection member. In such a construct, the heat generated by the action of far-infrared radiation from the outer case of the separately recoverable product is transferred to the connection member by said conductive wire.
(A Heating Means for Deforming the Component Connected with a Connection Member Using a Shape-Memory Alloy, Relating Mainly to claim 5)
Described next is a heating means for deforming the component connected with a connection member using a shape-memory alloy deforming at a certain temperature. A deforming member can be of any components as long as they are used for connection. For example, if a screw is used for connection, they made include components, such as a screw itself, an opening for screwing such screw, a washer inserted between the screw and a member formed with a threaded opening. Other than the screw, there may be used a rivet; or a fastener, in which the head portion thereof after going through an opening hitches to the opening outlet. Described below are a screw and a threaded opening.
The “heating means” carries out detachment by deforming the member connected with the connection member using a shape-memory alloy, which deforms at a certain temperature as above.
A “shape-memory alloy” is an alloy, which returns to its original shape by phase transformation from a crystal structure (austenite phase) at high temperature to a crystal structure (martensite phase) at low temperature. It includes Ni—Ti alloy, Cu alloy (Cu—Zn—Al alloy, Cu—Al—Ni alloy), and Fe-based alloy.
(Relating Mainly to claims 8 to 12)
Nonetheless, the present invention while being not limited by the embodiments as below may be constructed in such a manner to enable detachment of said connection member without having a detachment member comprising said heating means. The specific embodiments are provided below:
In relation to a separately recoverable product, enabling disassembly into respective separately recoverable materials, and further in relation to a connection member of separately recoverable materials, the separately recoverable product herein comprises a connection member, which is unconnected by an outside physical action and/or by chemical action. The physical action may include heating or electromagnetic radiation, and the chemical action may include contact with chemical liquid or specific gas.
Described below is one example of cases, in which physical action is heating. In the case of a connection member connected by a screw component using a shape-memory alloy, in which the screw thread thereof is flattened at a certain temperature, the separately recoverable product according to the present invention is structured in such a way to enable detachment of said connection member by heating by another device (a toaster, etc.), wherein the temperature of the connecting member comprising said screw component is raised to the temperature of deforming to the extent of flattening the shape-memory alloy screw thread.
Described next is one example of cases, in which physical action is electromagnetic radiation. In the case of a connection member connected by a screw component using a shape-memory alloy, in which the screw thread thereof is flattened by certain electromagnetic effects, the separately recoverable product according to the present invention is structured in such a way to enable detachment of said connection member by electromagnetic radiation by generating electromagnetic field to the extent of flattening the shape-memory alloy screw thread.
Described below is an example of detachment of said connection member by chemical action as above. In said connection member, a separable material is equipped with an opening, and the other separable material is equipped with a protrusion part, which is press-fitted into said opening outlet. By being inserted in place, the two separable materials are connected thereby. The hitching portion of the protrusion part is made of substances easily soluble by certain chemical solution or gas from the other separable material. In relation to the connection member as above, where the above chemical action involves contact with chemical liquid, the separately recoverable product according to the present invention is exposed to chemical liquid having an effect of melting only the material of the protrusion part. Then, by melting the protrusion part by said chemical solution, the connection member is disconnected, thereby enabling disassembly into respective separable materials. Moreover, in relation to the connection member as above, where the above chemical action involves contact with certain gas, the inside of the case of the separately recoverable product according to the present invention is filled with certain gas having an effect of melting only the material of the protrusion part. Then, by melting the protrusion part by certain gas, the connection member is disconnected, thereby enabling disassembly into respective separable materials.
(Operation Input Member)
Moreover, the present invention may include an operation input member for using the function of said detachment member.
As described above, the “operation input member” enables input of signal for using the function of said detachment. For example, where the separately recoverable product is a mobile phone, the operation input member may comprise operation buttons for inputting a telephone number or the like of a mobile phone. Further, the operation buttons as such may comprise dedicated buttons installed separately. Further, while not being limited to the above construction of direct input by a user of a separately recoverable product, an input member for example may be constructed in such a way to enable inputting of said signal by receiving the signal transmitted via the Internet or the like.
By way of construction as above, while not undergoing disassembly by using a screw driver or the like, the disassembly of a mobile phone as such into separable materials may be carried out simply by a user of such mobile phone.
Moreover, the information specified based on the signal inputted to the operation input member may be of a pre-set password. For example, where the separately recoverable product is a mobile phone, the password may comprise numbers, characters, codes, etc., which are imputable by operation buttons of said mobile phone.
Then, by inputting the signal of the above password or the like to said operation input member, the detachment member detaches the connection member by means of operation based on the signal inputted from said operation input member. For example, by inputting the signal to said operation input member, the connection member is detached by breakage or otherwise of said connection member by an explosion means included in the detachment member.
As described above, a separately recoverable product according to the present invention not only enables physical disassembly into separable components, but it also enables such disassembly in an easier manner. Further, if the disassembly is carried out as such, it facilitates separation at the level of users of separately recoverable products. In this manner, the costs associated with disassembly on the part of waste collectors, waste-disposal service vendors, and recycling operators, are suppressed, thereby facilitating recycling or the like.
Moreover, even if disassembly is carried out by waste collectors, waste-disposal service vendors, and recycling operators, the task becomes that much simpler for waste disposal and recycling. In particular, as described above, by having a connection member disconnected by an outside physical action or the like, the products to be disassembled are collected, and the connection members can be detached by putting physical action of heating or the like to the entire collection, thereby enabling all-at-once disassembly into separable materials. Further, from the perspective of electronic appliance makers, for example, in relation to the replacement or the like of a portion of defective products detected in the checking step prior to product shipment, the tasks for replacement for defective components will be facilitated by way of disassembly of products using the construct as described above.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP03/15697 | 12/9/2003 | WO | 8/30/2005 |