Switch-mode power supplies (SMPSs) (“power converters”) are widely utilized in consumer, industrial and medical applications to provide well-regulated power while maintaining high power processing efficiency, tight-output voltage regulation, and reduced conducted and radiated electromagnetic interference (EMI).
To meet these conflicting goals, state-of-the-art power converters (fly-back converters, forward converters, boost converters, buck converters, and so on) commonly utilize quasi-resonant control methods. Quasi-resonant control methods induce a resonant waveform having sinusoidal voltage oscillations at the drains of one or more semiconductor switches of the power converter. Through well-timed control actions, the semiconductor switches are turned on at the instants where the drain voltage is minimum (i.e., valley switching), thus minimizing the semiconductor switching losses and drain-source dv/dt slope, leading to increased power processing efficiency and reduced electromagnetic interference (EMI).
To maintain these benefits across an entire operating range of the power converter, it is often necessary to “hop” between the valleys of the resonant waveform in such a way as to minimize the sum of the conduction and switching losses (which are generally inversely proportional to each other). However, during the valley hop transitions, output voltage disturbances are introduced. Furthermore, if there are frequent and/or repeated low-frequency mode transitions, audible noise may be generated by the magnetic and/or capacitive elements of the power converter.
Typically, this issue is partially addressed by introducing large valley hopping hysteresis constraints. However, such methods negatively affect power processing efficiency and eliminate any potential spread-spectrum benefits from more frequent valley hopping. In addition, a large output voltage disturbance is still introduced as a result of such valley mode transitions.
Some embodiments described herein provide a power converter controller that includes a fractional valley controller configured to determine a target number of valleys of a resonant waveform at a drain node of a main switch, the target number of valleys corresponding to a desired off-time of the main switch, the fractional valley controller modulating an off-time of the main switch between two or more modulated off-times. The target number of valleys corresponds to a non-integer number of valleys of the resonant waveform at the drain node of the main switch. Each of the modulated off-times of the main switch corresponds to an integer number of valleys, and the two or more modulated off-times of the main switch has an average value that corresponds to the desired off-time.
Some embodiments described herein provide a power converter that includes a transformer having a primary winding configured to receive an input voltage, and a secondary winding configured to provide an output voltage to a load. A main switch is coupled to the primary winding and configured to control a current through the primary winding to generate the output voltage. A resonant waveform at a drain node of the main switch includes one or more valleys during an off-time of the main switch. The power converter includes a primary side controller configured to control the main switch. The primary side controller includes a fractional valley controller configured to control the off-time of the main switch. The fractional valley controller is configured to determine a target number of valleys corresponding to a desired off-time of the main switch, the target number of valleys corresponding to a non-integer number of valleys. The fractional valley controller is configured to modulate the off-time of the main switch between two or more modulated off-times, each of the modulated off-times of the main switch corresponding to a respective integer number of valleys of the resonant waveform, and the two or more modulated off-times of the main switch has an average value that corresponds to the desired off-time.
Some embodiments described herein provide a fractional valley switching controller of a switch-mode power supply (“power converter”) that implements fractional valley switching during a quasi-resonant operating mode of the power converter. In some embodiments, the fractional valley switching controller (“fractional valley controller”) is part of a primary side controller of the power converter. In general, the power converter converts an input voltage on a primary side of a transformer to an output voltage on a secondary side of the transformer by controlling a current through a primary winding of the transformer using a primary side switch (“main switch”). During an off-time of the main switch, a resonant waveform develops at the drain node of the main switch. Based on the off-time of the main switch, the resonant waveform includes one or more peaks (local maxima) and one or more valleys (local minima). The primary side controller of the power converter is configured to control the off-time of the main switch such that the main switch is typically only switched when the drain-source voltage of the main switch is at a local minimum (i.e., at a valley of the resonant waveform). Unfortunately, in some instances, a total power to be delivered by the power converter can correspond to a non-integer number of valleys. Because a non-integer valley number does not correspond to a local minimum of the resonant waveform, switching the main switch at a non-integer valley number will result in switching losses that are greater than if the main switch is switched when the drain-source voltage is at a local minimum (i.e., corresponding to an integer number of valleys). The fractional valley switching controller disclosed herein advantageously controls, by fractional valley switching, the off-time of the main switch such that the main switch is typically only switched at integer valleys but enables the power converter to still deliver a total power that corresponds to a non-integer number of valleys. As is disclosed herein, such fractional valley switching is accomplished by the fractional valley controller by modulating a series of off-times of the main switch, each of the modulated off-times corresponding to a respective integer number of valleys. An average of the modulated off-times converges to an off-time that corresponds to a non-integer (i.e., fractional) valley. Thus, advantageously, a precise amount of power is delivered by the power converter, and switching losses are still minimized. Additionally, the fractional valley controller disclosed herein advantageously enables or disables fractional valley switching based on a switching cycle frequency of the main switch to prevent undesirable audible tones. Still further, the fractional valley controller disclosed herein provides for a fractional resolution of the non-integer number of valleys that is greater than that provided by typical valley dithering techniques.
The power converter 100 is configured to receive the input voltage Vin′ and to provide the output voltage Vout and the output current iload to a load RL′ based on an on-time and an off-time of the main switch M1′. The on-time and the off-time of the main switch M1′ are controlled by the primary side controller 110. The primary side controller 110 is configured to receive the input voltage Vin, the auxiliary voltage Vaux, and a feedback signal (e.g., a magnetizing inductance charging time ton, or other feedback signal) and to generate a main switch control signal PWMM1′ to control the on-time and off-time of the main switch M1′. In some embodiments, the quasi-resonant converter circuit 106 is implemented as a fly-back, forward, boost, or buck power converter.
The power converter 200 is configured to receive the input voltage Vin′ and to provide the output voltage Vout and the output current iload to a load RL based on an on-time and an off-time of the main switch M1. The on-time and the off-time of the main switch M1 are controlled by the primary side controller 210. The primary side controller 210 is configured to receive the input voltage Vin, an auxiliary voltage Vaux, and a magnetizing inductance charging time ton (or other feedback signal) and to generate a main switch control signal PWMM1 to control the on-time and off-time of the main switch M1.
The main switch M1 is coupled to the primary winding 234 and is configured to control a current through the primary winding 234 to charge a magnetizing inductance of the transformer 218 using the input voltage Vin during a first portion of a switching cycle of the power converter 200 (i.e., when the main switch M1 is turned on). The synchronous rectifier switch M2 controls a current through the secondary winding 236 to discharge the transformer 218 into the output buffer circuit 211 and the load RL during a subsequent portion of the switching cycle (i.e., when the main switch M1 is turned off). The clamp circuit 232 limits the drain-source voltage VdsM1 developed at the drain node of the main switch M1 to a voltage that is less than a maximum safe operating voltage of the main switch M1. In some embodiments, the clamp circuit 232 is an active clamp circuit that is self-driven (e.g., the clamp circuit 232 does not require a control signal provided by the primary side controller 210). In other embodiments, the clamp circuit 232 is an active clamp circuit that is controlled by the primary side controller 210 using the optional active clamp control signal ACctl. In still other embodiments, the clamp circuit 232 is a resistor-capacitor-diode (RCD) snubber circuit.
The feedback network 212 generates an internal error signal that is representative of a difference between the output voltage Vout at the output of the power converter 200 and the reference voltage Vref. In some embodiments, the feedback network 212 processes the difference through an internal proportional-integral (PI) or proportional-integral-differential (PID) compensator. In some embodiments, the output from the feedback network 212 is mirrored from the output side of the power converter 200 to the input side of the power converter 200 using an isolator. The feedback network 212 provides a feedback signal to the primary side controller 210 which adjusts the main switch control signal PWMM1 based on the feedback signal. For example, in some embodiments, the feedback signal corresponds to a desired on-time ton for the main switch M1 to charge the magnetizing inductance of the transformer 218.
The primary side controller 210 is configured to receive the feedback signal from the feedback network 212, the input voltage Vin, and the auxiliary voltage Vaux, and to generate the main switch control signal PWMM1 based on these received signals. The main switch control signal PWMM1 causes the main switch M1 to turn on and off in accordance with the on-time and an off-time toff of the main switch M1. During quasi-resonant operation of the power converter 200, when the main switch M1 is off, a resonant waveform develops at a drain node of the main switch M1. The resonant waveform includes a series of voltage peaks (local maxima) and valleys (local minima). The primary side controller 210 advantageously controls the main switch M1 using the main switch control signal PWMM1 such that the main switch M1 is turned on when the voltage VdsM1 is at a local minimum, i.e., at a valley of the resonant waveform. During a series of switching cycles of the main switch M1, the fractional valley controller 208 modulates the valley at which the main switch M1 is turned on such that an average of the sequence of modulated valleys converges on a non-integer valley number. For example, an integer valley sequence of integer valley numbers: {2,2,2,1} has a non-integer (i.e., fractional) average value of 1.75.
A simplified plot 300 of the drain-source voltage VdsM1 (i.e., a resonant waveform), at the drain node of the main switch M1, having integer valleys 304a-c during a first switching cycle 306, and integer valleys 308a-b during a second switching cycle 310 is shown in
Unfortunately, in some instances, the total power to be delivered to the load RL will correspond to a non-integer number of valleys (e.g., the point 312). As discussed previously, switching the main switch M1 when the drain-source voltage VdsM1 of the main switch M1 is not at a minimum results in switching losses that are greater than if the main switch M1 is switched only when the drain-source voltage VdsM1 is at a minimum (i.e., corresponding to an integer number of valleys). Thus, if the main switch M1 is frequently switched at a non-integer number of valleys (e.g., the point 312), switching losses of the power converter 200 will be greater than if the main switch M1 is switched at any of the integer number of valleys (e.g., 304a-c).
The fractional valley controller 208 as disclosed herein advantageously controls, by fractional valley switching, the off-time of the main switch M1 such that the main switch M1 is only switched at an integer number of valleys (i.e., in the middle of one of the valleys) but enables the power converter 200 to still deliver a total power to the load RL that corresponds to a non-integer number of valleys. Additionally, fractional valley switching as disclosed herein enables such non-integer numbers of valleys to have a greater than typical fractional range. For example, a typical valley dithering approach that dithers or hops between two adjacent valleys may deliver a total power that corresponds to an average between the two adjacent valleys. That is, hopping or dithering between valley 1 (304a) and valley 2 (304b) will converge on an average that corresponds to valley 1.5. However, such typical valley dithering approaches cannot deliver a total power that corresponds to a greater resolution of decimal values between integer valleys (e.g., corresponding to valley 1.25, valley 1.3, valley 1.4, valley 1.45, valley 1.55, and so on).
Details of the primary side controller 210, in accordance with some embodiments, are shown in
The ADC module 404 is configured to generate a digitized feedback signal ton(n) based on the feedback signal ton (the desired on-time of the main switch M1). The ADC module 404 is further configured to generate a digitized input voltage Vin(n) based on the conditioned input voltage Vin. In some embodiments, the power optimization controller 406 generates a desired off time toff*(n) of the main switch M1 as described in related application, U.S. patent application Ser. No. 16/020,496. The ZCD 410 generates a valley detection signal valleydet for each detected valley (e.g., the valleys 304a-c). In some embodiments, the ZCD 410 detects each of the valleys of the resonant waveform at the drain node of the main switch M1 using the auxiliary voltage Vaux generated using the auxiliary winding 216. In other embodiments, the ZCD 410 detects each of the valleys of the resonant waveform at the drain node of the main switch M1 using a voltage received from, or based on the voltage at, the drain node of the main switch M1. The fractional valley controller 408 is configured to receive the valley detection signal valleydet, a measured off-time toff(n) of the main switch M1, a switching cycle frequency signal tsw(n) (a value representative of the switching period or switching frequency of the main switch M1), and a desired off-time toff*(n) for the main switch M1 from the power optimization controller 406. The desired off-time toff*(n) is a calculated off-time of the main switch M1 which corresponds to a total power to be delivered to the load RL. As described earlier, in some instances the desired off-time toff*(n) of the main switch M1 corresponds to a non-integer number of valleys. The fractional valley controller 408 is configured to modulate the off-time toff(n) of the main switch M1 between a series of modulated off-times. A modulated off-time is an off-time of the main switch M1 that differs in time as compared to one or more other off-times in the series of modulated off-times. That is, in the series of modulated off-times, a first modulated off-time may have a duration of t, a second modulated off-time may have a duration of t+τ, a third modulated off-time may also have a duration of t+τ, a fourth modulated off-time may have a duration of t . . . , and so on, where τ is a delay.
Each of the modulated off-times corresponds to an integer number of valleys of the resonant waveform at the drain node of the main switch M1. However, an average value of the modulated off-times of the main switch M1 converges to an average off-time of the main switch M1 that corresponds to a non-integer number of valleys. Thus, the fractional valley controller 408 advantageously switches the main switch M1 at points where the drain-source voltage VdsM1 of the main switch M1 is minimized, but the total power delivered to the load RL is equal to a total power that corresponds to a non-integer number of valleys. The fractional valley controller 408 causes the main switch M1 to switch in accordance with the modulated off-times of the main switch M1 by transmitting a reset signal, PWMreset, to the PWM ramp generator 402 when a number of valleys detected using the ZCD 410 exceeds a target number of valleys determined by the fractional valley controller 408.
A simplified schematic of the fractional valley controller 408, in accordance with some embodiments, is shown in
The first signal comparison block 508 is configured to receive the measured off-time toff(n) of the main switch M1 and the desired off-time toff*(n) of the main switch M1 and to generate an off-time adjustment signal (“Incr./Dec.”). The first signal comparison block 508 compares the measured off-time toff(n) to the desired off-time toff*(n). If the measured off-time toff(n) is greater than the desired off-time toff*(n), the first signal comparison block 508 generates a decrement off-time adjustment signal which indicates that the main switch M1 should be switched at a point in time that corresponds to an earlier valley than that at which the main switch M1 is currently being switched. If the measured off-time toff(n) is not greater than the desired off-time toff*(n), the first signal comparison block 508 generates an increment off-time adjustment signal which indicates that the main switch M1 should be switched at a point in time that corresponds to a later valley than that at which the main switch M1 is currently being switched.
The target valley generator 514 receives the off-time adjustment signals (“Incr./Dec.”) from the first signal comparison block 508 and generates a target valley number, valley*(nint, ndec), having an integer portion (i.e., nint) and a decimal portion (i.e., ndec). For instance, if the target valley number is 2.65, the integer portion corresponds to the integer value 2, and the decimal portion corresponds to the decimal value 0.65. However, the target valley number is not limited to only corresponding to non-integer numbers of valleys. For example, for some desired off-times toff*(n) of the main switch M1, the target valley number may have a decimal portion that is equal to zero.
The valley integer modulator 512 is configured to receive the target valley number, valley*(nint, ndec), and to generate a series of modulated integer valley numbers valley*(n). A modulated integer valley number is a valley number that differs in number as compared to one or more other valley numbers in the series of modulated integer valley numbers. That is, in the series of modulated integer valley numbers, a first modulated integer valley number may be 1, a second modulated integer valley number may be 2, a third modulated integer valley number may also be 2, a fourth modulated valley integer number may be 1 . . . , and so on. Advantageously, in some embodiments, the valley integer modulator 512 is configured to generate non-alternating sequences of modulated integer valley numbers. An example of an alternating sequence of integer valley numbers is {1, 2, 1, 2, 1, 2, . . . }. An example of a non-alternating sequence of integer valley numbers is {1, 2, 2, 2, 1, 2, 2, 2, . . . }. That is, the fractional valley controller 208 is configured to generate a first sequence of one or more first integer valley numbers in series immediately followed by a second sequence of one or more second integer valley numbers in series, where a length of the first sequence is different than a length of the second sequence, and the one or more first integer valley numbers are not equal to the one or more second integer valley numbers.
Each of the modulated integer valley numbers valley*(n) corresponds to a modulated off-time of the main switch M1. Thus, the series of modulated integer valley numbers, valley*(n), converge on an average valley number that is equal to, or close to equal to (i.e., “about”), the target valley number which is a non-integer valley number.
The valley counter 504 receives the valleydet signal from the ZCD 410 and increments an internal counter to generate a detected valley count, valley(n). The second signal comparison block 510 compares a most recent detected valley count, valley(n), to a most recent modulated integer valley number, valley*(n). Upon determining that the most recent detected valley count, valley(n), is greater than the most recent modulated integer valley number, valley*(n), the second signal comparison block 510 transmits a PWMreset signal to the OR gate 502 and to the PWM ramp generator 402. Upon receiving the PWMreset signal, the PWM ramp generator 402 transmits a main switch control signal PWMM1 at a level that enables the main switch M1. Thus, the main switch M1 is advantageously switched at a point in time that corresponds to an integer valley number even though the output power of the power converter 200 converges to a power corresponding to a non-integer valley number.
The OR gate 502 transmits a reset signal to the valley counter 504 upon receiving the PWMreset signal. Upon receiving the reset signal, the valley counter 504 resets the internal valley count value to an initial value (e.g., 0). Additionally, the OR gate 502 transmits the reset signal to the valley counter 504 upon receiving a blanking signal (e.g., during a time when the main switch M1 is not disabled).
The valley integer modulator 512 is advantageously configured to only perform fractional valley switching when a switching frequency of the main switch M1 is higher than a minimum frequency threshold such that the modulated off-times of the main switch M1 will not generate frequencies that are in the range of audible noise (e.g., equal to or less than 30 kHz). The audible noise filter 506 receives the measured switching cycle frequency signal tsw(n) from the PWM ramp generator 402 and receives a minimum switching cycle frequency threshold tmin(n) (e.g., from a processor or other component of the other modules 412, or from another source such as a configuration component of the power converter 200). Upon determining that the measured switching cycle frequency signal tsw(n) is less than the minimum switching cycle frequency threshold tmin(n), the third signal comparison block 516 sends a de-asserted fractionalen signal to the valley integer modulator 512 to disable fractional valley switching. Upon determining that the measured switching cycle frequency signal tsw(n) is not less than the minimum switching cycle frequency threshold tmin(n), the third signal comparison block 516 sends an asserted fractionalen signal to the valley integer modulator 512 to enable fractional valley switching. Thus, fractional valley switching is advantageously disabled if fractional valley switching would result in undesirable audible tones.
In some embodiments, the second modulator 606 generates an output using a different hysteresis than that of the first modulator 604. In such embodiments, the second modulator 606 generates an output that modulates between 1 and 0 based the decimal portion, valley*(ndec) of the target valley number, valley*(nint, ndec). That is, for a range of decimal values that, in contrast, corresponds to a dead-band of the first modulator 604, the second modulator 606 generates a stream of values that modulate between 0 and 1.
The output, inc, of the mux 602 is summed with the integer portion valley*(nint) of the target valley number valley*(nint, ndec) by the signal adder block 608, thereby generating the stream of modulated output valley numbers, valley*(n).
The kth-order sigma-delta modulator implemented by the second modulator 706 is configured to receive the decimal portion, valley*(ndec) of the target valley number valley*(nint, ndec) and to generate an output stream of “highs” and “lows” (i.e., 1's and 0's) based on the decimal portion, valley*(ndec). The sigma-delta modulator of the second modulator 706 generates an output stream of values such that a number of 1's in the output stream of values increases as a value of the decimal portion, valley*(ndec) increases. Similarly, the sigma-delta modulator of the second modulator 706 generates an output stream of values such that a number of 0's in the output stream of values increases as a value of the decimal portion, valley*(ndec) decreases. The order of the sigma-delta modulator of the second modulator 706 dictates the number of integrators, i.e., the number of feedback loops, utilized. The higher the order, the higher the achievable fractional valley resolution. The sigma-delta modulator of the second modulator 706 advantageously generates the output stream as a noise-shaped signal to achieve higher resolution of fractional valley switching with a predictive frequency content as compared to hysteresis-based approaches. For example, an example sequence of modulated integer valley numbers, valley*(n), generated by the valley integer modulator 712 could include a sequence such as {4, 2, 1, 2 . . . } which converges on a non-integer valley number of 2.25.
Reference has been made in detail to embodiments of the disclosed invention, one or more examples of which have been illustrated in the accompanying figures. Each example has been provided by way of explanation of the present technology, not as a limitation of the present technology. In fact, while the specification has been described in detail with respect to specific embodiments of the invention, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing, may readily conceive of alterations to, variations of, and equivalents to these embodiments. For instance, features illustrated or described as part of one embodiment may be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present subject matter covers all such modifications and variations within the scope of the appended claims and their equivalents. These and other modifications and variations to the present invention may be practiced by those of ordinary skill in the art, without departing from the scope of the present invention, which is more particularly set forth in the appended claims. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the invention.
This application is a continuation of U.S. patent application Ser. No. 16/665,188, filed Oct. 28, 2019, which is a continuation of U.S. Pat. No. 10,461,627, issued on Oct. 29, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/630,639 filed on Feb. 14, 2018, and entitled “Fractional Valley Switching Controller,” and is related to U.S. Pat. No. 10,439,499 issued on Oct. 8, 2019, and entitled “Switch-Mode Power Supply Controller”; all of which are hereby incorporated by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5173846 | Smith | Dec 1992 | A |
5206800 | Smith | Apr 1993 | A |
5434767 | Batarseh et al. | Jul 1995 | A |
5636106 | Batarseh et al. | Jun 1997 | A |
6341073 | Lee | Jan 2002 | B1 |
6421256 | Giannopoulos et al. | Jul 2002 | B1 |
7791909 | Koo et al. | Sep 2010 | B2 |
7876085 | Hung et al. | Jan 2011 | B2 |
8259471 | Li et al. | Sep 2012 | B2 |
8339817 | Halberstadt | Dec 2012 | B2 |
8552893 | Sood et al. | Oct 2013 | B1 |
8659237 | Archenhold | Feb 2014 | B2 |
8659915 | Tsui | Feb 2014 | B2 |
8755203 | Li et al. | Jun 2014 | B2 |
8917068 | Chen | Dec 2014 | B2 |
9083250 | Adragna | Jul 2015 | B2 |
9154030 | Bianco et al. | Oct 2015 | B2 |
9276495 | Portisch | Mar 2016 | B2 |
9602006 | Fahlenkamp | Mar 2017 | B2 |
9825535 | Teo et al. | Nov 2017 | B2 |
9991791 | Herfurth et al. | Jun 2018 | B2 |
10224828 | Sigamani et al. | Mar 2019 | B1 |
10367422 | Malinin et al. | Jul 2019 | B1 |
10461627 | Radic | Oct 2019 | B2 |
10804805 | Radic | Oct 2020 | B1 |
20060061343 | Lipcsei et al. | Mar 2006 | A1 |
20080112193 | Yan et al. | May 2008 | A1 |
20090231894 | Moon et al. | Sep 2009 | A1 |
20090296429 | Cook et al. | Dec 2009 | A1 |
20100026208 | Shteynberg et al. | Feb 2010 | A1 |
20110031949 | Zhang et al. | Feb 2011 | A1 |
20110182089 | Berghegger | Jul 2011 | A1 |
20120002449 | Park et al. | Jan 2012 | A1 |
20120039098 | Berghegger | Feb 2012 | A1 |
20130154495 | He | Jun 2013 | A1 |
20130245854 | Rinne et al. | Sep 2013 | A1 |
20130329468 | Yang | Dec 2013 | A1 |
20140003098 | Park et al. | Jan 2014 | A1 |
20140112030 | Fahlenkamp | Apr 2014 | A1 |
20140268913 | Zheng et al. | Sep 2014 | A1 |
20140292290 | Deng | Oct 2014 | A1 |
20150103566 | Keogh et al. | Apr 2015 | A1 |
20150155786 | Shen et al. | Jun 2015 | A1 |
20150229200 | Schwartz | Aug 2015 | A1 |
20150236597 | Hinz et al. | Aug 2015 | A1 |
20150249389 | Cummings | Sep 2015 | A1 |
20150311810 | Chen | Oct 2015 | A1 |
20170047846 | Teo et al. | Feb 2017 | A1 |
20170085183 | Notsch | Mar 2017 | A1 |
20170187292 | Schaemann et al. | Jun 2017 | A1 |
20180062529 | Song et al. | Mar 2018 | A1 |
20180153013 | Halim et al. | May 2018 | A1 |
20180269793 | Ahsanuzzaman et al. | Sep 2018 | A1 |
20190006935 | Wang | Jan 2019 | A1 |
20190058450 | Jun et al. | Feb 2019 | A1 |
20190181765 | Tao | Jun 2019 | A1 |
20190252966 | Radic | Aug 2019 | A1 |
20200412264 | Khamesra | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
1736018 | Feb 2006 | CN |
101277061 | Oct 2008 | CN |
202011052202 | Apr 2012 | DE |
S62268361 | Nov 1987 | JP |
2005525069 | Aug 2005 | JP |
2011055602 | Mar 2011 | JP |
2013046438 | Mar 2013 | JP |
2013123315 | Jun 2013 | JP |
2013219886 | Oct 2013 | JP |
2015166870 | Sep 2015 | JP |
2016100325 | May 2016 | JP |
20130054212 | May 2013 | KR |
20130105537 | Sep 2013 | KR |
1020150095190 | Aug 2015 | KR |
2017074305 | May 2017 | WO |
Entry |
---|
Notice of Allowance dated Aug. 20, 2020 for U.S. Appl. No. 16/665,188. |
Notice of Allowance dated Jun. 19, 2019 for U.S. Appl. No. 16/269,931. |
Notice of Allowance dated May 31, 2019 for U.S. Appl. No. 16/020,496. |
Office Action dated Apr. 13, 2020 for U.S. Appl. No. 16/665,188. |
Office Action dated Mar. 6, 2019 for U.S. Appl. No. 16/020,496. |
Notice of Allowance dated Jan. 12, 2021 for U.S. Appl. No. 16/719,335. |
Office Action dated Feb. 17, 2021 for U.S. Appl. No. 16/595,026. |
Notice of Allowance and Fees dated Jun. 7, 2021 for U.S. Appl. No. 16/595,026. |
Office Action dated Oct. 5, 2021 for Japan Patent Application No. 2019-540473. |
Office Action dated Jan. 14, 2022 for Republic of Korea Patent Application No. 10-2019-7009611. |
Number | Date | Country | |
---|---|---|---|
20210119525 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
62630639 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16665188 | Oct 2019 | US |
Child | 17247273 | US | |
Parent | 16269931 | Feb 2019 | US |
Child | 16665188 | US |