The present application is a national phase application of International Application PCT/JP2007/51711 filed on Feb. 1, 2007 and published as International Publication WO 2007/088935 on Aug. 9, 2007. This application claims priority from the International Application pursuant to 35 U.S.C. § 365. The present application also claims priority from Japanese Patent Application Nos. 2006-024975 and 2006-24976, both filed on Feb. 1, 2006, under 35 U.S.C. §119. The disclosures of these applications are incorporated herein in their entireties.
The present invention relates to a fracture prediction method, a device, a program product and a recording medium for providing a thin plate formed of a metal material, and is particular, e.g., utilizing a fracture determining criterion for a material fracture in a crash process of an automobile member subjected to press-forming.
A margin against a fracture is determined in general using a thinning criterion or a forming limit diagram (FLD). The FLD indicates the major and minor strain (ε1 and ε2, respectively) at which the failure generally occurs, and can be used in a crash analysis. The FLD can be experimentally determined by loading specimens along various proportional paths. Nakazima et al., for example, describes an operation of hemispherical punch stretching for rectangular specimens with various widths. Before the forming operation, small circulars or grids are marked on the sheet surface by etching or printing. Theses circles are generally distorted into ellipses during the forming operation, which will be terminated at the onset of necking or crack. The size of an ellipse near the neck likely varies with the width of the specimen. The major and minor strains can be measured from the ellipse at the neck or crack. Finally, the forming limit curve (FLC) is drawn so that it fits the measured limit strains for various paths.
For example, in a car crash deformation process of an automobile body part subjected to press-forming or pre-deformation in press-forming, the strain path can often change. When evaluating a fracture using the forming limit strains obtained by experiment, forming limits strains must be prepared according to the an infinite number of strain paths. Therefore, in practice, the exemplary forming limit strain with respect to a proportional loading path may be used for evaluation of a fracture, and hence high prediction accuracy may not be expected.
Further, a steel sheets failure can occur under stretch-flanging when a stretch strain in the circumferential direction of a cutting edge reaches the critical value. The stress state in the cutting edge portion may be close to the uniaxial tension, but abrupt gradients of stress and strain exist inward from the cutting edge portion. Thus, the fracture limit can indicate a value that may be different compared to the fracture limit strain or stress obtained by a uniaxial tensile test. For example, high-strength steels over about 590 MPa can suffer from the breakage under stretch-flanging, even when the cutting edge portion reaches a plastic instability and localized necking (e.g., thickness necking) occurs, the inside material excluding the cutting edge portion may not be satisfied the plastic instability yet. Thus, being restrained by the inside material, the plastic instability cannot be reached as the whole, and progress of the localized necking may be delayed.
Furthermore, in the stretch-flanging limit, a large number of thickness necks are formed in a circumferential direction of the cutting edge portion, and thus the fracture is delayed. For example, assuming that a localized necking is formed at one position in the cutting edge portion, stress in the circumferential direction in the vicinity of the localized necking is eased. However, the influence of this ease of stress generally decreases with distance from the localized necking, and when the deformation proceeds further, a next localized necking is formed at a separated location from the first localized necking. When the deformation proceeds still further, a new neck is formed. Repeating this process, a large number of thickness necks are formed in the circumferential direction of the cutting edge portion, and the localized necking grow. Here, reason why the previously formed sheet thickness necks grow but do not lead to a fracture is that they are restrained by a material having a small strain, and does not satisfy the plastic unstableness as the entire cutting edge portion in the circumferential direction. Therefore, in the stretch-flanging limit, when a thickness neck is formed at one position in the circumferential direction of the cutting edge portion, it does not lead to a fracture but is delayed.
Thus, an exemplary prediction method for the stretch-flanging limit may not be simple due to an existence of the strain gradient inward from the cutting edge portion, and to a delay effect such that a fracture does not occur even when one position in the circumferential direction satisfies the localized necking. Thus, such exemplary method may be difficult to utilize and/or implement.
Exemplary embodiments of the present invention may be directed to solving the above-described problems of conventional arts as technical problems. For example, an exemplary object of the exemplary embodiments of the present invention can provide a fracture prediction method by which, when predicting presence of fracture occurrence in a steel sheet in a process including one or more strain paths, the fracture limit curve can be obtained easily and efficiently and presence of fracture occurrence can be predicted with high prediction accuracy. Further, the risk of fracture upon press forming or crashworthiness can be evaluated quantitatively, thereby realizing efficient and highly precise development of autobodies optimizing the material, the forming, and the car body structures for crash safety.
An exemplary embodiment of the fracture prediction method of the present invention can include a method for evaluating a fracture limit of a thin plate constituted of a metal material. Such exemplary method may include, when predicting fracture occurrence in the thin plate in a plastic deformation process according to one or more deformation path changes, a procedure of converting a fracture limit curve in strain space into a fracture limit curve in stress space, and a procedure of predicting presence of the fracture occurrence using the obtained fracture limit curve in stress space.
Further, e.g., a prediction with high accuracy may be possible by using a hole expansion ratio having a good correlation with a stretch-flanging limit as a criterion for a fracture, and further by performing fracture determination in stress space in which the influence of a deformation history can be considered, instead of strain space.
In addition, e.g., an exemplary embodiment of the fracture limit obtaining method of the present invention can include a method of obtaining a fracture limit used for determining a fracture limit of a thin plate constituted of a metal material, in which a stretch strain ratio λ obtained from a hole expansion test is converted into a fracture limit curve in stress space when determining a fracture limit of the thin plate in a process including one or more deformation path variations.
The exemplary fracture limit curve expressed in stress space may not depend on a deformation path, and hence can be expressed by a single limit curve. Therefore, using this as a fracture determining criterion, a fracture in a stretch flange portion including one or more deformation path variations can be determined with high accuracy.
According to the present invention, when predicting presence of fracture occurrence in a thin plate in a process including one or more deformation path variations, it is possible to obtain the fracture limit curve easily and efficiently and predict the presence of fracture occurrence with high prediction accuracy. Thus, the risk of fracture upon press forming or crash can be evaluated quantitatively, thereby realizing efficient and highly precise development of an automobile body considering the material, the construction method, and the structure at the same or similar time.
These and other objects, features and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention, when taken in conjunction with the appended claims.
Further objects, features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying figure showing illustrative embodiment(s), result(s) and/or feature(s) of the exemplary embodiment(s) of the present invention, in which:
Throughout the figures, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components or portions of the illustrated embodiments. Moreover, while the present invention will now be described in detail with reference to the figures, it is done so in connection with the illustrative embodiments.
First Exemplary Embodiment
A margin against a fracture when evaluating formability is determined in general using a thinning criterion or an FLD, which can be used for fracture prediction in a car crash analysis as well. Among them, the FLD is known to vary largely depending on a strain path changes, and cannot be expected to have high prediction accuracy as a method of evaluating a fracture in a plastic deformation process, in which the deformation path varies largely as in crash of an automobile body part subjected to press-forming or pre-deformation in press-forming.
However, recently Kuwabara et al. (e.g., described in Journal of the Japan Society for Technology of Plasticity, 45, 123, 2004; and Non-patent Document 2: CAMP-ISIJ 17, 1063, 2004) verified by experiment and analysis that, using a fracture limit curve expressed in stress space with an aluminum extruded material or mild steel sheets being the subject, the fracture limit can be represented almost uniquely without depending on the path of deformation. This knowledge relates to aluminum or mild steel sheets and is not clarified for high strength steels over 440 MPa, and hence cannot be used for current development of an automobile body in which high-strength steel sheets are mainly used.
Accordingly, the exemplary embodiment of the present invention can be achieved as follows:
(1) When a detailed experiment is performed on high-strength steel sheets having tensile strength of 440 MPa or higher and a fracture limit curve expressed in stress space is used, the fracture limit can be expressed by a single fracture limit curve without depending on the deformation path. (2) By using the fracture limit curve expressed in stress space, it is possible to predict a fracture evaluation in a plastic deformation process with high accuracy, in which the deformation path varies largely as in crash of an automobile body part subjected to press-forming or pre-deformation in press-forming.
Hereinafter, a first exemplary embodiment is explained in detail based on various examples.
First, an exemplary method for obtaining the fracture limit curve in stress space will be explained. With a steel sheet shown in Table 1 below being the subject, there were measured (1) a fracture limit strain on a proportional loading path, and (2) a fracture limit strain under a deformation path variation. Here, t represents the thickness of a thin plate, YP represents proof strength, TS represents ultimate tensile strength, U.E1 represents uniform elongation, E1 represents total elongation, rm represents average r value (indicating a Lankford value and is expressed by rm=(r0+2r45+r90)/4 where r value in the rolling direction is r0, r value in the 45° direction with respect to the rolling direction is r45, and r value in the 90° direction with respect to the rolling direction is r90), and K, ε0, n represent material parameters obtained when a stress-strain curve obtained from a uniaxial tensile test is fitted in a function expression
σeq=K(εeq+ε0)n. [Equation 1]
For the fracture limit strain on a proportional loading path, a fracture strain was measured with a scribed circle diameter being 6 mm by a uniaxial tension, a Nakajima method (hemispherical punch stretching using a Teflon (registered trademark) sheet), and a hydraulic bulge test. On the other hand, for the fracture limit curve under strain path changes, after a tension of 10% along the rolling direction is performed as first deformation, a fracture strain was measured by the uniaxial tension and the Nakajima method so that the direction of 90° degrees from the primary extension direction is the maximum principal stress.
Conversion from a strain to a stress becomes possible by assuming (1) incompressibility, (2) Mises' yield function, (3) material hardening law with isotropy, (4) normality rule, and (5) membrane state of stress. Hereinafter, a specific method for converting the fracture limit curve in strain space into stress space will be explained.
The FLD of strain space is a diagram showing a major strain ε11 giving the fracture limit for each minor strain ε22, and a thickness strain ε33 can be obtained by them and the constant volume law
(ε33=−(ε11+ε22)) [Equation 2]
Normally, as the constitutive law used in a forming analysis or crash analysis, there is used the isotropic hardening law assuming that an equivalent plastic stress σeq is the unique function of an equivalent plastic strain εeq regardless of the path of deformation, and can be represented using a Swift's work-hardening law as
σeq=K(εeq+ε0)n [Equation 3]
As the function of work hardening, for example, the high-degree polynomial expression of an equivalent plastic strain or another form may be used, but it is preferable to use the Swift's equation, which is highly precise in approximation and is used frequently in a numerical simulation of a thin steel sheet.
Using the Mises' yield function for a yield surface for example, the equivalent plastic strain εeq can be represented as
and can be obtained using a Hill's anisotropic criterion in the case of planar isotropy by
When using the Hill's anisotropic yield function, the plastic anisotropic parameter r value is required, which can be obtained specifically by r0=(r0+2r45+r90)/4 from r values (r0, r45, r90) in the directions of 0°, 45°, 90° from the rolling direction.
In addition, a high-degree anisotropic yield function may be used as necessary, but it has many parameters and requires considering the direction in a plate surface while processing, and hence provides insufficient improvement in precision even though it is complicated. Thus, in practice, the yield function assuming planar isotropy is sufficient. In either yield function, the equivalent plastic stress σeq considering a deformation path variation can be obtained using the equivalent plastic strain εeq obtained by integrating an equivalent plastic strain increment dεeq on a strain path and the work-hardening law.
Next, a deviation stress component σij is obtained by isotropic hardening of yield surface shown in
Further, by assuming the plane stress (σ33=0), the stress component σij′ can be obtained from
σij=σij′−σ33′δij [Equation 7]
When the main axis of the strain and the rolling direction do not match as shown in
{circumflex over (ε)}ij=RpiεpqRqj [Equation 8]
with the material coordinate system being the reference coordinate by a coordinate transformation law. Next, a deviation stress component {circumflex over (σ)}ij′ is obtained from (2) the yield function modeled with the material coordinate system being the reference coordinate system and the normality rule, and finally (3) the coordinate transformation law is used to obtain a stress component
σij′=Rip{circumflex over (σ)}pq′Rjq [Equation 9]
with the experimental coordinate system being the reference coordinate.
Further, as a result of performing experiments and studies on high-strength steel sheets of 440 MPa to 980 MPa classes shown in Table 2 below, regardless of the tensile strength of a material or strengthening mechanism, single fracture limit curves can be produced in a wide range. Using these exemplary fracture limit curves expressed in stress space, fracture evaluation in a plastic deformation process in which the deformation path varies largely, as in a car crash of an automobile body part subjected to press-forming or pre-deformation in press-forming, can be predicted with high accuracy.
A fracture limit curve obtained by converting an FLD measured by an experimental method other than the Nakajima method into stress space may be used, or a fracture limit curve obtained by converting a theoretical FLD of Hill's localized necking model, Swift's diffuse necking model, Marciniak-Kuczynski method, Storen-Rice model, or the like into stress space may be used for the fracture prediction.
Further, an exemplary method of evaluating a fracture limit is described. For predicting fracture of a material by a numerical simulation by a finite element method (FEM), there may be the following technical problems:
(1) An FLD measured by experiment is affected strongly by a distance between evaluation points and a friction state. Thus, when using the FLD as a fracture determining criterion, correction according to analysis conditions of the numerical simulation is necessary.
(2) In the numerical simulation, increase of strain up to a uniform deformation can be simulated precisely, but for simulating localized necking occurring in a region to the extent of a sheet thickness or a shear band in which the strain is localized in a narrower region, finite elements have to be segmented adequately. Thus, the prediction is difficult with the performance of current computers.
(3) With the material constitutive law adopted normally in general purpose software, localization of a strain is delayed, and hence evaluation on the risk side is given when the actually measured FLD is taken as the fracture determining criterion.
An exemplary embodiment of the present invention provides a clarification of a fracture determining criterion suitable for numerical simulations. With the steel sheets shown in Table 1 being taken as subjects, the FEM numerical simulation of hemispherical punch stretching is performed, and influences of an element size and a material constitutive equation on the localization process of a strain are examined.
The localized necking occurrence limit can be handled within the framework of plastic instability, and can be predicted by a theoretical FLD of Hill's localized necking model, Swift's diffuse necking model, Marciniak-Kuczynski method, Storen-Rice model, etc.
As shown in this example, as a result of dedicated studies, the present inventors have found that high prediction accuracy can be assured by using as the fracture determining criterion the fracture limit curve obtained by converting a necking start curve in strain space into stress space when evaluating a fracture by the numerical analysis simulation using the finite element method.
Next, a case example of an exemplary method for evaluating a fracture limit is described. Such case example of fracture prediction is provided on a non-linear path such that with the steel sheets shown in Table 1 being the subjects, an uniaxial tension of 10% in the rolling direction is performed as first deformation, and thereafter plane strain deformation is performed by hemispherical punch stretching.
When using a dynamic explicit method for the numerical simulation, the exemplary obtained stress increases while vibrating largely because propagation of a stress wave is solved at minute time intervals without performing repetitive calculation within a time step. With this method of comparing a positional relationship between a stress and a fracture limit stress to evaluate a fracture, it may be difficult to assure a high prediction accuracy.
According to one exemplary embodiment of the present invention, a method of determining a fracture with high accuracy can be provided, which can avoid or reduce, when using the dynamic explicit method for the numerical simulation, vibration of a stress by converting a plastic strain into a stress by post-processing.
Next, an example of applying the exemplary fracture prediction method to a crash analysis is described. With the steel sheets shown in Table 1 being the subjects, the fracture prediction method of the present invention is applied in an exemplary embodiment of a three-point bending crash analysis of a member shown in
First, an analysis of draw-bending in a hat shape was performed using the numerical simulation of the dynamic explicit code. The result of the exemplary forming simulation is shown in
Further, the obtained exemplary forming analysis result is reflected on this exemplary finite element model for a crash analysis, and the crash analysis may be performed by the numerical simulation by the dynamic explicit code. When evaluating a fracture in a material in a crash process after press-forming, the deformation history during formation can be considered by inheriting a thinning and an equivalent plastic strain obtained by the numerical simulation of press-forming, or a thinning and an equivalent plastic strain, a stress tensor, a strain tensor as initial conditions of the crash analysis.
The deformation history during formation can be considered by measuring a thickness of a press-formed product and an equivalent plastic strain by an experiment instead of the numerical simulation and inheriting one of them as an initial condition of the crash analysis.
In the case examples described herein above, the quasi-static plastic deformation process such as press-forming is handled, with a mechanical characterization likely at high strain rates needs to be considered in the car crash analysis. It is known that steels have strain rate dependency, and flow stress increases when the deformation speed is high. During an automobile crash, the strain rate may reach about 1000/s in a corner where deformation concentrates. For assuring prediction accuracy in the crash analysis, it may be preferable to consider accurate mechanical characterization at high strain rates.
Generally, when performing the crash analysis with the numerical simulation by the exemplary finite element method, the Cowper-Symonds equation can be used as a material model representing increase of stress according to a strain rate.
When evaluating a fracture using the dynamic stress obtained from the crash simulation, a large number of dynamic fracture stress limit curves are needed depending on the strain rate, and practically it is difficult to predict the fracture.
According to an exemplary embodiment of the present invention, the stress at a reference strain speed obtained by converting a plastic strain obtained from the crash simulation may be used, and only the fracture stress limit curve at the single reference strain rate may be used as the fracture limit (fracture criterion) used for fracture determination. Thus, the reference strain rate may be a quasi-static strain rate. Although the range of the quasi-static strain rate differs depending on the material, the fracture limit curve measured in the range of about 0.001/s to 1/s may be used in practice.
As shown in the above examples, according to the exemplary embodiment of the present invention, a risk of fracture can be evaluated quantitatively from data obtained by simulating press-forming and crash processes of a steel sheet by the exemplary embodiment of a finite element method. For example, the Cowper-Symonds equation is used as a representative example as the strain rate dependency of a deformation stress, but the effectiveness of the exemplary embodiment of the present invention may not change even using an arbitrary constitutive equation, for example an m-th power hardening equation, a Johnson-Cook equation, or the like, with which the strain rate dependency can be considered.
Described below, as several specific examples of the exemplary embodiment of the present invention, an exemplary stretch-flanging limit evaluation method with a hole expansion ratio λ in stress space being a criterion is described. As test specimens, sheets having 1.2 mm in thickness, of a cold-rolled and continuously annealed, dual phase steel, having the mechanical properties shown in Table 3 have been used. The mechanical properties are obtained using JIS-5 specimens cut out in the rolling direction of the steel sheets and a screw-driven tester at a cross-head velocity of about 10 mm/min (a strain rate of about 3×10−3/s).
First, the steel sheet was sheared by the size of 200 mm×200 mm, and a hole with a diameter of 25 mm was punched through a center portion using a punch and a die. This steel sheet with a hole in the center was subjected to formation (Teflon sheet lubrication) with a flat-bottom punch with a diameter of 100 mm and a die shoulder R of 15 mm until a fracture occurs at a hole edge, and the hole diameter and the forming limit height when the fracture occurred were measured. The overview of the experiment is shown in a diagram of
Subsequently, the numerical simulation by the dynamic explicit FE code was performed to verify the prediction accuracy of a stretch-flanging limit that fractures from cutting edge. Note that the material parameters provided for the numerical simulation are the ones used for the experiment, and the tools comply with those of the experiment. An analysis model is shown in
Here, d is the hole diameter (mm) when the fracture occurs, and d0 is the hole diameter (mm) of the steel sheet. For conversion into the criterion in stress space, a relational expression of the true strain ε0 of this hole expansion ratio, the equivalent stress σeq, and the equivalent plastic strain εeq, for example the Swift's work-hardening law
σeq=K(εeq+ε0)n [Equation 11]
may be used. The equivalent plastic stress σeq considering the strain path changes can be obtained using the equivalent plastic strain εeq obtained by integrating the equivalent plastic strain increment dεeq on a strain path and the work-hardening law.
Hereinafter, in view of the above-described overall structure of the exemplary embodiment of the present invention, a specific example is described. For example,
For example, the estimating unit 21 may use the approximate equation
σeq=(εeq+ε0)n or σeq=Cεneq [Equation 12]
of a stress-strain curve obtained for example from a uniaxial tensile test, a localized necking model
and a diffuse necking model
in combination to obtain a necking occurrence limit in strain space, and thereby estimates the fracture limit curve in strain space on the proportional loading path.
The estimating unit 1 may also be configured to obtain the necking occurrence limit in strain space using an approximate equation
σeq=(εeq+ε0)n or σeqCεneq [Equation 15]
of a stress-strain curve obtained from a uniaxial tensile test, a constitutive equation in which the direction of a plastic strain increment tensor depends on a stress increment tensor as a plastic strain increment law, a material parameter Kc defining the direction of the plastic strain increment tensor, and a Storen-Rice localized necking model, and estimate the fracture limit curve in strain space on the proportional loading path. For example, the estimating unit 21 may identify the material parameter Kc based on one or more measurement values of maximum fracture limit strain ε1 and minimum fracture limit strain ε2.
In this example, the case where the fracture limit curve in strain space is estimated theoretically using the estimating unit 21 is exemplified, but the fracture limit curve in strain space may be measured experimentally without using the estimating unit 21. For example, the fracture limit curve in strain space can be obtained, after a plurality of in-plane strain ratios regarding a thin plate are obtained by a proportional loading experiment, using measurement values of maximum fracture limit strain ε1 and minimum fracture limit strain ε2 in each of the strain ratios.
When converting the fracture limit curve in strain space into the fracture limit curve in stress space, the converting unit 22 may perform the above-described exemplary conversion using the vertical rule of yield surface as the plastic strain increment law. For example, as described above, the Mises' yield function
is used, which is the relational expression of the equivalent plastic strain εeq and each strain component εij.
The fracture determining unit 23 can perform an exemplary evaluation by comparing the positional relationship between the fracture limit curve in stress space converted by the converting unit 21 and the strain state of each portion obtained from results of the simulation by the finite element method in a plastic deformation process. Such fracture determining unit 23 may determine that it is a fracture or that the risk of fracture is high when the strain in the deformation process reaches this limit strain. As an exemplary method of the numerical analysis, the dynamic explicit method can be used, which can be one of finite element methods. In this exemplary case, the plastic strain obtained by the exemplary dynamic explicit method may be converted into a stress and is compared with the fracture limit curve in stress space.
The exemplary fracture determining unit 23 may also be configured to convert a strain obtained from deformation conditions of a thin plate evaluated by experiment into a stress and evaluate quantitatively presence of fracture occurrence using the fracture limit curve in stress space, instead of performing the aforementioned simulation.
For example, in the case where a rapid deformation occurs in a thin plate as in a crash analysis of an automobile member, the fracture determining unit 23 can execute a numerical analysis considering the speed dependency of a flow stress in the thin plate, converts the plastic strain obtained from the numerical analysis to calculate the stress at the reference strain speed, and may compare this stress with the fracture limit curve in stress space corresponding to the reference strain rate.
Subsequently, the converting unit 22 can convert the fracture limit curve in strain space measured experimentally into a fracture limit curve in stress space using the Mises' yield function, so as to create a stress FLD (step S2).
Subsequently, the fracture determining unit 23 may perform evaluation by comparing the positional relationship between the fracture limit curve in stress space converted by the converting unit 21 and the strain state of each portion obtained from results of the simulation by the finite element method (here, the dynamic explicit method) in a plastic deformation process, and can determine a fracture or the risk of fracture (step S3).
In step S3, when it is determined that the limit strain is reached and a fracture occurs in the thin plate or that the risk of fracture is high, the fracture determining unit 23 may execute the following several processing (step S4). The element ID, the thickness of the thin plate, the strain, and the stress information are outputted to a log file. Further, the element that has reached the criterion is erased, and the analysis after the fracture is continued.
Subsequently, the following various displays may be performed on the display unit 24 (step S5). The risk that a fracture occurs in the thin plate is contour displayed by a scalar amount. Further, the stress history of the fracture risk portion in stress space and the criterion are displayed. The risk of occurrence of a crease in the thin plate is contour displayed together. Here, the risk of fracture may be displayed with respect to dispersion (average value, lower limit value) within the standard of shipment test values.
On the other hand, when it is determined in step S3 that there is no possibility of occurrence of a fracture or that the risk thereof is low, an indication about this is displayed on the display unit 24 in step S6.
In this case, the stress FLD created in step S2 of
In this step S11, the fracture determining unit 23 can inherit deformation conditions of the thin plate evaluated by the numerical analysis in the formation process of
In step S11, when it is determined that a fracture occurs in the thin plate or that the risk of fracture is high, the fracture determining unit 23 may execute the following several processing (step S12). The element ID, thinning, the strain, and the stress information are outputted to a log file. Further, the element that has reached the criterion is erased, and the analysis after the fracture is continued.
Subsequently, the following various displays may be performed on the display unit 24 (step S13). The risk that a fracture occurs in the thin plate is contour displayed by a scalar amount. Further, the stress history of the fracture risk portion in stress space and the criterion are displayed. The risk of occurrence of a crease in the thin plate is contour displayed together. Here, the risk of fracture may be displayed with respect to dispersion (average value, lower limit value) within the standard of shipment test values.
On the other hand, when it is determined in step S11 that there is no possibility of occurrence of a fracture in the thin plate or that the risk thereof is low, an indication about this can be displayed on the display unit 24 in step S14.
As explained above, according to this example, when determining the fracture limit of a thin plate in a process including one or more deformation path variations, it is possible to obtain the fracture limit curve easily and efficiently and determine the fracture limit with high prediction accuracy. Thus, the risk of fracture upon press forming or crash can be evaluated quantitatively, thereby realizing efficient and highly precise development of an automobile body optimized the material, the forming, and the body structure.
Second Exemplary Embodiment
Conventionally, the margin against a fracture is often evaluated by a thinning, but due to popularization of numerical simulations and advancement in functions of post-processing software, fracture evaluation methods using a forming limit diagram (FLD) are started to be used widely. The FLD can be obtained by an experiment such as the Nakajima method. However, such a method is complicated, and it is difficult to construct a database for various types of steel sheet menus and thickness. Thus, several prediction approaches have been proposed.
For example, in post-processing functions of general-purpose software, there can be incorporated a method (as described in Journal of the Japan Society for Technology of Plasticity, 45, 123, 2004) in which a Keeler's thickness correction empirical rule is added to the Hill's localized necking model and the Swift's diffuse necking model. However, prediction values obtained with these theories may allow for a prediction for aluminum or mild steel with relatively high accuracy, but for steel sheets with tensile strength of 440 MPa class or higher, they are overestimated on the uniaxial tension side and underestimated on the equi-biaxial stretching side. Thus, they are not suitable for current development of an automobile body in which high-strength steel sheets are mainly used.
Further, the FLD is known to vary largely depending on a deformation path. High prediction accuracy cannot be expected therefrom as a method of evaluating a fracture in a plastic deformation process, in which the deformation path varies largely as in crash of an automobile body part subjected to press-forming or pre-deformation in press-forming. However, recently Kuwabara et al. (e.g., described in Journal of the Japan Society for Technology of Plasticity, 45, 123, 2004; and CAMP-ISIJ 17, 1063, 2004) verified by experiment and analysis that, using a fracture limit curve expressed in stress space with an aluminum extruded material or mild steel being the subject, the fracture limit can be represented almost uniquely without depending on the path of deformation. This knowledge relates to aluminum or mild steel and is not clarified for steel sheets with tensile strength of 440 MPa class or higher.
Accordingly, detailed experiments have been conducted on high strength steels with tensile strength of 440 MPa or higher, and the following has been determined.
(1) The FLD of strain space obtained on a proportional loading path can be predicted highly accurately using a stress-strain curve obtained from a uniaxial tensile test and the thickness of a virgin material or a stress-strain curve, the thickness of a virgin material, and a parameter Kc defining stress increment dependency. Thus, an FLD database of strain space for various types of steel sheet menus and thickness can be constructed easily and simply.
(2) Fracture determination in a process including one or more deformation path variations is possible by converting the FLD of strain space obtained on the proportional loading path into stress space and determining a fracture in stress space.
The second exemplary embodiment of the present invention will be explained in detail based on several examples.
First, an exemplary method of measuring the FLD of strain space experimentally is described. The fracture limit strain can be measured by a proportional loading experiment with a steel sheet constituted of a metal material having mechanical property values and material parameters shown in Table 1 below being the subject. Here, t represents the thickness of a thin plate, YP represents proof strength, TS represents ultimate tensile strength, U.E1 represents uniform elongation, E1 represents total elongation, rm represents average r value (indicating a Lankford value and is expressed by rm=(r0+2r45+r90)/4 where r value in the rolling direction is r0, r value in the 45° direction with respect to the rolling direction is r45, and r value in the 90° direction with respect to the rolling direction is r90), and K, ε0, n represent material parameters obtained when a stress-strain curve obtained from a uniaxial tensile test is fitted in a function expression:
σeq=K(εeq+ε0)n [Equation 17]
For the fracture limit strain in a proportional loading experiment, a fracture strain was measured with a scribed circle diameter being 6 mm by a uniaxial tension, the Nakajima method (ball head extrusion using a Teflon (registered trademark) sheet), and a hydraulic bulge test.
Next, an exemplary embodiment of a method of estimating the fracture limit curve in strain space theoretically from mechanical properties is described. For example, as an exemplary FLD estimation method, there may be a combining usage of the Hill's localized necking model and the Swift's diffuse necking model, the Storen-Rice model (see, e.g., J. Mech. Phys. Solids, 2, 421, 1975), etc., and it can be obtained by correcting the influence of a thickness by the Keeler's empirical rule. An exemplary embodiment of a specific calculation method is described as follows. First, data are sampled for obtaining
σeq=f(εeq) [Equation 18]
As a test method, a uniaxial tensile test is simple and favorable. From a stress-strain curve obtained from the uniaxial tensile test, material parameters may be determined by fitting in a function expression including suitable material parameters as
σeq=f(εeq) [Equation 19]
Using the n-th power hardening law often used in a numerical simulation of a thin plate with high accuracy of approximation, they can be expressed by
σeqCεeqn [Equation 20]
As the fracture limit strain, using the n-th power hardening law and the Mises' yield function
for the yield curved surface, the Hill's localized necking can be given by
and the Swift's diffuse necking can be given by
However, the Hill's theory is used in the range of
since the localized necking cannot be obtained with the biaxial extension, and the Swift's diffuse necking is applied in the range of ρ>0.
with the thickness being t0 (mm).
The Swift's diffuse necking has a tendency to estimate the fracture limit small in the vicinity of the equi-biaxial stretching, and is needed to be improved. Therefore, it may be preferable to use the Storen-Rice model which is extended from the Hill's localized necking model based on the bifurcation theory. By the Storen-Rice model, when an increment display of the total strain theory for the Mises' yield curved surface is used for the n-th power hardening law and the yield curved surface, the fracture limit strain in the range of ρ≧0 can be given by
Accordingly, as results of performing experiments and studies on high strength steel sheets of 440 MPa to 980 MPa classes shown in Table 5 below, the following exemplary results have been achieved.
(1) The FLD can be predicted with high accuracy when the material parameter Kc is identified based on measurement values of fracture limit major strain ε1, and fracture limit minor strain ε2 in the equi-biaxial stretching deformation.
(2) Kc does not depend on a thickness, and hence Kc that is minimally required may be obtained for each of tensile strength of a material, strengthening mechanism of a steel sheet, and the like.
Exemplary Method of Converting Fracture Limit Curve in Strain Space into Fracture Limit Curve in Stress Space
With the steel sheets shown in Table 4 being the subjects, the fracture limit curve on a proportional loading path can be predicted by the above method, and for the fracture limit curve under strain path changes, after an tension of 10% in the rolling direction is performed as first deformation, a fracture strain was measured by the uniaxial tension, the Nakajima method (e.g., ball head extrusion using a Teflon (registered trademark) sheet), and a hydraulic bulge test so that the direction of about 90° degrees from the primary extension direction is the maximum principal stress.
Conversion from a strain to a stress becomes possible by assuming (1) incompressibility, (2) Mises' yield function, (3) material hardening law with isotropy, (4) normality rule, and (5) membrane state of stress.
An exemplary embodiment of a method for converting the fracture limit curve in strain space into stress space is described. The FLD of strain space is a diagram showing a major strain ε11 giving the fracture limit for each minor strain ε22, and a thickness strain ε33 can be obtained by them and the constant volume law
(ε33−(ε11+ε22)) [Equation 27]
Generally, in the constitutive law used in a formation analysis or crash analysis, there is used the isotropic hardening law assuming that an equivalent plastic stress σeq is the unique function of an equivalent plastic strain εeq regardless of the path of deformation, and can be represented using the Swift's work-hardening law as
σeq=(εeqε0)n [Equation 28]
As the function of work hardening, for example, the high-degree polynomial expression of an equivalent plastic strain or another form may be used, but it is preferable to use the Swift's equation, which is highly precise in approximation and is used frequently in a numerical simulation of a thin steel sheet. Using the Mises' yield function on a yield curved surface for example, the equivalent plastic strain εeq can be represented as
In addition, a high-degree anisotropic yield function may be used as necessary, but it has many parameters and requires considering the direction in a plate surface while processing, and hence provides insufficient improvement in precision even though it is complicated. Thus, in practice, the yield function assuming planer isotropy is sufficient.
Next, a deviatoric stress component σij′ can be obtained by the normality rule
of the plastic strain increment with respect to the yield curved surface shown in
σij=σij′−σ33′δij [Equation 31]
Further, according to the exemplary embodiments of the present invention, as a result of performing experiments and studies on the high-strength steel sheets of 440 MPa to 980 Mpa classes shown in Table 5, regardless of the tensile strength of a material or strengthened mechanism, single fracture limit curves can be produced in a wide range. Using these exemplary fracture limit curves expressed in stress space, fracture evaluation in a plastic deformation process in which the deformation path varies largely, as in a crash of an automobile body part subjected to press-forming or pre-deformation in press-forming, can be predicted with high accuracy.
Further, an exemplary embodiment of a method of measuring a hole expansion ratio in strain space experimentally according to the present invention is described. The provided material can be Dual Phase steel sheet with a thickness of 1.2 mm produced by cold-rolled and continuously annealed, and has mechanical properties shown in Table 6. The mechanical properties may be obtained using JIS-5 specimens according to JIS Z 2201 cut out in the rolling direction of the steel sheets and a screw-driven tester at a crosshead speed of 10 mm/min (strain speed 3×10−3/s).
First, the virgin material was sheared by the size of 200 mm×200 mm, and a hole with a diameter of 25 mm was punched through a center portion using a punch and a die. This steel sheet with a hole in the center was subjected to formation (Teflon sheet lubrication) using a flat-bottom punch with a diameter of 100 mm and a die shoulder R of 15 mm until a fracture occurs at a hole edge, and the hole diameter and the formation limit height when the fracture occurs were measured. The overview of the experiment is shown in
Assuming isotropy, in strain space of a major strain and a minor strain, the fracture limit can be expressed using this hole expansion ratio as follows.
[Equation 33]
ε11=In(λ−1), ε22−0.5ε11 (2)
Next, an exemplary embodiment of a method of converting from the mechanical properties into the fracture limit in stress space according to the present invention is described. First, data are sampled for obtaining σeq=f(εeq). As a test method, a uniaxial tensile test is simple and favorable. From a stress-strain curve obtained from the uniaxial tensile test, material parameters may be determined by fitting in a function expression including suitable material parameters as σeq=f(εeq). Normally, in the constitutive law used in a forming analysis or crash analysis, there is used the isotropic hardening law assuming that an equivalent plastic stress σeq is the unique function of an equivalent plastic strain εeq regardless of the path of deformation, and can be represented using the Swift's work-hardening law as
[Equation 34]
σeq=(εeq+ε0)n (3)
As the function of work hardening, for example, the high-degree polynomial expression of an equivalent plastic strain or another form may be used, but it is preferable to use the Swift's expression, which is highly precise in approximation and is used frequently in a numerical simulation of a thin steel sheet.
A thickness strain ε33 can be obtained by Equation (3) and the constant volume law,
[Equation 35]
ε33=−(ε11+ε22) (4)
Using the Mises' yield function on a yield curved surface for example, the equivalent plastic strain εeq can be represented as
In addition, a high-degree anisotropic yield function may be used as necessary, but it has many parameters and requires considering the direction in a plate surface while processing, and hence provides insufficient improvement in precision even though it is complicated. Thus, in practice, the yield function assuming planer isotropy is sufficient.
Further, for conversion into stress space, a relational expression of the true strain ε0 of this hole expansion ratio, the equivalent stress σeq, and the equivalent plastic strain εeq, for example the Swift's work-hardening law
[Equation 37]
σeq=K(εeq+ε0)n (6)
may be used. Next, a deviatoric stress component σij′ can be obtained by the normality rule
of the plastic strain increment with respect to the yield curved surface shown in
[Equation 39]
σij=σij′−σ33′δij (8)
In this example, the fracture limit curve in strain space can be measured experimentally. Specifically, the fracture limit curve in strain space can be obtained, after a plurality of in-plane strain ratios regarding a steel sheet are obtained by a proportional loading experiment, using measurement values of fracture limit major strain ε1 and fracture limit minor strain ε2 in each of the strain ratios.
When converting the fracture limit curve in strain space into the fracture limit curve in stress space, the converting unit 1 may perform the above-described exemplary conversion using the normality rule of a plastic strain increment in which a plastic strain increment direction is defined in the direction perpendicular to a yield surface. For example, as described above, the Mises' yield function
may be used, which is the relational expression of the equivalent plastic strain εeq and each strain component εij.
Subsequently, the fracture limit curve in stress space obtained in step S1 can be displayed as a stress FLD on the display unit 2 (step S2).
As described above, according to this example, when determining the fracture limit of a thin plate in a process including one or more deformation path variations, it is possible to obtain the fracture limit curve easily and efficiently and determine the fracture limit with high prediction accuracy. With this example, the risk of fracture upon press forming or crash can be evaluated quantitatively, thereby enabling efficient and highly precise development of an automobile body optimized the material, the forming, and the body structure.
The first estimating unit 11 may use the approximate equation
[Equation 41]
σeq=Cεeqn
of a stress-strain curve obtained from a uniaxial tensile test, a localized necking model
and a diffuse necking model
in combination to obtain a necking occurrence limit in strain space, and thereby can estimate the fracture limit curve in strain space on the proportional loading path as described above.
The first estimating unit 11 can estimate a fracture limit curve in strain space on a proportional loading path based on the mechanical property values inputted by the user (Step S11).
Subsequently, the converting unit 1 may convert the fracture limit curve in strain space estimated by the first estimating unit 11 into a fracture limit curve in stress space using the n-th power hardening law/Swift hardening law inputted as the mechanical properties, and for example the Mises' yield function or the like (Step S12). Subsequently, the fracture limit curve in stress space obtained in step S1 may be displayed as a stress FLD on the display unit 2 (step S13).
In addition, the exemplary embodiment of the method may also be arranged such that the strain FLD is estimated from a database (t, YP, TS, E1, U.E1, r value, strain-stress multiple linear data) of shipping test values, and the stress FLD is calculated from the shipping test values (upper limit value and lower limit value in a quality dispersion distribution within a predetermined standard, and the mean value in the quality dispersion distribution).
As described above, according to this example, when determining the fracture limit of a steel sheet in a process including one or more deformation path variations, it is possible to obtain the fracture limit curve easily and efficiently and determine the fracture limit with high prediction accuracy. By this example, the risk of fracture upon press forming or crash can be evaluated quantitatively, thereby enabling efficient and highly precise development of an automobile body optimized the material, the forming, and the body structure.
(Modification Example)
In particular, a modification example of Example 2 is described. In this modification example, as shown in
The second estimating unit 12 may estimate the fracture limit curve in strain space on a proportional loading path similarly to the first estimating unit 11, and can obtain, as described above, a necking occurrence limit in strain space using an approximate equation
[Equation 44]
σeq=K(εeq+ε0)n or σeq=Cεneq
of a stress-strain curve obtained from a uniaxial tensile test, a constitutive equation in which the direction of a plastic strain increment tensor depends on a stress increment tensor as a plastic strain increment law, a material parameter Kc defining the direction of the plastic strain increment tensor, and a Storen-Rice localized necking model, and estimates the fracture limit curve in strain space on the proportional loading path. The second estimating unit 12 may identify, as described above, the material parameter Kc based on one or more measurement values of fracture limit major strain ε1 and fracture limit minor strain ε2.
As described above, according to this example, better and adequate accuracy can be obtained for fracture prediction as compared to Example 2, and the fracture limit curve can be obtained more easily and efficiently, thereby allowing to determine the fracture limit with high prediction accuracy.
Other Exemplary Embodiments Applying the First, Second Embodiments
The exemplary functions of the respective components (e.g., except the display unit 4) constituting the fracture prediction devices according to the above-described examples and the like can be realized by operation of a program product stored in a RAM or ROM of a computer. Similarly, the respective steps of the exemplary embodiments of the fracture prediction method and the fracture limit obtaining method (e.g., see steps S1 to S6 of FIG. 23, steps S11 to S14 of
For example, the aforementioned program product can be provided to a computer by recording in a recording medium such as CD-ROM, for example, or by transmitting via various types of transmission media. As the recording medium recording the program product, other than the CD-ROM, it is possible to use a flexible disk, a hard disk, a magnetic tape, a magneto-optical disk, a non-volatile memory card, or the like. Further, as a transmission medium of the program product, a communication medium in a computer network system for supplying program information by propagating as a carrier wave can be used. Here, the computer network is a LAN, a WAN such as the Internet, a radio communication network, or the like, and the communication media is a wired line such as an optic fiber, a wireless line, or the like.
Further, the exemplary embodiment of the program product of the present invention is not only one such that the functions of the above-described embodiments are realized by a computer executing the supplied program product. For example, when the exemplary program product cooperates with the OS (operating system), another application, or the like working on the computer to realize the functions of the above-described embodiments, such exemplary program product configures the system, according to another exemplary embodiment of the present invention, to perform the procedures described herein. Furthermore, according to another exemplary embodiment of the present invention, all or some of processing of the exemplary program product is performed by a function expansion board or a function expansion unit of the computer to realize the functions of the above-described embodiments.
For example,
By the CPU 1201 of the PC 1200 and the program product stored in the ROM 1202 or the hard disk (HD) 1211, the exemplary procedures or the like of steps S1 to S6 in
Numeral 1203 denotes a RAM and functions as a main memory, a work area, or the like for the CPU 1201. Numeral 1205 denotes a keyboard controller (KBC) and controls an instruction input from a keyboard (KB) 1209, a not-shown device, or the like.
Numeral 1206 denotes a CRT controller (CRTC) and controls display on the CRT display (CRT) 1210. Numeral 1207 denotes a disk controller (DKC). The DKC 1207 controls access to the hard disk (HD) 1211 storing a boot program, a plurality of applications, edit files, user files, a network administration program, and so on, and to the flexible disk (FD) 1212. Here the boot program is a start-up program, a program starting execution (operation) of hardware and/or software of a personal computer.
Numeral 1208 denotes a network interface card (NIC) and carries out bidirectional exchange of data via a LAN 1220 with a network printer, another network device, or another PC.
According to exemplary embodiments of the present invention, when predicting presence of fracture occurrence in a thin plate in a process including one or more deformation path variations, it is possible to obtain the fracture limit curve easily and efficiently and predict the presence of fracture occurrence with high prediction accuracy. Thus, the risk of fracture upon press forming or crash can be evaluated quantitatively, thereby realizing efficient and highly precise development of an automobile body optimized the material, the forming, and the body structure.
The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements, media and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention. In addition, all publications referenced herein above are incorporated herein by reference in their entireties.
Number | Date | Country | Kind |
---|---|---|---|
2006-024975 | Feb 2006 | JP | national |
2006-024976 | Feb 2006 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2007/051711 | 2/1/2007 | WO | 00 | 8/1/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/088935 | 8/9/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4852397 | Haggag | Aug 1989 | A |
5232661 | Matsuo et al. | Aug 1993 | A |
6555182 | Tonosaki et al. | Apr 2003 | B1 |
20020077795 | Woods et al. | Jun 2002 | A1 |
20040011119 | Jardret et al. | Jan 2004 | A1 |
20040148143 | Deobald et al. | Jul 2004 | A1 |
20070185694 | Rousselier et al. | Aug 2007 | A1 |
20080004850 | Wang | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
09279233 | Oct 1997 | JP |
2005283130 | Oct 2005 | JP |
08-339396 | Dec 2006 | JP |
WO 2005015167 | Feb 2005 | WO |
Entry |
---|
Knapp et al., Evaluating Mechanical Properties of Thin Layers Using Nanoindentation and Finite-Element Modeling: Implanted Metals and Deposited Layers, 1996, MRS, Symposium A, SAND-96-1682C, pp. 1-9. |
Milne et al., Comprehensive Structural Integrity, 2003, Elsevier, vols. 1-10, ISBN 978-0-08-043749-1, pp. 655-671. |
Ling, Yun, “Uniaxial True Stress-Strain after Necking”, Jun. 1996, AMP Journal of Technology, vol. 5, pp. 37-48. |
Storen, S. and Rice J.R., “Localized Necking in Thin Sheets”, 1975, Pergamon Press, vol. 23, pp. 421-441. |
Ghosh, Amit, “Strain Localization in the Diffuse Neck in Sheet Metal”, Jul. 1974, Metallurgical Transactions, vol. 5, pp. 1607. |
Prévost, J.H. and Hoeg, K, “Soil mechanics and plasticity analysis of strain softening”, 1975, Géotechnique, No. 2, pp. 279-297. |
Cunat, Pierre-Jean, “Stainless steel properties for structural automotive applications”, Jun. 2000, Paper presented at the Metal Bulletin International Automotive Materials Conference, Euro Inox, pp. 1-10. |
Wanatanbe, K., et al., “Simple prediction method for the edge fracture of steel sheet during vehicle collision (1st report)”, 2006, LS-DYNA Anwenderforum, DYNAmore GmbH, pp. B-I-9 to B-I-14. |
Fernandes, J.V., Rodrigues, D.M., Menezes, L.F. and Vieira, M.F., A Modified Swift Law for Prestrained Materials, 1998, International Journ of Plasticity, vol. 14, No. 6, pp. 537-550. |
Rees, D.W.A., Sheet orientation and forming limits under diffuse necking, 1996, Applied Mathematical Modelling, vol. 20, issue 8, pp. 624-635. |
Huang, Pao C., “Fracture Criterion of Isotropic Materials”, Sep. 1986, Naval Surface Warfare Center, NAVSWC TR 90-76, pp. 1-19. |
El-Magd, E., “Mechanical properties at high strain rates”, Sep. 1994, Journal De Physique IV, Colloque C9, vol. 4, pp. C8-149 to C8-170. |
English language International Search Report for International Application No. PCT/JP2007/051711 filed Feb. 1, 2007. |
Kengo Yoshida et al. “Stress-Based Forming Limit Criterion for Aluminum Alloy Tube”. Journal of Japan Society for Technology of Plasticity, vol. 45 No. 517, pp. 123-128. |
Yoshida, Kengo. “A evaluation method of formability for pre-strained steel sheet”. CAMP-ISIJ, vol. 17. (with partial English language translation). |
William F. Hosford et al. “Metal forming Mechanics and metallurgy”. Prentice-Hall Inc., Englewood Cliffs, New Jersey. 1983. pp. 312-322. |
Moriaki Goya et al. “An Expression of Elastic-Plastic Constitutive Law Incorporating a Stress Increment Dependence (1st Report, Initial Isotropic Materials with Mises Type-Plastic Potential)”. The Japan Society of Mechanical Engineers. No. 87-1441B, pp. 1617-1622. |
Toshihiko Kuwabara et al. “Constitutive modeling of aluminum alloys and its effect on forming simulations”. Journal of Japan Institute of Light Metals, vol. 55, No. 8 (2005), pp. 363-370 (with partial English language translation). |
Goldstein, P. V. et al., “Fracture Mechanics Fracture of Materials”, Mechanics, News in the Foreign Science, MIR Publisher, Moscow, 1979, pp. 22-28. |
RU Office Action issued Sep. 14, 2009 for Russian patent application No. 2008135325/28. |
English-language translation of the International Preliminary Report on Patentability for International Application No. PCT/JP2007/051711 filed Feb. 1, 2007. |
English-langauge translation of the Written Opinion of the International Searching Authority for International Application No. PCT/JP2007/051711 filed Feb. 1, 2007. |
Number | Date | Country | |
---|---|---|---|
20090177417 A1 | Jul 2009 | US |