Fracture toughness of glass

Information

  • Patent Grant
  • 8932514
  • Patent Number
    8,932,514
  • Date Filed
    Tuesday, December 7, 2010
    14 years ago
  • Date Issued
    Tuesday, January 13, 2015
    10 years ago
Abstract
A method of making glass is provided. The method comprises preparing a dispersion of a nano-material. A slurry of a glass matrix material is prepared. The nano-dispersion is mixed with the matrix slurry to form a nano-dispersion/slurry mixture. The nano-dispersion/slurry mixture is dried. The nano-dispersion/slurry mixture is pressed into a final manufacture comprising a molecular structure including the nano-material bonded within and uniformly distributed throughout the molecular structure. The manufacture comprises an increased fracture toughness compared with a conventional manufacture produced without bonding the nano-material within the molecular structure. The nano-material has a size on the order of tens of nanometers. The matrix material has a size on the order of several micrometers. Five percent of the nano-dispersion/slurry mixture comprises the nano-material dispersion. Sintering is performed on the final form using a sintering process following the pressing step. The sintering process includes a hot isostatic pressing process.
Description
FIELD OF THE INVENTION

The present invention relates to the field of materials science. More particularly, the present invention relates to glass manufactures and a novel method of making


BACKGROUND

In many applications, glass is utilized because of the desired properties such as transparency and light transmission. Many household products are made of glass and glass has many decorative functions. Glass is also used widely in buildings and automobiles just to name a few more applications. Glass can be reinforced with some kind of particulate matter. Composite glass is desirable since in addition to their high hardness the composite can also possess a greater fracture toughness, which includes the ability to resist fracture. Present methods used to produce composite glass are costly, inefficient and complicated.


Accordingly, it is desirable to create an efficient and inexpensive method to produce glass having improve material characteristics, and especially fracture toughness.


SUMMARY OF THE INVENTION

Other features of the present invention will become apparent from consideration of the following description taken in conjunction with the accompanying drawings.


A first aspect of the present invention is for a method of making glass is provided. The method comprises preparing a dispersion of a nano-material. A slurry of a glass matrix material is prepared. The nano-dispersion is mixed with the matrix slurry to form a nano-dispersion/slurry mixture. In one embodiment, the mixing includes pouring the matrix slurry into the nano-dispersion while agitating. Alternative, the mixing includes pouring the nano-dispersion into the matrix slurry while agitating. The nano-dispersion/slurry mixture is dried. The nano-dispersion/slurry mixture is pressed into a final manufacture comprising a molecular structure including the nano-material bonded within and uniformly distributed throughout the molecular structure. The manufacture comprises an increased fracture toughness compared with a conventional manufacture produced without bonding the nano-material within the molecular structure.


The method includes providing the nano-material with a size on the order of tens of nanometers before the dispersion preparing step. A micron sized matrix material is provided on the order of several micrometers before the slurry preparing step. One percent of the nano-dispersion/slurry mixture comprises the nano-material dispersion. Alternatively, 0.5-10.0 percent of the nano-dispersion/slurry mixture comprises the nano-material dispersion. In yet another alternative, 0.5-20.0 percent of the nano-dispersion/slurry mixture comprises the nano-material dispersion. Sintering is performed on the final form using a sintering process following the pressing step. The sintering process includes a hot isostatic pressing process. The manufacture includes the nano-material bonded at triple points of the molecular structure. The drying of the nano-dispersion/slurry mixture includes a spray drying process.


Other features of the present invention will become apparent from consideration of the following description taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth in the appended claims. However, for purposes of explanation, several embodiments of the invention are set forth in the following figures.



FIG. 1 illustrates a plot of fracture toughness of a glass compared with a metal in accordance with an embodiment of the invention.



FIG. 2 illustrates a partial of a manufacture with improved fracture toughness in accordance with an embodiment of the invention.



FIG. 3 illustrates a method of making a glass with improved fracture toughness in accordance with an embodiment of the invention.





DETAILED DESCRIPTION

In the following description, numerous details and alternatives are set forth for the purpose of explanation. However, one of ordinary skill in the art will realize that the invention can be practiced without the use of these specific details. In other instances, well-known structures and devices are shown in block diagram form in order not to obscure the description of the invention with unnecessary detail.


Turning to FIG. 1, a plot 10 of fracture toughness of a glass compared with a metal is shown in accordance with an embodiment of the invention. Fracture toughness is a term in the field of material science that describes the characteristic of a material that has a crack to resist fracture. More specifically, fracture toughness describes a resistance of a material to a brittle fracture when a crack is present in the material. Brittle fracture occurs when the material exhibits no apparent plastic deformation prior to the fracture, in contrast to a ductile fracture, which is when the material exhibits extensive plastic deformation prior to the fracture. A glass will exhibit a low fracture toughness 12A while a metal will exhibit a significantly higher fracture toughness 12B. A novel method of the invention as described below produces a glass having an increased fracture toughness 12A′.


Hardness is a quality also shown in the plot of FIG. 1. Hardness is a term that describes the characteristic of a solid material to resist deformation. A metal will exhibit a low hardness 14A while a glass will exhibit a significantly higher hardness 14B.


Turning to FIG. 2, a partial of a manufacture 200 with improved fracture toughness is shown in accordance with an embodiment of the invention. The manufacture 200 comprises a composite of a glass matrix material 201 and nanoparticles or nano-material 206. The glass material 201 can comprise any a number of suitable glass materials depending on a particular application. In an exemplary embodiment the glass material 201 comprises a material from a group of silicon dioxide composites. A person of skill will appreciate the many possible oxides capable of combining with silicon dioxide to form the glass material. In one embodiment, the silicon dioxide composite can comprise silicon dioxide combined with a mixture of sodium carbonate, and either calcium carbonate or calcium oxide. In an alternative embodiment, the silicon dioxide composite can comprise silicon dioxide combined with boric oxide. In yet another embodiment, the silicon dioxide composite can comprise silicon dioxide combined with lead oxide.


Alternatively, the glass material 201 can comprise pure Silica or silicon dioxide (SiO2). In still another embodiment, the glass material can comprise a metallic glass. Examples of metallic glass alloys include alloys based on zirconium or palladium. The method as described in detail below produces the manufacture 200 in a final form that includes a “granular” or a molecular structure 204 having an amorphous disordered structure propagated throughout the manufacture 200. The molecular structure 204 comprises an average molecular boundary distance or diameter 208 of one to several micrometers. Preferably, the average molecular diameter 208 equals approximately one micrometer.


The nano-material 206 can comprise any a number of suitable materials that are non-miscible with the glass material 201 depending on a particular application. In an exemplary embodiment, the nano-material 206 can comprise a metallic material or a nano-metal. Examples of suitable metallic materials can include copper, silver and gold. A person of skill can appreciate that other metallic materials can also be suitable for the nano-material 206. Alternatively, the suitable metallic material can comprise a metallic compound. In an alternative embodiment, the nano-material 206 comprises a material from a group of non-oxide ceramics. Examples of suitable non-oxide ceramics can include titanium carbide or titanium diboride. In yet another embodiment, the nano-material 206 can comprise an oxide ceramic material that is non-miscible with the glass matrix material 201, for example, alumina and zirconia. A person of skill will appreciate an effect of the nano-material 206 on a refractive index and a transparent quality of the manufacture 200. Thus the nano-material 206 can be chosen such that refractive indexes of the nano-material 206 and the glass matrix material 201 are equal.


The novel method of the invention produces the manufacture 200 having nanoparticles 206 bonded within the molecular structure 204. The nanoparticles 206 are bonded within the molecular structure 204 of the glass material 201. A surface 202 of the manufacture 200 reveals that the nanoparticles 206 are substantially uniformly distributed throughout the molecular structure 204. Additionally, the manufacture 200 includes the nanoparticles 206 substantially uniformly distributed throughout a three dimensional mass of the manufacture 200. A novel result of the method includes the nanoparticles 206 substantially uniformly distributed where three or more interfaces intersect or at triple points 210 of the glass material 201. Preferably, the nanoparticles 206 comprise an average diameter suitable for bonding within the molecular structure 204 of the glass material 201. In an exemplary embodiment, the nanoparticles 206 have an average diameter of approximately 1 to 40 nm. Preferably, the average diameter of the nanoparticles 206 is 20 nm+/−10 nm.


Turning to FIG. 3, a method is shown for making a glass with improved fracture toughness in accordance with an embodiment of the invention. The method step 310 comprises providing a quantity of nanoparticles 206 which are suitable for bonding with glass material. The nanoparticles 206 preferably comprise an average diameter of 5-15 nm+/−4 nm. The nanoparticles 206 can be in the form of a powder. Any suitable method of providing the nanoparticles 206 known to a person of skill can be used. Such methods can include attrition of some kind. For example, ball milling or feeding micron sized material into a plasma process such as described and claimed in the co-owned and co-pending application Ser. No. 11/110,341, filed Apr. 19, 2005, and titled “High Throughput Discovery of Materials Through Vapor Phase Synthesis,” which is incorporated herein by reference. The method step 320 comprises providing a quantity of glass matrix material 201. The matrix material 201 comprises an average grain diameter of 500-600 nm. Alternatively, the matrix material 201 can comprise an average grain diameter of one micrometer. The matrix material 201 typically comprises a powered substance. The matrix material 201 can comprise a form of miniature beads or spheres.


The method step 330 comprises preparing a dispersion 332 of the nanoparticles 206 of the step 310. The dispersion 332 comprises a suspension of the nanoparticles 206 in a suitable liquid or suspension liquid. The nanoparticles 206 can comprise a nano-metal with an average diameter of 5-15 nm+/−4 nm. The nanoparticles 206 can comprise 0.5-20% of the dispersion 332. Alternatively, the nanoparticles 206 can comprise 0.5-10% of the dispersion 332. In another alternative, the nanoparticles 206 can comprise approximately 1.0% of the dispersion 332. In an exemplary embodiment, the suspension liquid comprises water and a surfactant. The surfactant can comprise ten percent of the suspension liquid. Any suitable surfactant can be used. Such surfactants are manufactured by Lubrizol Corporation. In an alternative embodiment, a wetting agent can also be included in the suspension liquid. The wetting agent can be five percent relative to water of the suspension liquid. Alternatively, the suspension liquid comprises an alcohol. Other liquids known to a person of skill can also be utilized. The dispersion 332 comprises a pH suitable for best mixing results with a slurry 342 of the step 340. In an exemplary embodiment, the pH of the dispersion 332 comprises a base. In another embodiment, the base pH comprises a 7.5 pH.


A feature of the method of the invention contemplates that the dispersion 332 comprises a substantially uniform distribution of the nanoparticles 206 within the liquid. The uniform dispersion 332 facilitates a uniform diameter of the nanoparticles 206 in the suspension and prevents a forming of large aggregations of the nanoparticles 206. A high concentration of large aggregations of nanoparticles 206 inhibit the desired uniform distribution of the nanoparticles 206 within the molecular structure 204 of the manufacture 200.


The method step 340 comprises preparing a slurry 342 of the glass matrix material 201 of the step 320. The slurry 342 preferably comprises a viscous suspension of the glass matrix material 201 in a suitable liquid. The glass matrix material 201 can comprise SiO2 with an average diameter of 500-600 nm. The glass matrix material 201 can comprise 50% of the slurry 342. In an exemplary embodiment, the suspension liquid comprises water. Other liquids known to a person of skill can also be utilized. The slurry 342 can include various additives or binders that facilitate a mixing, a drying, a melting and a sintering step described later below. The slurry 342 comprises a pH suitable for best mixing results with the dispersion 332. In an exemplary embodiment, the pH of the slurry 342 comprises a base. In one embodiment, the base pH comprises an 8.0-9.0 pH. In another embodiment, the base pH comprises an 11.0 pH.


The method step 350 comprises mixing the nano-dispersion 332 with the matrix slurry 342 to form a nano-dispersion/slurry mixture 352. The mixing of the nano-dispersion/slurry mixture 352 can comprise suitable agitation methods known to a person of skill. The mixing of the nano-dispersion/slurry mixture 352 produces a dispersion of the nanoparticles 206 within the matrix slurry so that the nanoparticles 206 are uniformly distributed throughout the nano-dispersion/slurry mixture 352. In an exemplary embodiment, the mixing comprises slowly pouring the slurry 342 into the dispersion 332. Preferably, the nano-dispersion/slurry mixture 352 is sonicated during the pouring of the slurry 342. A sonicating horn can be dipped in the dispersion 332 while pouring the slurry 342. A stir bar can optionally be placed in the dispersion 332 during the pouring of the slurry 342. The stir bar can be used to agitate the nano-dispersion/slurry mixture 352 while pouring the slurry 342. The percentage of the nano-dispersion/slurry mixture 352 that comprises the nano-dispersion 332 can vary between 0.5% to 20%. Alternatively, the nano-dispersion/slurry mixture 352 comprises 0.5% to 10% of the nano-dispersion 332. In another alternative, the nano-dispersion/slurry mixture 352 comprises 0.5% to 3.0% of the nano-dispersion 332.


In an alternative embodiment, the mixing comprises slowly pouring the dispersion 332 into the slurry 342. The nano-dispersion/slurry mixture 352 is sonicated during the pouring of the dispersion 332. A sonicating horn can be dipped in the slurry 342 while pouring the dispersion 332. A stir bar can be placed in the slurry 342 during the pouring of the dispersion 332. The stir bar can be used to agitate the nano-dispersion/slurry mixture 352 while pouring the dispersion 332. Other mixing techniques known to a person of skill the art can be substituted for the mixing and agitation described above.


In one embodiment, the various additives or binders that facilitate mixing, drying and sintering can be added to the slurry 342 before the mixing step of step 350. Alternatively, the additives or binders can be added to the nano-dispersion/slurry mixture 352 after the mixing step 350.


The method step 360 comprises drying the nano-dispersion/slurry mixture 352. In an exemplary embodiment, a spray drying process is utilized to dry the nano-dispersion/slurry mixture 352. The spray drying process comprises loading a spray gun and spraying the nano-dispersion/slurry mixture 352 into a closed compartment, for example, a glove box. The nano-dispersion/slurry mixture 352 is sprayed within the compartment and then allowed to dry. As the drying process proceeds, appreciable amounts of the liquid of the nano-dispersion/slurry mixture 352 evaporate to result in a powdered form or a premanufacture 368. In an alternative embodiment, the method step 360 comprises a freeze drying process. Freeze drying comprises placing the nano-dispersion/slurry mixture 352 into a freeze dryer and allowing the liquid of the nano-dispersion/slurry mixture 352 to evaporate until what results comprises the powdered form or the premanufacture 368.


The process step 365 comprises the premanufacture 368 which is the result of the drying step 360. The premanufacture 368 comprises the nanoparticles 206 uniformly distributed throughout the glass matrix material 201.


The method step 370 comprises a process to make the powdered premanufacture 368 a melt. Making the powdered premanufacture 368 a melt comprises placing the powdered premanufacture 368 of the method step 365 into a mold and pressing the powdered premanufacture 368 to form a molded premanufacture 372. Heat is also applied to the molded premanufacture 372 sufficient to liquify and integrate the nanoparticles 206 with the matrix material 201. A person of skill will choose any suitable method of heating the molded premanufacture 372 to cause liquidisation. The molded premanufacture 372 is allowed to cool.


The method step 380 comprises a process of sintering the molded premanufacture 372. The sintering process comprises using any of a variety of sintering processes. In an exemplary embodiment, the sintering process comprises a hot isostatic pressing (HIP) process. The hot isostatic pressing comprises placing the molded premanufacture 372 into a HIP furnace where the molded premanufacture 372 is heated under pressure. The HIP process facilitates a removal of porosity within the molded premanufacture 372. In an alternative embodiment, a liquid phase sintering process as practiced in the art can be used for the method step 380. In yet another embodiment, a simple hot pressing process as practiced in the art can be used.


Referring back to FIG. 2, a result of the method 300 comprises the manufacture 200 with improved fracture toughness in accordance with an embodiment of the invention. The manufacture 200 comprises a composite of a glass material 201 and nanoparticles or nano-material 206. The novel feature of the method 300 produces the manufacture 200 comprising the nanoparticles 206 uniformly distributed throughout the glass material 201.


While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. Thus, one of ordinary skill in the art will understand that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.

Claims
  • 1. A method of making glass comprising: providing a plasma created nano-material with an average diameter of 1-15 nanometers;preparing a dispersion of the nano-material;preparing a slurry of a glass matrix material;mixing the nano-dispersion with the matrix slurry to form a nano-dispersion/slurry mixture;drying the nano-dispersion/slurry mixture; andpressing the nano-dispersion/slurry mixture into a final manufacture comprising a molecular structure including the nano-material bonded within and uniformly distributed throughout the molecular structure.
  • 2. The method of claim 1, wherein the mixing comprises pouring the slurry into the dispersion while agitating the nano-dispersion/slurry mixture.
  • 3. The method of claim 1, wherein the mixing comprises pouring the dispersion into the slurry while agitating the nano-dispersion/slurry mixture.
  • 4. The method of claim 1, further comprising providing a micron sized matrix material having an average grain size greater than or equal to 1 micrometer before the slurry preparing step.
  • 5. The method of claim 1, wherein one percent of the nano-dispersion/slurry mixture comprises the nano-material dispersion.
  • 6. The method of claim 1, wherein 0.5-10.0 percent of the nano-dispersion/slurry mixture comprises the nano-material dispersion.
  • 7. The method of claim 1, wherein 0.5-20.0 percent of the nano-dispersion/slurry mixture comprises the nano-material dispersion.
  • 8. The method of claim 1, further comprising sintering the final form using a sintering process following the pressing step.
  • 9. The method of claim 8, wherein the sintering process comprises a hot isostatic pressing process.
  • 10. The method of claim 1, wherein the manufacture includes the nano-material bonded at triple points of the molecular structure.
  • 11. The method of claim 1, wherein the drying of the nano-dispersion/slurry mixture comprises a spray drying process.
  • 12. The method of claim 1, wherein the drying of the nano-dispersion/slurry mixture comprises a freeze drying process.
  • 13. The method of claim 1, wherein the nano-material comprises a non-oxide ceramic material.
  • 14. The method of claim 1, wherein the nano-material comprises an oxide ceramic material that is nonmiscible with the glass matrix material.
  • 15. A method of making glass comprising: providing a plasma created metallic nano-material with an average diameter of 1-15 nanometers;preparing a dispersion of the metallic nano-material;preparing a slurry of a glass matrix material;mixing the nano-dispersion with the matrix slurry to form a nano-dispersion/slurry mixture;drying the nano-dispersion/slurry mixture; andpressing the nano-dispersion/slurry mixture into a final manufacture comprising a molecular structure including the nano-material bonded within and uniformly distributed throughout the molecular structure.
  • 16. The method of claim 15, wherein the mixing comprises pouring the slurry into the dispersion while agitating the nano-dispersion/slurry mixture.
  • 17. The method of claim 15, wherein the mixing comprises pouring the dispersion into the slurry while agitating the nano-dispersion/slurry mixture.
  • 18. The method of claim 15, further comprising providing a micron sized matrix material having an average grain size greater than or equal to 1 micrometer before the slurry preparing step.
  • 19. The method of claim 15, wherein one percent of the nano-dispersion/slurry mixture comprises the nano-material dispersion.
  • 20. The method of claim 15, wherein 0.5-10.0 percent of the nano-dispersion/slurry mixture comprises the nano-material dispersion.
  • 21. The method of claim 15, wherein 0.5-20.0 percent of the nano-dispersion/slurry mixture comprises the nano-material dispersion.
  • 22. The method of claim 15, further comprising sintering the final form using a sintering process following the pressing step.
  • 23. The method of claim 22, wherein the sintering process comprises a hot isostatic pressing process.
  • 24. The method of claim 15, wherein the manufacture includes the nano-material bonded at triple points of the molecular structure.
  • 25. The method of claim 15, wherein the drying of the nano-dispersion/slurry mixture comprises a spray drying process.
  • 26. The method of claim 15, wherein the drying of the nano-dispersion/slurry mixture comprises a freeze drying process.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 61/284,329, filed Dec. 15, 2009 and entitled “MATERIALS PROCESSING,” which is hereby incorporated herein by reference in its entirety as if set forth herein.

US Referenced Citations (513)
Number Name Date Kind
2021936 Johnstone Nov 1935 A
2284554 Beyerstedt May 1942 A
2419042 Todd Apr 1947 A
2519531 Worn Aug 1950 A
2562753 Trost Jul 1951 A
2689780 Rice Sep 1954 A
3001402 Koblin Sep 1961 A
3042511 Reding, Jr. Jul 1962 A
3067025 Chisholm Dec 1962 A
3145287 Siebein et al. Aug 1964 A
3178121 Wallace, Jr. Apr 1965 A
3179782 Matvay Apr 1965 A
3181947 Vordahl May 1965 A
3235700 Mondain-Monval et al. Feb 1966 A
3313908 Unger et al. Apr 1967 A
3401465 Larwill Sep 1968 A
3450926 Kiernan Jun 1969 A
3457788 Miyajima Jul 1969 A
3537513 Austin Nov 1970 A
3552653 Inoue Jan 1971 A
3617358 Dittrich Nov 1971 A
3667111 Chartet Jun 1972 A
3741001 Fletcher et al. Jun 1973 A
3752172 Cohen et al. Aug 1973 A
3761360 Auvil et al. Sep 1973 A
3774442 Gustavsson Nov 1973 A
3804034 Stiglich, Jr. Apr 1974 A
3830756 Sanchez et al. Aug 1974 A
3871448 Vann et al. Mar 1975 A
3892882 Guest et al. Jul 1975 A
3914573 Muehlberger Oct 1975 A
3959094 Steinberg May 1976 A
3959420 Geddes et al. May 1976 A
3969482 Teller Jul 1976 A
4008620 Narato et al. Feb 1977 A
4018388 Andrews Apr 1977 A
4021021 Hall et al. May 1977 A
4127760 Meyer et al. Nov 1978 A
4139497 Castor et al. Feb 1979 A
4146654 Guyonnet Mar 1979 A
4157316 Thompson et al. Jun 1979 A
4171288 Keith et al. Oct 1979 A
4174298 Antos Nov 1979 A
4189925 Long Feb 1980 A
4227928 Wang Oct 1980 A
4248387 Andrews Feb 1981 A
4253917 Wang Mar 1981 A
4260649 Dension et al. Apr 1981 A
4284609 deVries Aug 1981 A
4315874 Ushida et al. Feb 1982 A
4326492 Leibrand, Sr. et al. Apr 1982 A
4344779 Isserlis Aug 1982 A
4369167 Weir Jan 1983 A
4388274 Rourke et al. Jun 1983 A
4419331 Montalvo Dec 1983 A
4431750 McGinnis et al. Feb 1984 A
4436075 Campbell et al. Mar 1984 A
4440733 Lawson et al. Apr 1984 A
4458138 Adrian et al. Jul 1984 A
4459327 Wang Jul 1984 A
4505945 Dubust et al. Mar 1985 A
4506136 Smyth et al. Mar 1985 A
4513149 Gray et al. Apr 1985 A
4523981 Ang et al. Jun 1985 A
4545872 Sammells et al. Oct 1985 A
RE32244 Andersen Sep 1986 E
4609441 Frese, Jr. et al. Sep 1986 A
4610857 Ogawa et al. Sep 1986 A
4616779 Serrano et al. Oct 1986 A
4723589 Iyer et al. Feb 1988 A
4731517 Cheney Mar 1988 A
4751021 Mollon et al. Jun 1988 A
4764283 Ashbrook et al. Aug 1988 A
4765805 Wahl et al. Aug 1988 A
4824624 Palicka et al. Apr 1989 A
4836084 Vogelesang et al. Jun 1989 A
4855505 Koll Aug 1989 A
4866240 Webber Sep 1989 A
4877937 Müller Oct 1989 A
4885038 Anderson et al. Dec 1989 A
4921586 Molter May 1990 A
4970364 Müller Nov 1990 A
4982050 Gammie et al. Jan 1991 A
4983555 Roy et al. Jan 1991 A
4987033 Abkowitz et al. Jan 1991 A
5006163 Benn et al. Apr 1991 A
5015863 Takeshima et al. May 1991 A
5041713 Weidman Aug 1991 A
5043548 Whitney et al. Aug 1991 A
5070064 Hsu et al. Dec 1991 A
5073193 Chaklader et al. Dec 1991 A
5133190 Abdelmalek Jul 1992 A
5151296 Tokunaga Sep 1992 A
5157007 Domesle et al. Oct 1992 A
5192130 Endo et al. Mar 1993 A
5217746 Lenling et al. Jun 1993 A
5230844 Macaire et al. Jul 1993 A
5233153 Coats Aug 1993 A
5269848 Nakagawa Dec 1993 A
5294242 Zurecki et al. Mar 1994 A
5330945 Beckmeyer et al. Jul 1994 A
5338716 Triplett et al. Aug 1994 A
5369241 Taylor et al. Nov 1994 A
5371049 Moffett et al. Dec 1994 A
5372629 Anderson et al. Dec 1994 A
5392797 Welch Feb 1995 A
5436080 Inoue et al. Jul 1995 A
5439865 Abe et al. Aug 1995 A
5442153 Marantz et al. Aug 1995 A
5452854 Keller Sep 1995 A
5460701 Parker et al. Oct 1995 A
5464458 Yamamoto Nov 1995 A
5485941 Guyomard et al. Jan 1996 A
5486675 Taylor et al. Jan 1996 A
5534149 Birkenbeil et al. Jul 1996 A
5534270 De Castro Jul 1996 A
5543173 Horn, Jr. et al. Aug 1996 A
5553507 Basch et al. Sep 1996 A
5558771 Hagen et al. Sep 1996 A
5562966 Clarke et al. Oct 1996 A
5582807 Liao et al. Dec 1996 A
5596973 Grice Jan 1997 A
5611896 Swanepoel et al. Mar 1997 A
5630322 Heilmann et al. May 1997 A
5652304 Calderon et al. Jul 1997 A
5714644 Irgang et al. Feb 1998 A
5723027 Serole Mar 1998 A
5723187 Popoola et al. Mar 1998 A
5726414 Kitahashi et al. Mar 1998 A
5733662 Bogachek Mar 1998 A
5749938 Coombs May 1998 A
5776359 Schultz et al. Jul 1998 A
5788738 Pirzada et al. Aug 1998 A
5804155 Farrauto et al. Sep 1998 A
5811187 Anderson et al. Sep 1998 A
5837959 Muehlberger et al. Nov 1998 A
5851507 Pirzada et al. Dec 1998 A
5853815 Muehlberger Dec 1998 A
5858470 Bernecki et al. Jan 1999 A
5884473 Noda et al. Mar 1999 A
5905000 Yadav et al. May 1999 A
5928806 Olah et al. Jul 1999 A
5935293 Detering et al. Aug 1999 A
5973289 Read et al. Oct 1999 A
5989648 Phillips Nov 1999 A
5993967 Brotzman, Jr. et al. Nov 1999 A
5993988 Ohara et al. Nov 1999 A
6004620 Camm Dec 1999 A
6012647 Ruta et al. Jan 2000 A
6033781 Brotzman, Jr. et al. Mar 2000 A
6045765 Nakatsuji et al. Apr 2000 A
6059853 Coombs May 2000 A
6066587 Kurokawa et al. May 2000 A
6084197 Fusaro, Jr. Jul 2000 A
6093306 Hanrahan et al. Jul 2000 A
6093378 Deeba et al. Jul 2000 A
6102106 Manning et al. Aug 2000 A
6117376 Merkel Sep 2000 A
6140539 Sander et al. Oct 2000 A
6168694 Huang et al. Jan 2001 B1
6190627 Hoke et al. Feb 2001 B1
6213049 Yang Apr 2001 B1
6214195 Yadav et al. Apr 2001 B1
6228904 Yadav et al. May 2001 B1
6254940 Pratsinis et al. Jul 2001 B1
6261484 Phillips et al. Jul 2001 B1
6267864 Yadav et al. Jul 2001 B1
6322756 Arno et al. Nov 2001 B1
6342465 Klein et al. Jan 2002 B1
6344271 Yadav et al. Feb 2002 B1
6362449 Hadidi et al. Mar 2002 B1
6379419 Celik et al. Apr 2002 B1
6387560 Yadav et al. May 2002 B1
6395214 Kear et al. May 2002 B1
6398843 Tarrant Jun 2002 B1
6399030 Nolan Jun 2002 B1
6409851 Sethuram et al. Jun 2002 B1
6413781 Geis et al. Jul 2002 B1
6416818 Aikens et al. Jul 2002 B1
RE37853 Detering et al. Sep 2002 E
6444009 Liu et al. Sep 2002 B1
6475951 Domesle et al. Nov 2002 B1
6488904 Cox et al. Dec 2002 B1
6506995 Fusaro, Jr. et al. Jan 2003 B1
6517800 Cheng et al. Feb 2003 B1
6524662 Jang et al. Feb 2003 B2
6531704 Yadav et al. Mar 2003 B2
6548445 Buysch et al. Apr 2003 B1
6554609 Yadav et al. Apr 2003 B2
6562304 Mizrahi May 2003 B1
6562495 Yadav et al. May 2003 B2
6569393 Hoke et al. May 2003 B1
6569397 Yadav et al. May 2003 B1
6569518 Yadav et al. May 2003 B2
6572672 Yadav et al. Jun 2003 B2
6579446 Teran et al. Jun 2003 B1
6596187 Coll et al. Jul 2003 B2
6603038 Hagemeyer et al. Aug 2003 B1
6607821 Yadav et al. Aug 2003 B2
6610355 Yadav et al. Aug 2003 B2
6623559 Huang Sep 2003 B2
6635357 Moxson et al. Oct 2003 B2
6641775 Vigliotti et al. Nov 2003 B2
6652822 Phillips et al. Nov 2003 B2
6652967 Yadav et al. Nov 2003 B2
6669823 Sarkas et al. Dec 2003 B1
6682002 Kyotani Jan 2004 B2
6689192 Phillips et al. Feb 2004 B1
6699398 Kim Mar 2004 B1
6706097 Zornes Mar 2004 B2
6706660 Park Mar 2004 B2
6710207 Bogan, Jr. et al. Mar 2004 B2
6713176 Yadav et al. Mar 2004 B2
6716525 Yadav et al. Apr 2004 B1
6744006 Johnson et al. Jun 2004 B2
6746791 Yadav et al. Jun 2004 B2
6772584 Chun et al. Aug 2004 B2
6786950 Yadav et al. Sep 2004 B2
6813931 Yadav et al. Nov 2004 B2
6817388 Tsangaris et al. Nov 2004 B2
6832735 Yadav et al. Dec 2004 B2
6838072 Kong et al. Jan 2005 B1
6841509 Hwang et al. Jan 2005 B1
6855410 Buckley Feb 2005 B2
6855426 Yadav Feb 2005 B2
6855749 Yadav et al. Feb 2005 B1
6858170 Van Thillo et al. Feb 2005 B2
6886545 Holm May 2005 B1
6891319 Dean et al. May 2005 B2
6896958 Cayton et al. May 2005 B1
6902699 Fritzemeier et al. Jun 2005 B2
6916872 Yadav et al. Jul 2005 B2
6919065 Zhou et al. Jul 2005 B2
6919527 Boulos et al. Jul 2005 B2
6933331 Yadav et al. Aug 2005 B2
6972115 Ballard Dec 2005 B1
6986877 Takikawa et al. Jan 2006 B2
6994837 Boulos et al. Feb 2006 B2
7007872 Yadav et al. Mar 2006 B2
7022305 Drumm et al. Apr 2006 B2
7052777 Brotzman, Jr. et al. May 2006 B2
7073559 O'Larey et al. Jul 2006 B2
7074364 Jähn et al. Jul 2006 B2
7081267 Yadav Jul 2006 B2
7101819 Rosenflanz et al. Sep 2006 B2
7147544 Rosenflanz Dec 2006 B2
7147894 Zhou et al. Dec 2006 B2
7166198 Van Der Walt et al. Jan 2007 B2
7166663 Cayton et al. Jan 2007 B2
7172649 Conrad et al. Feb 2007 B2
7172790 Koulik et al. Feb 2007 B2
7178747 Yadav et al. Feb 2007 B2
7208126 Musick et al. Apr 2007 B2
7211236 Stark et al. May 2007 B2
7217407 Zhang May 2007 B2
7220398 Sutorik et al. May 2007 B2
7255498 Bush et al. Aug 2007 B2
7265076 Taguchi et al. Sep 2007 B2
7282167 Carpenter Oct 2007 B2
7307195 Polverejan et al. Dec 2007 B2
7323655 Kim Jan 2008 B2
7384447 Kodas et al. Jun 2008 B2
7402899 Whiting et al. Jul 2008 B1
7417008 Richards et al. Aug 2008 B2
7494527 Jurewicz et al. Feb 2009 B2
7517826 Fujdala et al. Apr 2009 B2
7534738 Fujdala et al. May 2009 B2
7541012 Yeung et al. Jun 2009 B2
7541310 Espinoza et al. Jun 2009 B2
7557324 Nylen et al. Jul 2009 B2
7572315 Boulos et al. Aug 2009 B2
7576029 Saito et al. Aug 2009 B2
7576031 Beutel et al. Aug 2009 B2
7604843 Robinson et al. Oct 2009 B1
7611686 Alekseeva et al. Nov 2009 B2
7615097 McKechnie et al. Nov 2009 B2
7618919 Shimazu et al. Nov 2009 B2
7622693 Foret Nov 2009 B2
7632775 Zhou et al. Dec 2009 B2
7635218 Lott Dec 2009 B1
7674744 Shiratori et al. Mar 2010 B2
7678419 Kevwitch et al. Mar 2010 B2
7704369 Olah et al. Apr 2010 B2
7709411 Zhou et al. May 2010 B2
7709414 Fujdala et al. May 2010 B2
7745367 Fujdala et al. Jun 2010 B2
7750265 Belashchenko et al. Jul 2010 B2
7759279 Shiratori et al. Jul 2010 B2
7759281 Kezuka et al. Jul 2010 B2
7803210 Sekine et al. Sep 2010 B2
7842515 Zou et al. Nov 2010 B2
7851405 Wakamatsu et al. Dec 2010 B2
7874239 Howland Jan 2011 B2
7875573 Beutel et al. Jan 2011 B2
7897127 Layman et al. Mar 2011 B2
7902104 Kalck Mar 2011 B2
7905942 Layman Mar 2011 B1
7935655 Tolmachev May 2011 B2
8051724 Layman et al. Nov 2011 B1
8076258 Biberger Dec 2011 B1
8080494 Yasuda et al. Dec 2011 B2
8089495 Keller Jan 2012 B2
8129654 Lee et al. Mar 2012 B2
8142619 Layman et al. Mar 2012 B2
8168561 Virkar May 2012 B2
8173572 Feaviour May 2012 B2
8211392 Grubert et al. Jul 2012 B2
8258070 Fujdala et al. Sep 2012 B2
8278240 Tange et al. Oct 2012 B2
8294060 Mohanty et al. Oct 2012 B2
8309489 Cuenya et al. Nov 2012 B2
8349761 Xia et al. Jan 2013 B2
8404611 Nakamura et al. Mar 2013 B2
8524631 Biberger Sep 2013 B2
8557727 Yin et al. Oct 2013 B2
8574408 Layman Nov 2013 B2
8669202 Van Den Hoek et al. Mar 2014 B2
20010004009 MacKelvie Jun 2001 A1
20010042802 Youds Nov 2001 A1
20010055554 Hoke et al. Dec 2001 A1
20020018815 Sievers et al. Feb 2002 A1
20020068026 Murrell et al. Jun 2002 A1
20020071800 Hoke et al. Jun 2002 A1
20020079620 DuBuis et al. Jun 2002 A1
20020100751 Carr Aug 2002 A1
20020102674 Anderson Aug 2002 A1
20020131914 Sung Sep 2002 A1
20020143417 Ito et al. Oct 2002 A1
20020168466 Tapphorn et al. Nov 2002 A1
20020182735 Kibby et al. Dec 2002 A1
20020183191 Faber et al. Dec 2002 A1
20020192129 Shamouilian et al. Dec 2002 A1
20030036786 Duren et al. Feb 2003 A1
20030042232 Shimazu Mar 2003 A1
20030047617 Shanmugham et al. Mar 2003 A1
20030066800 Saim et al. Apr 2003 A1
20030102099 Yadav et al. Jun 2003 A1
20030108459 Wu et al. Jun 2003 A1
20030110931 Aghajanian et al. Jun 2003 A1
20030129098 Endo et al. Jul 2003 A1
20030139288 Cai et al. Jul 2003 A1
20030143153 Boulos et al. Jul 2003 A1
20030172772 Sethuram et al. Sep 2003 A1
20030223546 McGregor et al. Dec 2003 A1
20040009118 Phillips et al. Jan 2004 A1
20040023302 Archibald et al. Feb 2004 A1
20040023453 Xu et al. Feb 2004 A1
20040077494 LaBarge et al. Apr 2004 A1
20040103751 Joseph et al. Jun 2004 A1
20040109523 Singh et al. Jun 2004 A1
20040119064 Narayan et al. Jun 2004 A1
20040127586 Jin et al. Jul 2004 A1
20040129222 Nylen et al. Jul 2004 A1
20040166036 Chen et al. Aug 2004 A1
20040167009 Kuntz et al. Aug 2004 A1
20040176246 Shirk et al. Sep 2004 A1
20040208805 Fincke et al. Oct 2004 A1
20040213998 Hearley et al. Oct 2004 A1
20040235657 Xiao et al. Nov 2004 A1
20040238345 Koulik et al. Dec 2004 A1
20040251017 Pillion et al. Dec 2004 A1
20040251241 Blutke et al. Dec 2004 A1
20050000321 O'Larey et al. Jan 2005 A1
20050000950 Schroder et al. Jan 2005 A1
20050066805 Park et al. Mar 2005 A1
20050070431 Alvin et al. Mar 2005 A1
20050077034 King Apr 2005 A1
20050097988 Kodas et al. May 2005 A1
20050106865 Chung et al. May 2005 A1
20050133121 Subramanian et al. Jun 2005 A1
20050153069 Tapphorn et al. Jul 2005 A1
20050163673 Johnson et al. Jul 2005 A1
20050199739 Kuroda et al. Sep 2005 A1
20050211018 Jurewicz et al. Sep 2005 A1
20050220695 Abatzoglou et al. Oct 2005 A1
20050227864 Sutorik et al. Oct 2005 A1
20050233380 Pesiri et al. Oct 2005 A1
20050240069 Polverejan et al. Oct 2005 A1
20050258766 Kim Nov 2005 A1
20050275143 Toth Dec 2005 A1
20060043651 Yamamoto et al. Mar 2006 A1
20060051505 Kortshagen et al. Mar 2006 A1
20060068989 Ninomiya et al. Mar 2006 A1
20060094595 Labarge May 2006 A1
20060096393 Pesiri May 2006 A1
20060105910 Zhou et al. May 2006 A1
20060108332 Belashchenko May 2006 A1
20060153728 Schoenung et al. Jul 2006 A1
20060153765 Pham-Huu et al. Jul 2006 A1
20060159596 De La Veaux et al. Jul 2006 A1
20060166809 Malek et al. Jul 2006 A1
20060211569 Dang et al. Sep 2006 A1
20060213326 Gollob et al. Sep 2006 A1
20060222780 Gurevich et al. Oct 2006 A1
20060231525 Asakawa et al. Oct 2006 A1
20070044513 Kear et al. Mar 2007 A1
20070048206 Hung et al. Mar 2007 A1
20070049484 Kear et al. Mar 2007 A1
20070063364 Hsiao et al. Mar 2007 A1
20070084308 Nakamura et al. Apr 2007 A1
20070084834 Hanus et al. Apr 2007 A1
20070087934 Martens et al. Apr 2007 A1
20070092768 Lee et al. Apr 2007 A1
20070153390 Nakamura et al. Jul 2007 A1
20070163385 Takahashi et al. Jul 2007 A1
20070173403 Koike et al. Jul 2007 A1
20070178673 Gole et al. Aug 2007 A1
20070221404 Das et al. Sep 2007 A1
20070253874 Foret Nov 2007 A1
20070292321 Plischke et al. Dec 2007 A1
20080006954 Yubuta et al. Jan 2008 A1
20080026041 Tepper et al. Jan 2008 A1
20080031806 Gavenonis et al. Feb 2008 A1
20080038578 Li Feb 2008 A1
20080045405 Beutel et al. Feb 2008 A1
20080047261 Han et al. Feb 2008 A1
20080057212 Dorier et al. Mar 2008 A1
20080064769 Sato et al. Mar 2008 A1
20080104735 Howland May 2008 A1
20080105083 Nakamura et al. May 2008 A1
20080116178 Weidman May 2008 A1
20080125308 Fujdala et al. May 2008 A1
20080125313 Fujdala et al. May 2008 A1
20080138651 Doi et al. Jun 2008 A1
20080175936 Tokita et al. Jul 2008 A1
20080187714 Wakamatsu et al. Aug 2008 A1
20080206562 Stucky et al. Aug 2008 A1
20080207858 Kowaleski et al. Aug 2008 A1
20080248704 Mathis et al. Oct 2008 A1
20080274344 Vieth et al. Nov 2008 A1
20080277092 Layman et al. Nov 2008 A1
20080277264 Biberger et al. Nov 2008 A1
20080277266 Layman et al. Nov 2008 A1
20080277267 Biberger et al. Nov 2008 A1
20080277268 Layman Nov 2008 A1
20080277269 Layman et al. Nov 2008 A1
20080277270 Biberger et al. Nov 2008 A1
20080277271 Layman Nov 2008 A1
20080280049 Kevwitch et al. Nov 2008 A1
20080280751 Harutyunyan et al. Nov 2008 A1
20080280756 Biberger Nov 2008 A1
20080283411 Eastman et al. Nov 2008 A1
20080283498 Yamazaki Nov 2008 A1
20080307960 Hendrickson et al. Dec 2008 A1
20090010801 Murphy et al. Jan 2009 A1
20090054230 Veeraraghavan et al. Feb 2009 A1
20090081092 Yang et al. Mar 2009 A1
20090088585 Schammel et al. Apr 2009 A1
20090092887 McGrath et al. Apr 2009 A1
20090098402 Kang et al. Apr 2009 A1
20090114568 Trevino et al. May 2009 A1
20090162991 Beneyton et al. Jun 2009 A1
20090168506 Han et al. Jul 2009 A1
20090170242 Lin et al. Jul 2009 A1
20090181474 Nagai Jul 2009 A1
20090200180 Capote et al. Aug 2009 A1
20090208367 Calio et al. Aug 2009 A1
20090209408 Kitamura et al. Aug 2009 A1
20090223410 Jun et al. Sep 2009 A1
20090253037 Park et al. Oct 2009 A1
20090274897 Kaner et al. Nov 2009 A1
20090274903 Addiego Nov 2009 A1
20090286899 Hofmann et al. Nov 2009 A1
20090324468 Golden et al. Dec 2009 A1
20100050868 Kuznicki et al. Mar 2010 A1
20100089002 Merkel Apr 2010 A1
20100092358 Koegel et al. Apr 2010 A1
20100124514 Chelluri et al. May 2010 A1
20100166629 Deeba Jul 2010 A1
20100180581 Grubert et al. Jul 2010 A1
20100180582 Mueller-Stach et al. Jul 2010 A1
20100186375 Kazi et al. Jul 2010 A1
20100240525 Golden et al. Sep 2010 A1
20100275781 Tsangaris Nov 2010 A1
20110006463 Layman Jan 2011 A1
20110030346 Neubauer et al. Feb 2011 A1
20110049045 Hurt et al. Mar 2011 A1
20110052467 Chase et al. Mar 2011 A1
20110143041 Layman et al. Jun 2011 A1
20110143915 Yin et al. Jun 2011 A1
20110143916 Leamon Jun 2011 A1
20110143926 Yin et al. Jun 2011 A1
20110143930 Yin et al. Jun 2011 A1
20110143933 Yin et al. Jun 2011 A1
20110144382 Yin et al. Jun 2011 A1
20110152550 Grey et al. Jun 2011 A1
20110158871 Arnold et al. Jun 2011 A1
20110174604 Duesel et al. Jul 2011 A1
20110243808 Fossey et al. Oct 2011 A1
20110245073 Oljaca et al. Oct 2011 A1
20110247336 Farsad et al. Oct 2011 A9
20110305612 Müller-Stach et al. Dec 2011 A1
20120023909 Lambert et al. Feb 2012 A1
20120045373 Biberger Feb 2012 A1
20120063963 Watanabe et al. Mar 2012 A1
20120097033 Arnold et al. Apr 2012 A1
20120122660 Andersen et al. May 2012 A1
20120124974 Li et al. May 2012 A1
20120171098 Hung et al. Jul 2012 A1
20120308467 Carpenter et al. Dec 2012 A1
20120313269 Kear et al. Dec 2012 A1
20130079216 Biberger et al. Mar 2013 A1
20130213018 Yin et al. Aug 2013 A1
20130280528 Biberger Oct 2013 A1
20130281288 Biberger et al. Oct 2013 A1
20130316896 Biberger Nov 2013 A1
20130345047 Biberger et al. Dec 2013 A1
20140018230 Yin et al. Jan 2014 A1
20140120355 Biberger May 2014 A1
20140128245 Yin et al. May 2014 A1
20140140909 Qi et al. May 2014 A1
20140148331 Biberger et al. May 2014 A1
20140209451 Biberger et al. Jul 2014 A1
Foreign Referenced Citations (63)
Number Date Country
34 45 273 Jun 1986 DE
0 385 742 Sep 1990 EP
1 134 302 Sep 2001 EP
1 256 378 Nov 2002 EP
1 619 168 Jan 2006 EP
1 955 765 Aug 2008 EP
1 307 941 Feb 1973 GB
56-146804 Nov 1981 JP
61-086815 May 1986 JP
62-102827 May 1987 JP
63-214342 Sep 1988 JP
1-164795 Jun 1989 JP
05-228361 Sep 1993 JP
05-324094 Dec 1993 JP
6-93309 Apr 1994 JP
6-135797 May 1994 JP
6-272012 Sep 1994 JP
H6-065772 Sep 1994 JP
7031873 Feb 1995 JP
07-256116 Oct 1995 JP
8-158033 Jun 1996 JP
8-215576 Aug 1996 JP
10-130810 May 1998 JP
10-249198 Sep 1998 JP
11-502760 Mar 1999 JP
2000-220978 Aug 2000 JP
2002-88486 Mar 2002 JP
2002-241812 Aug 2002 JP
2002-336688 Nov 2002 JP
2003-126694 May 2003 JP
2004-233007 Aug 2004 JP
2004-249206 Sep 2004 JP
2004-290730 Oct 2004 JP
2005-503250 Feb 2005 JP
2005-122621 May 2005 JP
2005-218937 Aug 2005 JP
2005-342615 Dec 2005 JP
2006-001779 Jan 2006 JP
2006-508885 Mar 2006 JP
2006-87965 Apr 2006 JP
2006-247446 Sep 2006 JP
2006-260385 Sep 2006 JP
2006-326554 Dec 2006 JP
2007-29859 Feb 2007 JP
2007-44585 Feb 2007 JP
2007-46162 Feb 2007 JP
2007-203129 Aug 2007 JP
493241 Mar 1976 SU
200611449 Apr 2006 TW
201023207 Jun 2010 TW
WO-9628577 Sep 1996 WO
WO 02092503 Nov 2002 WO
WO-03094195 Nov 2003 WO
WO 2004052778 Jun 2004 WO
WO-2005063390 Jul 2005 WO
WO 2006079213 Aug 2006 WO
WO-2007144447 Dec 2007 WO
WO-2008130451 Oct 2008 WO
WO-2008130451 Oct 2008 WO
WO-2009017479 Feb 2009 WO
WO-2011081833 Jul 2011 WO
WO-2012028695 Mar 2012 WO
WO-2013028575 Feb 2013 WO
Non-Patent Literature Citations (89)
Entry
Y. Ji, J.A. Yeomans, Processing and mechanical properties of Al2O3-5 vol.% Cr nanocomposites, Journal of the European Ceramic Society, vol. 22, Issue 12, Nov. 2002, pp. 1927-1936.
N. Ünal, F. Kern, M.L. Öve{hacek over (g)}lu, R. Gadow, Influence of WC particles on the microstructural and mechanical properties of 3 mol% Y2O3 stabilized ZrO2 matrix composites produced by hot pressing, Journal of the European Ceramic Society, vol. 31, Issue 13, Nov. 2011, pp. 2267-2275.
Rahaman, R. A. Ceramic Processing and Sintering, New York. Marcel Decker, 1995. Pages 71-77.
K. T. Faber, T. Iwagoshi, A. Ghosh, Toughening by Stress-Induced Microcracking in Two-Phase Ceramics, J. Am. Ceram. Soc, vol. 71, Issue 9, Sep. 1988, pp. C-399-C-401.
A. Gutsch et al., “Gas-Phase Production of Nanoparticles”, Kona No. 20, 2002, pp. 24-37.
Dr. Heike Mülhlenweg et al., “Gas-Phase Reactions—Open Up New Roads to Nanoproducts”, Degussa ScienceNewsletter No. 08, 2004 pp. 12-16.
Coating Generation: Vaporization of Particles in Plasma Spraying and Splat Formation, M. Vardelle, A. Vardelle, K-I Ii P. Fauchais, Universite de Limoges, 123 Avenue A. Thomas 87000, Limoges, F. , Pure & Chem, vol. 68, No. 5, pp. 1093-1099, 1996.
H. Konrad et al., “Nanostructured Cu-Bi Alloys Prepared by Co-Evaporation in a Continuous Gas Flow,” NanoStructured Materials, vol. 7, No. 6, 1996, pp. 605-610.
Kenvin et al. “Supported Catalysts Prepared from Mononuclear Copper Complexes: Catalytic Properties”, Journal of Catalysis, pp. 81-91, (1992).
J. Heberlein, “New Approaches in Thermal Plasma Technology”, Pure Appl. Chem., vol. 74, No. 3, 2002, pp. 327-335.
M.Vardelle et al., “Experimental Investigation of Powder Vaporization in Thermal Plasma Jets,” Plasma Chemistry and Plasma Processing, vol. 11, No. 2, Jun. 1991, pp. 185-201.
National Aeronautics and Space Administration, “Enthalpy”, http://www.grc.nasa.gov/WWW/K-12/airplane/enthalpy.html, Nov. 23, 2009, 1 page.
P. Fauchais et al. “Plasma Spray: Study of the Coating Generation,” Ceramics International, Elsevier, Amsterdam, NL, vol. 22, No. 4, Jan. 1996, pp. 295-303.
P. Fauchais et al., “Les Dépôts Par Plasma Thermique,” Revue Generale De L'Electricitie, RGE. Paris, FR, No. 2, Jan. 1993, pp. 7-12.
P. Fauchais et al, “La Projection Par Plasma: Une Revue,” Annales De Physique, vol. 14, No. 3, Jun. 1989, pp. 261-310.
T. Yoshida, “The Future of Thermal Plasma Processing for Coating”, Pure & Appl. Chem., vol. 66, No. 6, 1994 pp. 1223-1230.
HANet al., Deformation Mechanisms and Ductility of Nanostructured A1 Alloys, Mat. Res. Soc. Symp. Proc. vol. 821, Jan. 2004, Material Research Society, http://www.mrs.org/s—mrs/bin.asp?CID=2670&DOC=FILE.PDF., 6 pages.
Nagai, Yasutaka, et al., “Sintering Inhibition Mechanism of Platinum Supported on Ceria-based Oxide and Pt-oxide-support Interaction,”Journal of Catalysis 24-2 (2006), pp. 103-109, Jul. 3, 2006, Elsevier.
Derwent English Abstract for publication No. SU 193241 A, Application No. 1973SU1943286 filed on Jul. 2, 1973, published on Mar. 1, 1976, entitled“Catalyst for Ammonia Synthesis Contains Oxides of Aluminum, Potassium, Calcium, Iron and Nickel Oxide for Increased Activity,” 3 pgs.
Bateman, J. E. et al. (Dec. 17, 1998). “Alkylation of Porous Silicon by Direct Reaction with Alkenes and Alkynes,” Angew. Chem Int. Ed. 37(19):2683-2685.
Carrot, G. et al. (Sep. 17, 2002). “Surface-Initiated Ring-Opening Polymerization: A Versatile Method for Nanoparticle Ordering,” Macromolecules 35(22):8400-8404.
Chen, H.-S. et al. (Jul. 3, 2001). “On the Photoluminescence of Si Nanoparticles,” Mater. Phys. Mech. 4:62-66.
Fojtik, A. et al. (Apr. 29, 1994). “Luminescent Colloidal Silicon Particles,”Chemical Physics Letters 221:363-367.
Fojtik, A. (Jan. 13, 2006). “Surface Chemistry of Luminescent Colloidal Silicon Nanoparticles,” J. Phys. Chem. B. 110(5):1994-1998.
Hua, F. et al. (Mar. 2006). “Organically Capped Silicon Nanoparticles With Blue Photoluminescence Prepared by Hydrosilylation Followed by Oxidation,” Langmuir 22(9):4363-4370.
Jouet, R. J. et al. (Jan. 25, 2005). “Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids,” Chem. Mater.17(11):2987-2996.
Kim, N. Y. et al. (Mar. 5, 1997). “Thermal Derivatization of Porous Silicon with Alcohols,” J. Am. Chem. Soc. 119(9):2297-2298.
Kwon, Y.-S. et al. (Apr. 30, 2003). “Passivation Process for Superfine Aluminum Powders Obtained by Electrical Explosion of Wires,” Applied Surface Science 211:57-67.
Langner, A. et al. (Aug. 25, 2005). “Controlled Silicon Surface Functionalization by Alkene Hydrosilylation,” J. Am. Chem. Soc. 127(37):12798-12799.
Li, D. et al. (Apr. 9, 2005). “Environmentally Responsive “Hairy”Nanoparticles: Mixed Homopolymer Brushes on Silica Nanoparticles Synthesized by Living Radical Polymerization Techniques,” J. Am. Chem. Soc. 127(7):6248-6256.
Li, X. et al. (May 25, 2004). “Surface Functionalization of Silicon Nanoparticles Produced by Laser-Driven Pyrolysis of Silane Followed by HF-HNO3 Etching,” Langmuir 20(11):4720-4727.
Liao, Y.-C. et al. (Jun. 27, 2006). “Self-Assembly of Organic Monolayers on Aerosolized Silicon Nanoparticles,” J.Am. Chem. Soc. 128(28):9061-9065.
Liu, S.-M. et al. (Jan. 13, 2006). “Enhanced Photoluminescence from Si Nano-Organosols by Functionalization With Alkenes and Their Size Evolution,” Chem. Mater. 18(3):637-642.
Neiner, D. (Aug. 5, 2006). “Low-Temperature Solution Route to Macroscopic Amounts of Hydrogen Terminated Silicon Nanoparticles,” J. Am. Chem. Soc. 128:11016-11017.
Netzer, L. et al. (1983). “A New Approach to Construction of Artificial Monolayer Assemblies,” J. Am. Chem. Soc. 105(3):674-676.
“Platinum Group Metals: Annual Review 1996” (Oct. 1997). Engineering and Mining Journal, p. 63.
Sailor, M. J. (1997). “Surface Chemistry of Luminescent Silicon Nanocrystallites,” Adv. Mater. 9(10):783-793.
Stiles, A. B. (Jan. 1, 1987). “Manufacture of Carbon-Supported Metal Catalysts,” in Catalyst Supports and Supported Catalysts, Butterworth Publishers, MA, pp. 125-132.
Subramanian, S. et al. (1991). “Structure and Activity of Composite Oxide Supported Platinum-Iridium Catalysts,” Applied Catalysts 74: 65-81.
Tao, Y.-T. (May 1993). “Structural Comparison of Self-Assembled Monolayers of n-Alkanoic Acids on the surfaces of Silver, Copper, and Aluminum,” J. Am. Chem. Soc. 115(10):4350-4358.
Zou, J. et al. (Jun. 4, 2004). “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Letters 4(7):1181-1186.
U.S. Appl. No. 13/291,983, filed Nov. 8, 2011, for Layman et al.
U.S. Appl. No. 12/152,084, filed May 9, 2008, for Biberger.
U.S. Appl. No. 13/028,693, filed Feb. 16, 2011, for Biberger.
U.S. Appl. No. 12/943,909, filed Nov. 10, 2010, for Layman.
U.S. Appl. No. 12/152,111, filed May 9, 2008, for Biberger et al.
U.S. Appl. No. 12/151,830, filed May 8, 2008, for Biberger et al.
U.S. Appl. No. 12/968,248, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,245, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,241, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,239, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/969,128, filed Dec. 15, 2010, for Biberger.
U.S. Appl. No. 12/962,463, filed Dec. 7, 2010, for Leaman.
U.S. Appl. No. 12/961,030, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/961,108, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/961,200, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/968,253, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,235, filed on Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/969,306, filed Dec. 15, 2010, for Lehman et al.
U.S. Appl. No. 12/969,447, filed Dec. 15, 2010, for Biberger et al.
U.S. Appl. No. 12/969,087, filed Dec. 15, 2010, for Biberger.
U.S. Appl. No. 12/962,533, filed Dec. 7, 2010, for Yin et al.
U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/474,081, filed May 28, 2009, for Biberger et al.
U.S. Appl. No. 12/001,602, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/001,644, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/969,457, filed Nov. 15, 2010, for Leamon et al.
U.S. Appl. No. 12/969,503, filed Nov. 15, 2010, for Leamon et al.
U.S. Appl. No. 12/954,813, filed Nov. 26, 2010, for Biberger.
U.S. Appl. No. 12/954,822, filed Nov. 26, 2010, for Biberger.
U.S. Appl. No. 13/033,514, filed Feb. 23, 2011, for Biberger et al.
U.S. Appl. No. 13/589,024, filed Aug. 17, 2012, for Yin et al.
U.S. Appl. No. 13/801,726, filed Mar. 13, 2013, for Qi et al.
Babin, A. et al. (1985). “Solvents Used in the Arts,” Center for Safety in the Arts: 16 pages.
Chen, W.-J. et al. (Mar. 18, 2008). “Functional Fe3O4/TiO2Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria,” Small 4(4): 485-491.
Gangeri, M. et al. (2009). “Fe and Pt Carbon Nanotubes for the Electrocatalytic Conversion of Carbon Dioxide to Oxygenates,” Catalysis Today 143: 57-63.
Luo, J. et al. (2008). “Core/Shell Nanoparticles as Electrocatalysts for Fuel Cell Reactions,” Advanced Materials 20: 4342-4347.
Mignard, D. et al. (2003). “Methanol Synthesis from Flue-Gas CO2and Renewable Electricity: A Feasibility Study,” International Journal of Hydrogen Energy 28: 455-464.
Park, H.-Y. et al. (May 30, 2007). “Fabrication of Magnetic Core@Shell Fe Oxide@Au Nanoparticles for Interfacial Bioactivity and Bio-Separation,” Langmuir 23: 9050-9056.
Park, N.-G. et al. (Feb. 17, 2004). “Morphological and Photoelectrochemical Characterization of Core-Shell Nanoparticle Films for Dye-Sensitized Solar Cells: Zn-O Type Shell on SnO2and TiO2Cores,” Langmuir 20: 4246-4253.
“Plasma Spray and Wire Flame Spray Product Group,” located at http://www.processmaterials.com/spray.html, published by Process Materials, Inc., last accessed Aug. 5, 2013, 2 pages.
Ahmad, K. et al. (2008). “Hybrid Nanocomposites: A New Route Towards Tougher Alumina Ceramics,” Composites Science and Technology 68: 1321-1327.
Chaim, R. et al. (2009). “Densification of Nanocrystalline Y2O3 Ceramic Powder by Spark Plasma Sintering,” Journal of European Ceramic Society 29: 91-98.
Chau, J. K. H. et al. (2005). “Microwave Plasma Synthesis of Silver Nanopowders,” Materials Letters 59: 905-908.
Das, N. et al. (2001). “Influence of the Metal Function in the “One-Pot” Synthesis of 4-Methyl2-Pentanone (Methyl Isobutyl Ketone) from Acetone Over Palladium Supported on Mg(Al)O Mixed Oxides Catalysts,” Catalysis Letters 71(3-4): 181-185.
Lakis, R. E. et al. (1995). “Alumina-Supported Pt-Rh Catalysts: I. Microstructural Characterization,” Journal of Catalysis 154: 261-275.
Schimpf, S. et al. (2002). “Supported Gold Nanoparticles: In-Depth Catalyst Characterization and Application in Hydrogenation and Oxidation Reactions,” Catalysis Today 2592: 1-16.
Viswanathan, V. et al. (2006). “Challenges and Advances in Nanocomposite Processing Techniques,” Materials Science and Engineering R 54: 121-285.
Wan, J. et al. (2005). “Spark Plasma Sintering of Silicon Nitride/Silicon Carbide Nanocomposites with Reduced Additive Amounts,” Scripta Materialia 53: 663-667.
Provisional Applications (1)
Number Date Country
61284329 Dec 2009 US