This application is the U.S. national phase of International Application No. PCT/EP2017/064778 filed Jun. 16, 2017 which designated the U.S. and claims priority to EP 16174908.0 filed Jun. 17, 2016, the entire contents of each of which are hereby incorporated by reference.
The present invention relates to a fracturing method for providing fractures in a formation downhole for optimising hydro-carbon production, such as gas or shale gas production, in a well having a well tubular metal structure comprising several self-closing flow assemblies, each self-closing flow assembly comprising a sleeve which is movable along a longitudinal axis of the well tubular metal structure for opening or closing a port in the well tubular metal structure.
When completing a well or optimising an existing well, the formation is fractured by injecting seawater under high pressure into the formation, thereby creating fractures. However, some authorities do not allow seawater due to a conviction that the seawater will deteriorate the reservoir, especially when it comes to gas wells such as shale gas wells. Thus, fracturing is not possible in gas-producing wells, and therefore, other ways of opening the formation and creating more formation contact need to be developed.
It is an aspect of the present invention to wholly or partly overcome the above disadvantages and drawbacks of the prior art. More specifically, it is an object to provide an improved method of opening a formation and creating more formation contact in gas wells.
The above aspects, together with numerous other objects, advantages and features, which will become evident from the below description, are accomplished by a solution in accordance with the present invention by a fracturing method for providing fractures in a formation downhole for optimising hydro-carbon production, such as gas or shale gas production, in a well having a well tubular metal structure comprising several self-closing flow assemblies, each self-closing flow assembly comprising a sleeve which is movable along a longitudinal axis of the well tubular metal structure for opening or closing a port in the well tubular metal structure, the method comprising:
The pressure of the fracturing fluid may be decreased by 0.5-20%, preferably 1-10% and more preferably 2-5%.
The fracturing method as described above may comprise storing a part of the fracturing fluid which is in excess during depressurising for realising the activation device for moving the activation device between two self-closing flow assemblies, and reusing the stored part of fracturing fluid during pressurising the well tubular metal structure again.
By using fracturing fluid derived by in situ hydro-carbons, the excess of fracturing fluid is allowed to be reused during the next step of pressurisation. When using water or acid as fracturing fluid, the water becomes polluted by the hydro-carbons in the well and the operator is not allowed to reuse the fracturing fluid and needs to clean the water before ejecting the fracturing fluid into the environment. When using the fluid already present in the well, the well and the surrounding formation is not “polluted”/damaged by the water or acid since the fracturing fluid is derived from the same as is already present in the formation. The fracturing fluid derived from in situ hydro-carbons does furthermore not need to be cleaned afterwards as this is in situ fluid. In certain gas reservoirs, the operators are not allowed to use water or acid as these harm the reservoir and therefore operators use gas to press onto a dropped ball seating in a valve seat.
However, when using gas, large quantities of gas leave the well when decreasing the pressure between one ball and dropping the next ball, as the pressure is released from the well during this procedure. Thus, a very large quantity of gas is used demanding a very large storage container at surface which increases the cost significantly for producing the fracturing process.
Furthermore, by using fracturing fluid derived from the in situ hydro-carbons as fracturing fluid in combination with the submergible activation device, only a small amount of gas leaves the well when the pressure is reduced to release the activation device. If gas was used as fracturing fluid without the activation device, the pressure had to be fully released for shifting the sleeves or a new ball had to be dropped to seat in a certain ball seat to shift the next sleeve.
The activation device may engage the sleeve of the self-closing flow assembly by projecting a projectable means from a body of the activation device.
The fracturing method described above may further comprise further pressurising the well tubular metal structure by means of the fracturing fluid for moving the sleeve of the second self-closing flow assembly and thereby opening a second port; injecting the fracturing fluid through the second port of the second self -closing flow assembly for providing fractures in the formation; decreasing the pressure of the fracturing fluid by 0.5-20% for releasing the activation device from the second self-closing flow assembly, thereby closing the second port; and moving the activation device by means of pressurised fracturing fluid for engaging a third self-closing flow assembly.
Furthermore, the fracturing method may comprise further pressurising the well tubular metal structure by means of the fracturing fluid for moving the sleeve of the third self-closing flow assembly and thereby opening the port; injecting the fracturing fluid through the port of the third self-closing flow assembly for providing fractures in the formation; decreasing the pressure of the fracturing fluid by 0.5-20% for releasing the activation device from the third self-closing flow assembly, thereby closing the port; moving the activation device by means of pressurised fracturing fluid for engaging a fourth self-closing flow assembly; and continuing the above steps until the intended number of fractured zones opposite the number of self-closing flow assemblies has been provided.
Moreover, the fracturing method may further comprise releasing the pressure after providing fractures in the formation through the self-closing flow assemblies; and collecting all excess fracturing fluid from the well tubular metal structure.
In addition, the fracturing method may further comprise initiating production of hydro-carbons by opening one or more self-closing flow assemblies.
Also, the fracturing fluid may be a gas, and the pressure of the pressurised fracturing fluid may be sufficient to transform the gas into liquid.
Furthermore, the fracturing fluid may be propane.
Additionally, the pressure of the fracturing fluid may be at least 40 bar.
Moreover, the hydro-carbons may be shale gas.
Additionally, the well tubular metal structure may be provided with a plurality of annular barriers, each annular barrier comprising:
Furthermore, one or more of the self-closing flow assemblies may be arranged between two adjacent annular barriers.
Moreover, the activation device for being submerged into the well tubular metal structure may comprise:
Also, the activation device further comprises projectable keys for engaging a profile of the sleeve and opening the sleeve as the activation device is forced downwards when the sealing element abuts the inner face of the sleeve.
In addition, the activation device may further comprise a detection unit for detecting the sleeve.
Moreover, the body may comprise an activation means for activating the sealing element to move from the first position to the second position or from the second position to the first position.
Finally, the activation device may further comprise an activation sensor configured to activate the sealing element to move from the second position back to the first position when a condition in the well changes.
The invention and its many advantages will be described in more detail below with reference to the accompanying schematic drawings, which for the purpose of illustration show some non-limiting embodiments and in which
All the figures are highly schematic and not necessarily to scale, and they show only those parts which are necessary in order to elucidate the invention, other parts being omitted or merely suggested.
When fracturing zones in a gas well producing hydro-carbons, such as shale gas, use seawater or acid as fracturing fluid, there is a risk that the fracturing fluid will harm the gas reservoir, which has caused an increasing number of oil companies and/or authorities to restrict the use of seawater or acid as fracturing fluid. However, when using in situ fluid, i.e. using a fracturing fluid which is derived from the hydro-carbons produced in the reservoir, the fracturing fluid does not comprise any fluid types which are not already present in the hydro-carbon reservoir, and the fracturing process can thus still be used. When using propane gas, the propane gas is transformed into liquid in the position opposite the zones to be fractured, and thus, the propane functions in the same way as e.g. water.
By using gas derived from the hydro-carbons as fracturing fluid in combination with the submergible activation device, only a small amount of gas leaves the well when the pressure is reduced to release the activation device. If gas was used as fracturing fluid without the activation device, the pressure had to be fully released for shifting the sleeves or a new ball had to be dropped to seat in a certain ball seat to shift the next sleeve. By using the activation device, the shifting of sleeves is done by performing only a small reduction of the pressure, and only a small reservoir at the top of the well has to be provided for accumulating the small amount of fracturing gas. The fracturing gas is then supplied to the well again during the next pressurisation operation to move the activation device. When having to release the pressure entirely to shift the sleeves, a very large reservoir has to be arranged at the top of the well, as authorities do not allow the “dirty” fracturing fluid to be let into the surrounding environment.
As shown in
In
During the fracturing process, the well tubular metal structure is pressurised to a pressure of the fracturing fluid of at least 40 bar, preferably at least 50 bar. The fracturing fluid is preferably propane gas being transformable into the liquid above 40 bar.
In
As shown in
In order to be able to retract the sealing element 25 when the fracturing process has ended, the activation device 1 comprises an activation sensor 21, shown in
The well tubular metal structure comprises annular barriers 33 arranged on an outer face of the well tubular metal structure and expanded to abut a wall 34 of a borehole 35 and dividing an annulus 36 between the well tubular metal structure and the borehole into production zones 37, 37a, 37b, 37c. In
Each annular barrier 33 comprises a tubular metal part 51 for mounting as part of the well tubular metal structure 30, as shown in
By well fluid is meant any kind of fluid that may be present in oil or gas wells downhole, such as natural gas, oil, oil mud, crude oil, water, etc. By gas is meant any kind of gas composition present in a well, completion, or open hole, and by oil is meant any kind of oil composition, such as crude oil, an oil-containing fluid, etc. Gas, oil, and water fluids may thus all comprise other elements or substances than gas, oil, and/or water, respectively.
By a casing or well tubular metal structure is meant any kind of pipe, tubing, tubular, liner, string etc. used downhole in relation to oil or natural gas production.
In the event that the tool is not submergible all the way into the well tubular metal structure, a downhole tractor can be used to push the tool all the way into position in the well. The downhole tractor may have projectable arms having wheels, wherein the wheels contact the inner surface of the casing for propelling the tractor and the tool forward in the casing. A downhole tractor is any kind of driving tool capable of pushing or pulling tools in a well downhole, such as a Well Tractor®.
Although the invention has been described in the above in connection with preferred embodiments of the invention, it will be evident for a person skilled in the art that several modifications are conceivable without departing from the invention as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
16174908 | Jun 2016 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/064778 | 6/16/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/216347 | 12/21/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8408289 | Loree | Apr 2013 | B2 |
20060124310 | Lopez de Cardenas | Jun 2006 | A1 |
20130228330 | Loree | Sep 2013 | A1 |
20140041876 | Fleckenstein et al. | Feb 2014 | A1 |
20140076542 | Whitsitt | Mar 2014 | A1 |
20150204166 | Sanborn | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
2 708 694 | Mar 2014 | EP |
2 728 108 | May 2014 | EP |
2 960 427 | Dec 2015 | EP |
2011146866 | Nov 2011 | WO |
2015110486 | Jul 2015 | WO |
2015197532 | Dec 2015 | WO |
Entry |
---|
Carl Montgomery, “Fracturing Fluids”, InTech, Effective and Sustainable Hydraulic Fracturing, May 17, 2013, 22 pages. |
Tanmay M. Soni, et al., “IADC/SPE-170542-MS LPG-Based Fracturing: An Alternative Fracturing Technique in Shale Reservoirs”, IADC, SPE International, Aug. 27, 2014, 11 pages. |
Eric H. Tudor, et al., “SPE 124495 100% Gelled LPG Fracturing Process: An Alternative to Conventional Water-Based Fracturing Techniques”, SPE International, Sep. 25, 2009, 15 pages. |
International Search Report and Written Opinion of the ISA for PCT/EP2017/064778, dated Aug. 28, 2017, 16 pages. |
Extended European Search Report for EP Patent Application No. 16174908.0, dated Dec. 8, 2016, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20190153842 A1 | May 2019 | US |