The field of invention relates generally to frangible munitions. More particularly, it pertains to a frangible munitions device optimized for a dome and cylinder that yields a plurality of fragments having shapes corresponding to a predetermined embossment pattern upon explosive rupture.
Fragmentation munitions have existed for centuries. The current generation of hand grenade style fragmentation munitions typically either include solid warhead cases or projectiles embedded in a composite case. The former has a mass producibility advantage but a disadvantage in prototyping and development associated with tooling costs. Solid warhead case munitions also suffer from disadvantages associated with typical methods of case assembly (i.e. welding), which limits other aspects of production (i.e. explosive filling options) and creates a region of material disrupted by the act of welding.
Embedded projectiles are easier to experiment with and offer the advantage of enhanced creativity. Embedded projectiles are more likely to disperse in a regular pattern and with a consistent mass and size. However, these solutions are typically difficult to produce and suffer from inefficient energy transfer from the explosive to the fragments. As can be appreciated, the act of breaking the case reduces the overall percentage of energy transfer.
Solid cased warheads, while more efficient in energy transfer, often break irregularly in spite of intentional scoring. This irregularly results in less than optimal spread of fragments and distribution of fragment mass and size. Intentional scoring typically consists of either stamped (embossed) or machined shapes. The shapes are chosen by the shape of the warhead. Warheads that are essentially round (grenades) favor hexagonal shapes as hexagons are easy bent in a sphere. Cylindrical warhead fragmentation has been optimized by the US Navy “Pearson Notch”, as shown in U.S. Pat. No. 5,040,464 A).
An alternative is the Advanced Frag Grenade (AFG) that could not practically incorporate the Pearson Notch and was not suited for traditional hexes. The original AFGs were built with stamped hexagons, but the pattern deformed in the cylindrical wall section, thereby causing less than optimal fracture of the steel. Machining Pearson Notches into the cylindrical wall of the AFG was not practical and would have involved considerable cost and still required stamp and drawing. Pearson Notches are not practical to draw and the physics associated with them are not applicable to hexagons or spherical surfaces, as they are unique to cylinders. As can be appreciated from the above, a new pattern is needed for use with munitions that utilize a dome and cylinder in order to yield a more even distribution of fragments upon explosive rupture.
The present invention relates to frangible munition devices optimized for a dome and cylinder that yields fragments having shapes corresponding to a predetermined embossment pattern upon explosive rupture. The embossment pattern includes a first set of inner regular hexagonal embossments formed into the dome and cylinder that are aligned with the axis of the cylinder, and a second set of outer pre-deformed hexagonal shapes that distort to produce regular hexagonal shapes after drawing into the cylinder wall. The second set of outer pre-deformed hexagonal shapes are separated by sharp transition regions. The first and second shapes are embossed in a repeated pattern around the hollow cylinder and the dome top. The dome yields a plurality of fragments having shapes corresponding to the first set of inner regular hexagonal embossments upon explosive rupture, while the cylinder yields a plurality of fragments having shapes corresponding to the second set of outer pre-deformed hexagonal embossments upon explosive rupture.
The new combined pattern allows munitions to disperse in a regular pattern with a consistent mass and size and provides an efficient energy transfer.
According to an illustrative embodiment of the present disclosure, it is an object of the invention to provide a new and improved frangible munitions device optimized for a dome and cylinder that has all the advantages of the prior art and none of the disadvantages.
According to a further illustrative embodiment of the present disclosure, it is an object of the invention to provide a new and improved frangible munitions device that utilizes an embossed design that is optimal for both domed and cylindrical section of the same munition.
According to a yet another illustrative embodiment of the present disclosure, it is an object of the invention to provide a new and improved frangible munitions device that is achievable with practical manufacturing means.
According to a further illustrative embodiment of the present disclosure, it is an object of the invention to provide a new and improved frangible munitions device that provides a more even distribution of fragments and more regularly shaped fragmentation.
According to a yet another illustrative embodiment of the present disclosure, it is an object of the invention to provide a new and improved frangible munitions device that improves the probability of hitting a target within the effective radius.
Additional features and advantages of the present invention will become apparent to those skilled in the art upon consideration of the following detailed description of the illustrative embodiment exemplifying the best mode of carrying out the invention as presently perceived.
The detailed description of the drawings particularly refers to the accompanying figures in which:
The embodiments of the invention described herein are not intended to be exhaustive or to limit the invention to precise forms disclosed. Rather, the embodiments selected for description have been chosen to enable one skilled in the art to practice the invention.
Generally, provided is a frangible munitions device optimized for a dome and cylinder which yields a plurality of fragments having shapes corresponding to a predetermined embossment pattern upon explosive rupture, comprising a dome top having an inner surface and a hollow cylinder having an inner surface and an axis. In an illustrative embodiment, the inner surface defines a first set of inner regular hexagonal embossments formed into the dome and cylinder and aligned with the axis of the cylinder. In an illustrative embodiment, the inner surface defines a second set of outer pre-deformed hexagonal shapes that distort to produce regular hexagonal shapes after drawing into the cylinder wall. In an illustrative embodiment, the second set of outer pre-deformed hexagonal shapes are separated by sharp transition regions. In an illustrative embodiment, the first and second shapes are embossed in a repeated pattern around the hollow cylinder and the dome top. In an illustrative embodiment, the dome yields a plurality of fragments having shapes corresponding to the first set of inner regular hexagonal embossments upon explosive rupture. In an illustrative embodiment, the cylinder yields a plurality of fragments having shapes corresponding to the second set of outer pre-deformed hexagonal embossments upon explosive rupture.
In an illustrative embodiment, the sharp transition regions comprise narrow and abrupt transition regions. In an illustrative embodiment, the narrow and abrupt transition regions comprise 90 degree embossments drawn into the cylinder and dome to a depth of 0.10 inches. In an illustrative embodiment, the 90-degree embossments have a spacing of 0.112 inches off center. In an illustrative embodiment, the cylinder is steel. In an illustrative embodiment, the embossments are formed in the inner wall by stamping and drawing.
An ideal fragment pattern for the AFG was envisioned that would be either a series of regular hexagons extending up the cylindrical section or hexagons on the dome and Pearson Notches cut into the cylinder. Making this pattern, however, would require either very difficult machining or additive manufacturing. As can be appreciated, additive manufacturing has proven to make effective fragments but has not proven practical or cost effective for grenade-scale munitions. The most practical, efficient, and effective means of producing this class of warhead remains stamping and drawing.
Testing
Tangible improvements associated with the inventive design are shown relative to the poor fragmentation, as evident in
The inventive design utilizing a first set of inner regular hexagonal embossments and a second set of outer pre-deformed hexagonal embossments that distort to produce regular hexagonal shapes after drawing into a cylinder wall provides a design optimal for both domed and cylindrical section of the same warhead. The inventive design is achievable with practical manufacturing means, such as with stamp and draw instead of machining or additive manufacturing.
In an illustrative embodiment, the inventive design can be utilized in a hand grenade constructed of steel. In an illustrative embodiment, the inventive design can be scaled for a given weapon size. In an illustrative embodiment, the inventive design can be adapted to other systems and materials where matching the contour of a cylinder and dome are required of a structure formed at the same time.
Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the spirit and scope of the invention as described and defined in the following claims.
The present application claims priority to U.S. Provisional patent application Ser. No. 63/228,278, filed Aug. 2, 2021, entitled “FRAGMENTATION PATTERN, OPTIMIZED FOR DRAWN CUP WARHEADS WITH A DOME AND CYLINDRICAL WALL,” the disclosure of which is expressly incorporated by reference herein.
The invention described herein includes contributions by one or more employees of the Department of the Navy made in performance of official duties and may be manufactured, used and licensed by or for the United States Government for any governmental purpose without payment of any royalties thereon. This invention (Navy Case 200,570) is assigned to the United States Government and is available for licensing for commercial purposes. Licensing and technical inquiries may be directed to the Technology Transfer Office, Naval Surface Warfare Center Crane, email: Cran_CTO@navy.mil.
Number | Name | Date | Kind |
---|---|---|---|
3566794 | Pearson | Mar 1971 | A |
3590451 | Dessart | Jul 1971 | A |
4068590 | Pearson | Jan 1978 | A |
4774745 | Carter | Oct 1988 | A |
4977657 | Engel | Dec 1990 | A |
5040464 | Pearson | Aug 1991 | A |
9738947 | Deshpande | Aug 2017 | B1 |
9738948 | Gwaltney | Aug 2017 | B2 |
Number | Date | Country |
---|---|---|
1055389 | Dec 1981 | IT |
Entry |
---|
Machine translation of IT-1055389-B (Year: 1981). |
Number | Date | Country | |
---|---|---|---|
20230032125 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
63228278 | Aug 2021 | US |