This invention is directed to apparatus for detecting the weight of an occupant of a motor vehicle seat for purposes of determining whether and how forcefully to deploy supplemental restraints, and more particularly to apparatus for measuring forces applied to a frame of the vehicle seat.
Vehicle occupant detection systems are useful in connection with air bags and other pyrotechnically deployed restraints as a means of judging whether, and how forcefully, to deploy the restraint. One fundamental parameter in this regard is the weight of the occupant, as weight may be used as a criterion to distinguish between an adult and an infant or small child.
Most prior weight estimation techniques involve installing a pressure sensitive element such as a variable resistance pad or a fluid filled bladder in or under a vehicle seat cushion, and utilizing the pressure measurement as an indication of occupant weight. See, for example, the U.S. Pat. Nos. 5,474,327, 5,987,370, 6,246,936, 6,101,436 and 6,490,936, assigned to the assignee of the present invention and incorporated by reference herein.
Alternatively, the occupant weight may be measured with one or more load cells that sense the forces (strain or pressure) that the seat applies to a bracket that supports the seat on the vehicle floor. See, for example, the Publication Nos. 41520, 41542, 41549 and 41559 from the November, 1998 issue of Research Disclosure. Since the “frame-based” load cell configurations become part of the supporting structure of the seat, they tend to be relatively bulky and/or expensive to produce. Accordingly, what is needed is a frame-based occupant weight estimation apparatus that is simple and inexpensive to produce, and that does not compromise the structural integrity of the seat.
The present invention is directed to an improved frame-based occupant weight estimation apparatus for a vehicle seat, including compliant linkage assemblies interposed between the seat frame and floor brackets bolted to the vehicle floor. The compliant linkage assemblies translate vertically applied seat loads to a horizontal plane (that is, parallel to the vehicle floor), where the horizontal forces are measured by a set of force sensors. In each assembly, a compliant member, which may a spring or a linkage arm, preloads the force sensor to enable off-loading detection, and an overload device securely anchors the seat to the floor bracket without interfering with normal load measurement.
The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Referring to the drawings, and particularly to
The linkage assembly 20 includes first and second linkage arms 22 and 24 rotatably coupled at one end to a pin 26 secured to the seat frame mounting bracket 12. The other end of arm 22 is rotatably coupled to a pin 28 secured in a mounting bracket 30 of floor bracket 16, and the other end of arm 24 is rotatably coupled to a pin 32 secured to a slider block 34 that is supported on the base of floor bracket 16 for linear movement substantially parallel to the vehicle floor. The weight of the seat 10 and a spring 36 bias the slider block 34 into engagement with a force sensor 38 which is disposed between slider block 34 and a central post 40 of floor bracket 16. The force sensor 38 may be a strain gauge device or load cell such as those produced and sold by Panasonic Corporation or Texas Instruments Corporation, and produces an electrical output signal functionally related to the force applied to it by slider block 34.
The bias or preload force applied to force sensor 38 is particularly important in frame-based occupant weight estimation because it enables off-loading detection. This can occur, for example, when the occupant leans back in the seat 10, reducing the force measured by the linkage assemblies coupled to mounting brackets on the front of the seat 10. Due to the preload force, such off-loading can be measured and taken into consideration in the weight estimation calculations.
Finally,
In summary, the present invention provides a seat frame-based occupant weight estimation apparatus including a compliant linkage assembly that translates vertical force associated with occupant weight to a horizontal force that is sensed by a pre-loaded force sensor. The several different embodiments each include a linkage mechanism coupling the seat mounting bracket to a floor bracket, and an overload mechanism for limiting upward movement of the seat with respect to the floor bracket. Each linkage assembly includes a slider block that exerts a compressive force on the respective force sensor, and the sum of the measured forces is indicative of occupant weight.
Advantageously, the linkage assemblies depicted in
While illustrated in respect to the illustrated embodiments, it will be recognized that various modifications in addition to those mentioned above may occur to those skilled in the art. For example, the seat 10 may be supported by a greater or lesser number of linkage assemblies, the linkage assemblies may be oriented laterally with respect to the seat 10, and so on. Accordingly, it will be understood that devices incorporating these and other modifications may fall within the scope of this invention, which is defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5474327 | Schousek | Dec 1995 | A |
5942695 | Verma et al. | Aug 1999 | A |
5987370 | Murphey et al. | Nov 1999 | A |
6012007 | Fortune et al. | Jan 2000 | A |
6058341 | Myers et al. | May 2000 | A |
6069325 | Aoki | May 2000 | A |
6101436 | Fortune et al. | Aug 2000 | A |
6138067 | Cobb et al. | Oct 2000 | A |
6246936 | Murphy et al. | Jun 2001 | B1 |
6360618 | Anahid et al. | Mar 2002 | B2 |
6424898 | Anishetty et al. | Jul 2002 | B2 |
6438476 | Gray et al. | Aug 2002 | B1 |
6438477 | Patterson et al. | Aug 2002 | B1 |
6448512 | Cooper | Sep 2002 | B1 |
6479776 | Nakase et al. | Nov 2002 | B2 |
6542802 | Gray et al. | Apr 2003 | B2 |
6578871 | Gray et al. | Jun 2003 | B2 |
6587770 | Gray et al. | Jul 2003 | B1 |
6903280 | Selig et al. | Jun 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20050011682 A1 | Jan 2005 | US |