FRAME BUFFERING IN ADAPTIVE RESOLUTION MANAGEMENT

Abstract
A method includes receiving a bit stream, decoding a first frame using the bit stream, determining a scaled first frame using the first frame and a scaling constant, storing the first frame in a first picture buffer at a first index location, and storing the scaled first frame in a second picture buffer at the first index location. Related apparatus, systems, techniques and articles are also described.
Description
FIELD OF THE INVENTION

The present invention generally relates to the field of video compression. In particular, the present invention is directed to frame buffering in adaptive resolution management.


BACKGROUND

A video codec may include an electronic circuit or software that compresses or decompresses digital video. It may convert uncompressed video to a compressed format or vice versa. In the context of video compression, a device that compresses video (and/or performs some function thereof) may typically be called an encoder, and a device that decompresses video (and/or performs some function thereof) may be called a decoder.


A format of compressed data may conform to a standard video compression specification. Compression may be lossy in that compressed video may lack some information present in an original video. A consequence of this may include that decompressed video may have lower quality than an original uncompressed video because there may be insufficient information to accurately reconstruct the original video.


There can be complex relationships between video quality, an amount of data used to represent a video (e.g., determined by a bit rate), complexity of encoding and decoding algorithms, sensitivity to data losses and errors, case of editing, random access, end-to-end delay (e.g., latency), and the like.


Motion compensation may include an approach to predict a video frame or a portion thereof given a reference frame, such as previous and/or future frames, by accounting for motion of the camera and/or objects in the video. It may be employed in encoding and decoding of video data for video compression, for example in encoding and decoding using the Motion Picture Experts Group (MPEG)'s advanced video coding (AVC) standard (also referred to as H.264). Motion compensation may describe a picture in terms of transformation of a reference picture to a current picture. A reference picture may be previous in time when compared to a current picture and/or from the future when compared to the current picture.


SUMMARY OF THE DISCLOSURE

In an aspect, a decoder includes circuitry configured to receive a bit stream, decode a first frame using the bit stream, determine a scaled first frame using the first frame and a scaling constant, store the first frame in a first picture buffer at a first index location, and store the scaled first frame in a second picture buffer at the first index location.


In another aspect a method includes receiving a bit stream, decoding a first frame using the bit stream, determining a scaled first frame using the first frame and a scaling constant, storing the first frame in a first picture buffer at a first index location, and storing the scaled first frame in a second picture buffer at the first index location.


The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Other features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

For the purpose of illustrating the invention, the drawings show aspects of one or more embodiments of the invention. However, it should be understood that the present invention is not limited to the precise arrangements and instrumentalities shown in the drawings, wherein:



FIG. 1 is an illustration of an example reference frame and example predicted frames of various resolution scales;



FIG. 2 is an illustration depicting an example reference frame, an example rescaled reference frame, and an example subsequent block prediction process;



FIG. 3 illustrates four different frames with differing resolution;



FIG. 4 illustrates two example buffers, one for full resolution frames (top) and one for scaled frames (bottom), where scaled and full resolution frames are stored in the same location within their respective buffers;



FIG. 5 is a process flow diagram illustrating an example process according to some implementations of the current subject matter;



FIG. 6 is a system block diagram illustrating an example decoder capable of decoding a bit stream according to some implementations of the current subject matter;



FIG. 7 is a process flow diagram illustrating an example process of encoding a video according to some implementations of the current subject matter;



FIG. 8 is a system block diagram illustrating an example video encoder according to some implementations of the current subject matter; and



FIG. 9 is a block diagram of a computing system that can be used to implement any one or more of the methodologies disclosed herein and any one or more portions thereof.





The drawings are not necessarily to scale and may be illustrated by phantom lines, diagrammatic representations and fragmentary views. In certain instances, details that are not necessary for an understanding of the embodiments or that render other details difficult to perceive may have been omitted. Like reference symbols in the various drawings indicate like elements.


DETAILED DESCRIPTION

In many current state-of-the-art encoders, resolution is managed by re-coding and re-sending whole portion of the video known as group-of-pictures (GOP). This requires sending the intra-frame (I-frame) which can incur additional costs, since those frames are responsible for the bulk of the bits in the GOP.


Embodiments described in this disclosure relate to Adaptive Resolution Management (ARM), which is a technique that enables additional flexibility for a video encoder/decoder allowing bitrate savings in various use cases. In general, ARM includes performing a prediction using a reference frame of different resolution than a current frame. In current coding standards, reference frames have the same resolution as predicted frames. In ARM, a reference frame may be of a smaller or larger resolution than a frame being predicted. This approach may be used to downscale video resolution, thus reducing bitrate, or upscale video resolution, thus facilitating display characteristics of video playback.


ARM may alternatively or equivalently be referred to for the purposes of this disclosure as reference picture resampling (RPR); RPR and ARM may be used interchangeably.


Some implementations of the current subject matter may include using ARM for any number of frames, at any position within GOP, thus removing requirements for I-frame re-coding.



FIG. 1 is an illustration of a reference frame and predicted frames of various resolution scales. Frame 1 is smaller (lower resolution) than the reference frame, Frame 2 is of same size (same resolution), while Frame 3 is larger (greater resolution). “Resolution,” as used in this disclosure, is a number of pixels in a picture, frame, sub-frame, and/or other displayed area or portion thereof used in video playback, compression, or the like, with a higher number of pixels corresponding to a higher resolution, and a lower number of pixels corresponding to a lower resolution. Resolution may be measured in terms of area, for instance and without limitation by using one or more dimensions of length, measured in pixels that define an area. For instance, a circular sub-frame or other region may have a resolution defined according to a radius. Alternatively or additionally, resolution may be defined by an overall number of pixels.


As an example, and with continued reference to FIG. 1, where reference frame and/or subframe has a geometric form for which area may be defined entirely in terms of two length parameters, such as without limitation a triangular, parallelogram, and/or rectangular form, reference frame and/or subframe may have a resolution W×H, where W and H may indicate a number of pixels describing, respectively, width (or base) and height dimensions of reference frame and/or subframe. Each predicted frame may also have a resolution, which may be determined similarly to resolution of reference frame; for instance, frame I may have a smaller resolution WS×HS, frame 2 may have same resolution as reference frame W×H, and frame 3 may have larger resolution WL×HL. Width and height of smaller and larger frames may be obtained by multiplying reference width and height by an arbitrary rescaling constant (Rc), also referred to as a scaling factor and/or constant. In case of smaller frames, Rc may have a value between 0 and 1. In case of larger frames, Rc may have a value greater than 1; for instance, Rc may have a value between 1 and 4. Other values are possible. Rescaling constant may be different for one resolution dimension than another; for instance, a rescaling constant Rch may be used to rescale height, while another rescalling constant Rcw may be used to rescale width.


Still referring to FIG. 1, ARM may be implemented as a mode. In case of ARM mode activation at some point during decoding, a decoder may have already received a reference frame at a resolution W×H and may rescale a predicted frame using rescaling constant. In some implementations, an encoder may signal to decoder which rescaling constant to use. Signaling may be performed in a sequence parameter set (SPS) corresponding to a GOP containing current picture and/or in a picture parameter set (PPS) corresponding to current picture. For instance, and without limitation, encoder may signal rescaled parameters using fields such as a pps_pic_width_in_luma_samples, pps_pic_height_in_luma_samples, pps_scaling_win_left_offset, pps_scaling_win_right_offset, pps_scaling_win_top_offset, pps_scaling_win_bottom_offset, and/or sps_num_subpics_minus1.


Further referring to FIG. 1, W and H parameters as described above may be represented, without limitation, using variables CurrPicScalWinWidthL and CurrPicScalWinHeightL, respectively; these variables may be derived from signaled parameters as described above using one or more mathematical relationships between the signaled parameters and the variables. For instance, and without limitation, CurrPicScalWinWidthL may be derived according to the following equation: CurrPicScalWinWidthL=pps_pic_width_in_luma_samples−






SubWidthC
*

(


pps_scaling

_win

_right

_offset

+

pps_scaling

_win

_left

_offset


)





As a further non-limiting example, CurrPicScalWinHeightL may be derived according to the following equation: CurrPicScalWinWidthL=pps_pic_width_in_luma_samples−






SubWidthC
*

(


pps_scaling

_win

_right

_offset

+

pps_scaling

_win

_left

_offset


)





Persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of various alternative computations that may be used to derive the above-described variables. Encoder may alternatively or additionally signal one or more such variables, Rc, Rch, and/or Rcw directly for instance and without limitation in a PPS and/or SPS.


Alternatively or additionally, and still referring to FIG. 1, a rescaling constant and/or set of rescaling constants as described above may be signaled in a bitstream using a reference to an index of a stored scaling constant and/or constants, and/or of a frame and/or block that was signaled using a previously signaled and/or utilized scaling constant and/or constants. Reference to index of a stored scaling constant may be signaled explicitly and/or determined from one or more additional parameters signaled in bitstream. For instance, and without limitation, decoder may identify a reference frame and/or group of pictures containing a current frame; where a rescaling constant has previously been signaled and/or used in such a group of pictures, with a reference frame signaled as applicable to current frame and/or current group of pictures, or the like, decoder may identify that rescaling constant for use as a rescaling constant with the current frame.


In some implementations, and with continued reference to FIG. 1, ARM operation may be executed on a block level of encoded frames. For example, a reference frame may first be rescaled and subsequently prediction may be performed, as depicted in FIG. 2. FIG. 2 is an illustration depicting a reference frame, a rescaled reference frame, and a subsequent block prediction process. Block prediction process may be performed on a scaled reference frame (having a scaled resolution) rather than the original reference frame. Rescaling reference frame may include rescaling according to any parameter signaled by an encoder as described above; for instance and without limitation, where a reference frame to be used with current picture is signaled, such as via a reference to an index value associated with reference frame or the like, the signaled reference frame may be rescaled, prior to prediction, according to any method fo rescaling described above. A rescaled reference frame may be stored in memory and/or in a buffer, which may include without limitation a buffer identifying frames contained therein by indices, according to which frame retrieval may be performed; buffer may include a decoded picture buffer (DCB) and/or one or more additional buffers implemented by decoder. Prediction process may include, for example, inter picture prediction including motion compensation.


Some implementations of block-based ARM may enable flexibility in applying optimal filters for each block, instead of applying same filter for a whole frame. In some implementations, a skip-ARM mode may be possible such that some blocks (based for example on the uniformity of the pixels and bitrate cost) can be in a skip-ARM mode (such that rescaling would not change the bitrate). Skip-ARM mode may be signaled in a bitstream; for instance, and without limitation, skip-ARM mode may be signaled in a PPS parameter. Alternatively or additionally, decoder may determine that skip-ARM mode is active based on one or more parameters set by decoder and/or signaled in bitstream. Spatial filters used in block-based ARM may include, without limitation, bicubic spatial filters that apply bicubic interpolation, bilinear spatial filters that apply bi-linear interpretation, Lanczos filters that use Lanczos filtering and/or Lanczos resampling using combinations of sinc filters, sinc-function interpolation and/or signal reconstruction techniques, or the like; persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of various filters that may be used for interpolation consistently with this disclosure. Interpolation filters may include, as a non-limiting example, any filters described above, a low-pass filter, which may be used, without limitation, by way of an up-sampling process whereby pixels between pixels of block and/or frame previous to scaling may be initialized to zero, and then populated with an output of the low-pass filter. Alternatively or additionally, any luma sample interpolation filtering process may be used. Luma sample interpretation may include computation of an interpolated value at a half-sample interpolation filter index, falling between two consecutive sample values of a non-scaled sample array. Computation of interpolated value may be performed, without limitation, by retrieval of coefficients and/or weights from lookup tables; selection of lookup tables may be performed as a function of motion models of coding units and/or scaling ratio amounts, for instance as determined using scaling constants as described above. Computation may include, without limitation, performing weighted sums of adjacent pixel values, where weights are retrieved from lookup tables. Computed values may alternatively or additionally be shifted; for instance and without limitation, values may be shifted by Min(4, BitDepth−8), 6, Max(2, 14−BitDepth), or the like. Persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of various alternative or additional implementations that may be used for interpolation filters.


In some implementations, and still referring to FIG. 2, ARM may be used to rescale one or more frames at an encoder, which may then encode one or more re-scaled frames generated by the rescaling. At a decoder, a rescaled frame may be decoded and scaled back before a resulting frame is displayed at full resolution.


Referring now to FIG. 3, when encoding a rescaled frame, all frames available for use as reference frames may be rescaled before motion estimation is performed. For instance, and as illustrated for exemplary purposes in FIG. 3, frame i+1 may be encoded as a rescaled frame (reduced resolution), and if frame i is available for use as a reference for decoding frame i, then frame i may be rescaled. An encoder may operate as follows: the encoder may first encode frame i at full resolution. Encoder may then rescale frame i+1 as recalled frame (i+1)r, and rescale reconstructed frame i, which may be denoted for purposes herein as i*, in a reconstructed form, denoted for purposes of this disclosure as i*r. In other words, i*r as used in this example, represents a rescaled reconstructed frame corresponding to a rescaled version of i*. Encoder may then encode (i+1)r using i*r as a reference.


Similarly, and still referring to FIG. 3 a reconstructed frame (i+1)r* may be used as a reference to encode frame i+2.


Further referring to FIG. 3, frame i+3 may be encoded at full resolution; decoding of frame i+3 may thus be performed with one or more reference frames that have been rescaled to full resolution. If two previous frames, such as for illustrative purposes frames i+1 and 1+2, are allowed for reference, the two previous frames may be rescaled to full resolution before and/or after reconstruction.


Still referring to FIG. 3, re-scaling frames may be complex. In an embodiment, a decoder and/or encoder may minimize a number of times rescaling is needed. As a non-limiting example, a decoder and/or encoder may reduce rescaling complexity by maintain frame buffers with full resolution and rescaled resolution frames.


Continuing to refer to FIG. 3, at a decoder, in some embodiments, any or all reference frames may be available at rescaled resolution. Any or all rescaled frames may be scaled back to full resolution for display and/or for use as reference frames.


Still referring to FIG. 3, decoders may maintain two decoded picture buffers: one for full resolution frames and one for rescaled frames. Rescaled and full resolution frames may be stored, respectively in a decoded picture buffer for rescaled frames and a decoded picture buffer for full resolution frames. When separate buffers are used for full resolution and rescaled resolution frames, full resolution and the corresponding rescaled frame may be stored at the same buffer positions, and/or in buffer positions indicated by the same index, where buffers are implemented as indexed data structures such as array-type structures or the like. A motion vector index, for instance may refer to the same position in two or more different buffers, and a decoder and/or encoder may select a buffer at which to retrieve from the indexed position depending on whether a reference frame to be employed is rescaled.


Continuing to refer to FIG. 3, corresponding full resolution and rescaled resolution frames may stored in the same positions in different buffers and referred to using the same picture index.



FIG. 4 illustrates two non-limiting examples of buffers, one for full resolution frames (top) and one for scaled frames (bottom), where scaled and full resolution frames may stored in the same location within their respective buffers as described above. A sublayer decoded picture buffer (DPB) may be used, in a non-limiting example, to hold rescaled pictures, frames, subframes, or the like; in this case, sublayer DBP may differ in one or more parameter and/or content elements from a main DBP, which may contain other and/or non-resampled and/or non-rescaled reference pictures or other pictures frames, and/or subframes. Ability to resample and/or rescale a reference picture, and/or parameters used for such resampling and/or rescaling, may be signaled in the bitstream, for instances in an SPS header. For instance, and without limitation, an SPS parameter that may be denoted sps_ref_pic_resampling_enabled_flag, when equal to 1, may specify that reference picture resampling is enabled; a current picture referring to the SPS might have slices that refer to a reference picture in an active entry of an RPL that has one or more of the following seven parameters different than that of the current picture: 1) pps_pic_width_in_luma_samples, 2) pps_pic_height_in_luma_samples, 3) pps_scaling_win_left_offset, 4) pps_scaling_win_right_offset, 5) pps_scaling_win_top_offset, 6) pps_scaling_win_bottom_offset, and 7) sps_num_subpics_minus1. sps_ref_pic_resampling_enabled_flag equal to 0 may indicated that reference picture resampling is disabled and/or that no current picture referring to the SPS has slices that refer to a reference picture in an active entry of an RPL that has one or more of the above-described seven parameters different than that of the current picture. In an embodiment, when sps_ref_pic_resampling_enabled_flag is equal to 1, for a current picture a reference picture that has one or more of the above-described seven parameters different than that of the current picture may either belong to the same layer or a different layer than the layer containing the current picture. A parameter that may be denoted for instance as vps_sublayer_dpb_params_present_flag may be used to control presence of parameters governing DBP behavior, such as dpb_max_dec_pic_buffering_minus1[j] specifying the maximum required size of DBC, dpb_max_num_reorder_pics[j] specifying the maximum allowed number of pictures of an output layer set (OLS) that can precede any picture in the OLS in decoding order and follow that picture in output order when Htid, defining the highest temporal sublayer to be decoded, is equal to i, and/or dpb_max_latency_increase_plus1[j], which may be used to specify a maximum number of pictures in the OLS that can precede any picture in the OLS in output order and follow that picture in decoding order when Htid is equal to i. FIG. 5 is a process flow diagram illustrating an exemplary embodiment of a process 500 of adaptive resolution management that may enable additional flexibility for a video encoder and/or decoder allowing bitrate savings in various use cases.


At step 505, and still referring to FIG. 5, a bit stream is received by a decoder. A current frame including a current block may be contained within a bit stream that decoder receives. Bit stream may include, for example, data found in a stream of bits that is an input to a decoder when using data compression. Bit stream may include information necessary to decode a video. Receiving bitstream may include extracting and/or parsing a block and associated signaling information from the bit stream. In some implementations, a current block may include a coding tree unit (CTU), a coding unit (CU), or a prediction unit (PU).


At step 510, and still referring to FIG. 5, a first frame is decoded using bit stream.


At 515 and continuing to refer to FIG. 5, a scaled first frame may be determined and/or generated using first frame and a scaling constant; scaling constant may be signaled in bitstream.


Still referring to FIG. 5, at step 520, a first frame may be stored in a first picture buffer at a first index location.


At step 525, and with further reference to FIG. 5, scaled first frame may be stored in a second picture buffer at first index location. In some implementations, second picture buffer may store frames of greater resolution than first picture buffer; alternatively, second picture buffer may store frames of lesser resolution than first picture buffer. Scaled first frame may be displayed.


In some implementations, and still referring to FIG. 5, a second frame or a portion thereof may be decoded in an adaptive resolution management mode and using first scaled frame as a reference frame. Decoding of first frame or a portion thereof may be performed according to an adaptive resolution management mode. Scaling constant may include a vertical scaling component and/or a horizontal scaling component. In an embodiment, a parameter which may be denoted, without limitation, as pps_scaling_window_explicit_signalling_flag, when set equal to 1, may specify that scaling window offset parameters are present in a PPS; pps_scaling_window_explicit_signalling_flag equal to 0 may specify that the scaling window offset parameters are not present in the PPS. When sps_ref_pic_resampling_enabled_flag is equal to 0, the value of pps_scaling_window_explicit_signalling_flag may be equal to 0. In an embodiment, pps_scaling_win_left_offset, pps_scaling_win_right_offset, pps_scaling_win_top_offset, and pps_scaling_win_bottom_offset may specify offsets that are applied to the picture size for scaling ratio calculation. When not present, values of pps_scaling_win_left_offset, pps_scaling_win_right_offset, pps_scaling_win_top_offset, and pps_scaling_win_bottom_offset may be inferred to be equal to pps_conf_win_left_offset, pps_conf_win_right_offset, pps_conf_win_top_offset, and pps_conf_win_bottom_offset, respectively.



FIG. 6 is a system block diagram illustrating an example decoder 600 capable of frame buffering in adaptive resolution management. Decoder 600 may include an entropy decoder processor 604, an inverse quantization and inverse transformation processor 608, a deblocking filter 612, a frame buffer 616, a motion compensation processor 620 and/or an intra prediction processor 624.


In operation, and still referring to FIG. 6, bit stream 628 may be received by decoder 600 and input to entropy decoder processor 604, which may entropy decode portions of bit stream into quantized coefficients. Quantized coefficients may be provided to inverse quantization and inverse transformation processor 608, which may perform inverse quantization and inverse transformation to create a residual signal, which may be added to an output of motion compensation processor 620 or intra prediction processor 624 according to a processing mode. An output of the motion compensation processor 620 and intra prediction processor 624 may include a block prediction based on a previously decoded block. A sum of prediction and residual may be processed by deblocking filter 612 and stored in a frame buffer 616.



FIG. 7 is a process flow diagram illustrating an exemplary process 700 of encoding a video with adaptive resolution management that may enable additional flexibility for a video encoder and/or decoder allowing bitrate savings in various use cases. At step 705, a video frame may undergo initial block segmentation, for example, using a tree-structured macro block partitioning scheme that may include partitioning a picture frame into CTUs and CUs.


At step 710, a block-based adaptive resolution management may be performed, including resolution scaling of a frame or portion thereof.


At step 715, block may be encoded and included in a bit stream. Encoding may include utilizing inter prediction and intra prediction modes, for example.



FIG. 8 is a system block diagram illustrating an example video encoder 800 capable of frame buffering in adaptive resolution management. Example video encoder 800 may receive an input video 804, which may be initially segmented or dividing according to a processing scheme, such as a tree-structured macro block partitioning scheme (e.g., quad-tree plus binary tree). An example of a tree-structured macro block partitioning scheme may include partitioning a picture frame into large block elements called coding tree units (CTU). In some implementations, each CTU may be further partitioned one or more times into a number of sub-blocks called coding units (CU). A final result of this portioning may include a group of sub-blocks that may be called predictive units (PU). Transform units (TU) may also be utilized.


Still referring to FIG. 8, example video encoder 800 may include an intra prediction processor 808, a motion estimation/compensation processor 812, which may also be referred to as an inter prediction processor, capable of constructing a motion vector candidate list including adding a global motion vector candidate to the motion vector candidate list, a transform/quantization processor 816, an inverse quantization/inverse transform processor 820, an in-loop filter 824, a decoded picture buffer 828, and/or an entropy coding processor 832. Bit stream parameters may be input to the entropy coding processor 832 for inclusion in the output bit stream 836.


In operation, and with continued reference to FIG. 8, for each block of a frame of input video 804, whether to process block via intra picture prediction or using motion estimation/compensation may be determined. Block may be provided to intra prediction processor 808 or motion estimation/compensation processor 812. If block is to be processed via intra prediction, intra prediction processor 808 may perform processing to output a predictor. If block is to be processed via motion estimation/compensation, motion estimation/compensation processor 812 may perform processing including constructing a motion vector candidate list including adding a global motion vector candidate to the motion vector candidate list, if applicable.


Further referring to FIG. 8, a residual may be formed by subtracting a predictor from input video. Residual may be received by transform/quantization processor 816, which may perform transformation processing (e.g., discrete cosine transform (DCT)) to produce coefficients, which may be quantized. Quantized coefficients and any associated signaling information may be provided to entropy coding processor 832 for entropy encoding and inclusion in output bit stream 836. Entropy encoding processor 832 may support encoding of signaling information related to encoding a current block. In addition, quantized coefficients may be provided to inverse quantization/inverse transformation processor 820, which may reproduce pixels, which may be combined with a predictor and processed by in loop filter 824, an output of which may be stored in decoded picture buffer 828 for use by motion estimation/compensation processor 812 that is capable of constructing a motion vector candidate list including adding a global motion vector candidate to the motion vector candidate list.


With continued reference to FIG. 8, although a few variations have been described in detail above, other modifications or additions are possible. For example, in some implementations, current blocks may include any symmetric blocks (8×8, 16×16, 32×32, 64×64, 128×128, and the like) as well as any asymmetric block (8×4, 16×8, and the like).


In some implementations, and still referring to FIG. 8, a quadtree plus binary decision tree (QTBT) may be implemented. In QTBT, at a Coding Tree Unit level, partition parameters of QTBT may be dynamically derived to adapt to local characteristics without transmitting any overhead. Subsequently, at a Coding Unit level, a joint-classifier decision tree structure may eliminate unnecessary iterations and control the risk of false prediction. In some implementations, LTR frame block update mode may be available as an additional option available at every leaf node of QTBT.


In some implementations, and still referring to FIG. 8, additional syntax elements may be signaled at different hierarchy levels of bitstream. For example, a flag may be enabled for an entire sequence by including an enable flag coded in a Sequence Parameter Set (SPS). Further, a CTU flag may be coded at a coding tree unit (CTU) level.


Some embodiments may include non-transitory computer program products (i.e., physically embodied computer program products) that store instructions, which when executed by one or more data processors of one or more computing systems, cause at least one data processor to perform operations herein.


In some embodiments disclosed herein, a decoder includes circuitry configured to receive a bit stream, decode a first frame using the bit stream, determine a scaled first frame using the first frame and a scaling constant, store the first frame in a first picture buffer at a first index location, and store the scaled first frame in a second picture buffer at the first index location.


In some embodiments, the second picture buffer may store frames of greater resolution than the first picture buffer. In some embodiments, the second picture buffer may store frames of lesser resolution than the first picture buffer. The decoder may be further configured to display the scaled first frame. The decoder may be configured to decode at least a portion of a second frame in an adaptive resolution management mode using the first scaled frame as a reference frame. The decoder may be configured to decode at least a portion of the first frame or a portion according to an adaptive resolution management mode. The adaptive resolution management mode may be signaled in a picture parameter set (PPS). The adaptive resolution management mode may be signaled in a sequence parameter set (SPS). The scaling constant may include a vertical scaling component and a horizontal scaling component. The decoder may include an entropy decoder processor configured to receive the bit stream and decode the bit stream into quantized coefficients, an inverse quantization and inverse transformation processor configured to process the quantized coefficients including performing an inverse discrete cosine, a deblocking filter, a frame buffer, and an intra prediction processor.


In some embodiments disclosed herein, a method may include receiving a bit stream, decoding a first frame using the bit stream, determining a scaled first frame using the first frame and a scaling constant, storing the first frame in a first picture buffer at a first index location, and storing the scaled first frame in a second picture buffer at the first index location.


In some embodiments, the second picture buffer may store frames of greater resolution than the first picture buffer. The second picture buffer may store frames of lesser resolution than the first picture buffer. Embodiments may include displaying the scaled first frame. Embodiments may include decoding at least a portion of a second frame in an adaptive resolution management mode using the first scaled frame as a reference frame. Embodiments may include decoding at least a portion of the first frame according to an adaptive resolution management mode. The adaptive resolution management mode may be signaled in a picture parameter set (PPS). The adaptive resolution management mode may be signaled in a sequence parameter set (SPS). The scaling constant may include a vertical scaling component and a horizontal scaling component. At least one of the receiving, the decoding, the determining, and the storing is performed by a decoder, which may include an entropy decoder processor configured to receive the bit stream and decode the bit stream into quantized coefficients, an inverse quantization and inverse transformation processor configured to process the quantized coefficients including performing an inverse discrete cosine, a deblocking filter, a frame buffer, and an intra prediction processor.


It is to be noted that any one or more of the aspects and embodiments described herein may be conveniently implemented using digital electronic circuitry, integrated circuitry, specially designed application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) computer hardware, firmware, software, and/or combinations thereof, as realized and/or implemented in one or more machines (e.g., one or more computing devices that are utilized as a user computing device for an electronic document, one or more server devices, such as a document server, etc.) programmed according to the teachings of the present specification, as will be apparent to those of ordinary skill in the computer art. These various aspects or features may include implementation in one or more computer programs and/or software that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device. Appropriate software coding may readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those of ordinary skill in the software art. Aspects and implementations discussed above employing software and/or software modules may also include appropriate hardware for assisting in the implementation of the machine executable instructions of the software and/or software module.


Such software may be a computer program product that employs a machine-readable storage medium. A machine-readable storage medium may be any medium that is capable of storing and/or encoding a sequence of instructions for execution by a machine (e.g., a computing device) and that causes the machine to perform any one of the methodologies and/or embodiments described herein. Examples of a machine-readable storage medium include, but are not limited to, a magnetic disk, an optical disc (e.g., CD, CD-R, DVD, DVD-R, etc.), a magneto-optical disk, a read-only memory “ROM” device, a random access memory “RAM” device, a magnetic card, an optical card, a solid-state memory device, an EPROM, an EEPROM, Programmable Logic Devices (PLDs), and/or any combinations thereof. A machine-readable medium, as used herein, is intended to include a single medium as well as a collection of physically separate media, such as, for example, a collection of compact discs or one or more hard disk drives in combination with a computer memory. As used herein, a machine-readable storage medium does not include transitory forms of signal transmission.


Such software may also include information (e.g., data) carried as a data signal on a data carrier, such as a carrier wave. For example, machine-executable information may be included as a data-carrying signal embodied in a data carrier in which the signal encodes a sequence of instruction, or portion thereof, for execution by a machine (e.g., a computing device) and any related information (e.g., data structures and data) that causes the machine to perform any one of the methodologies and/or embodiments described herein.


Examples of a computing device include, but are not limited to, an electronic book reading device, a computer workstation, a terminal computer, a server computer, a handheld device (e.g., a tablet computer, a smartphone, etc.), a web appliance, a network router, a network switch, a network bridge, any machine capable of executing a sequence of instructions that specify an action to be taken by that machine, and any combinations thereof. In one example, a computing device may include and/or be included in a kiosk.



FIG. 9 shows a diagrammatic representation of one embodiment of a computing device in the exemplary form of a computer system 900 within which a set of instructions for causing a control system to perform any one or more of the aspects and/or methodologies of the present disclosure may be executed. It is also contemplated that multiple computing devices may be utilized to implement a specially configured set of instructions for causing one or more of the devices to perform any one or more of the aspects and/or methodologies of the present disclosure. Computer system 900 includes a processor 904 and a memory 908 that communicate with each other, and with other components, via a bus 912. Bus 912 may include any of several types of bus structures including, but not limited to, a memory bus, a memory controller, a peripheral bus, a local bus, and any combinations thereof, using any of a variety of bus architectures.


Memory 908 may include various components (e.g., machine-readable media) including, but not limited to, a random-access memory component, a read only component, and any combinations thereof. In one example, a basic input/output system 916 (BIOS), including basic routines that help to transfer information between elements within computer system 900, such as during start-up, may be stored in memory 908. Memory 908 may also include (e.g., stored on one or more machine-readable media) instructions (e.g., software) 920 embodying any one or more of the aspects and/or methodologies of the present disclosure. In another example, memory 908 may further include any number of program modules including, but not limited to, an operating system, one or more application programs, other program modules, program data, and any combinations thereof.


Computer system 900 may also include a storage device 924. Examples of a storage device (e.g., storage device 924) include, but are not limited to, a hard disk drive, a magnetic disk drive, an optical disc drive in combination with an optical medium, a solid-state memory device, and any combinations thereof. Storage device 924 may be connected to bus 912 by an appropriate interface (not shown). Example interfaces include, but are not limited to, SCSI, advanced technology attachment (ATA), serial ATA, universal serial bus (USB), IEEE 1394 (FIREWIRE), and any combinations thereof. In one example, storage device 924 (or one or more components thereof) may be removably interfaced with computer system 900 (e.g., via an external port connector (not shown)). Particularly, storage device 924 and an associated machine-readable medium 928 may provide nonvolatile and/or volatile storage of machine-readable instructions, data structures, program modules, and/or other data for computer system 900. In one example, software 920 may reside, completely or partially, within machine-readable medium 928. In another example, software 920 may reside, completely or partially, within processor 904.


Computer system 900 may also include an input device 932. In one example, a user of computer system 900 may enter commands and/or other information into computer system 900 via input device 932. Examples of an input device 932 include, but are not limited to, an alpha-numeric input device (e.g., a keyboard), a pointing device, a joystick, a gamepad, an audio input device (e.g., a microphone, a voice response system, etc.), a cursor control device (e.g., a mouse), a touchpad, an optical scanner, a video capture device (e.g., a still camera, a video camera), a touchscreen, and any combinations thereof. Input device 932 may be interfaced to bus 912 via any of a variety of interfaces (not shown) including, but not limited to, a serial interface, a parallel interface, a game port, a USB interface, a FIREWIRE interface, a direct interface to bus 912, and any combinations thereof. Input device 932 may include a touch screen interface that may be a part of or separate from display 936, discussed further below. Input device 932 may be utilized as a user selection device for selecting one or more graphical representations in a graphical interface as described above.


A user may also input commands and/or other information to computer system 900 via storage device 924 (e.g., a removable disk drive, a flash drive, etc.) and/or network interface device 940. A network interface device, such as network interface device 940, may be utilized for connecting computer system 900 to one or more of a variety of networks, such as network 944, and one or more remote devices 948 connected thereto. Examples of a network interface device include, but are not limited to, a network interface card (e.g., a mobile network interface card, a LAN card), a modem, and any combination thereof. Examples of a network include, but are not limited to, a wide area network (e.g., the Internet, an enterprise network), a local area network (e.g., a network associated with an office, a building, a campus or other relatively small geographic space), a telephone network, a data network associated with a telephone/voice provider (e.g., a mobile communications provider data and/or voice network), a direct connection between two computing devices, and any combinations thereof. A network, such as network 944, may employ a wired and/or a wireless mode of communication. In general, any network topology may be used. Information (e.g., data, software 920, etc.) may be communicated to and/or from computer system 900 via network interface device 940.


Computer system 900 may further include a video display adapter 952 for communicating a displayable image to a display device, such as display device 936. Examples of a display device include, but are not limited to, a liquid crystal display (LCD), a cathode ray tube (CRT), a plasma display, a light emitting diode (LED) display, and any combinations thereof. Display adapter 952 and display device 936 may be utilized in combination with processor 904 to provide graphical representations of aspects of the present disclosure. In addition to a display device, computer system 900 may include one or more other peripheral output devices including, but not limited to, an audio speaker, a printer, and any combinations thereof. Such peripheral output devices may be connected to bus 912 via a peripheral interface 956. Examples of a peripheral interface include, but are not limited to, a serial port, a USB connection, a FIREWIRE connection, a parallel connection, and any combinations thereof.


The foregoing has been a detailed description of illustrative embodiments of the invention. Various modifications and additions can be made without departing from the spirit and scope of this invention. Features of each of the various embodiments described above may be combined with features of other described embodiments as appropriate in order to provide a multiplicity of feature combinations in associated new embodiments. Furthermore, while the foregoing describes a number of separate embodiments, what has been described herein is merely illustrative of the application of the principles of the present invention. Additionally, although particular methods herein may be illustrated and/or described as being performed in a specific order, the ordering is highly variable within ordinary skill to achieve embodiments as disclosed herein.


Accordingly, this description is meant to be taken only by way of example, and not to otherwise limit the scope of this invention.


In the descriptions above and in the claims, phrases such as “at least one of” or “one or more of” may occur followed by a conjunctive list of elements or features. The term “and/or” may also occur in a list of two or more elements or features. Unless otherwise implicitly or explicitly contradicted by the context in which it is used, such a phrase is intended to mean any of the listed elements or features individually or any of the recited elements or features in combination with any of the other recited elements or features. For example, the phrases “at least one of A and B;” “one or more of A and B;” and “A and/or B” are each intended to mean “A alone, B alone, or A and B together.” A similar interpretation is also intended for lists including three or more items. For example, the phrases “at least one of A, B, and C;” “one or more of A, B, and C;” and “A, B, and/or C” are each intended to mean “A alone, B alone, C alone, A and B together, A and C together, B and C together, or A and B and C together.” In addition, use of the term “based on,” above and in the claims is intended to mean, “based at least in part on,” such that an unrecited feature or element is also permissible.


The subject matter described herein can be embodied in systems, apparatus, methods, and/or articles depending on the desired configuration. The implementations set forth in the foregoing description do not represent all implementations consistent with the subject matter described herein. Instead, they are merely some examples consistent with aspects related to the described subject matter. Although a few variations have been described in detail above, other modifications or additions are possible. In particular, further features and/or variations can be provided in addition to those set forth herein. For example, the implementations described above can be directed to various combinations and sub-combinations of the disclosed features and/or combinations and sub-combinations of several further features disclosed above. In addition, the logic flows depicted in the accompanying figures and/or described herein do not necessarily require the particular order shown, or sequential order, to achieve desirable results. Other implementations may be within the scope of the following claims.

Claims
  • 1. A decoder for decoding a coded bit stream configured to: execute a block-based mode in which a reference picture of one resolution is used to form a predictor for a picture of another resolution;receive a coded bit stream encoded by an encoder and including a first coded picture having a first spatial resolution, a second coded picture having a second spatial resolution, and a third coded picture having a third spatial resolution;decode the first coded picture and store the first picture as a first reference picture;using the mode, form a first predictor for a block of the second coded picture from the first reference picture using a first spatial resolution changing scale factor signaled to the decoder by the encoder and a first filter;decode the second coded picture using the first predictor and store the second picture as a second reference picture;using the mode, form a second predictor for a block of the third coded picture from the second reference picture using a second spatial resolution changing scale factor signaled to the decoder by the encoder and a second filter, anddecode the third coded picture using the second predictor.
  • 2. The decoder of claim 1 wherein the first resolution and third resolution are the same and wherein the second scaling factor and second filter and first scaling factor and first filter inversely affect spatial resolution.
  • 3. A video encoder having circuitry configured to produce a coded bitstream including a first coded picture having a first spatial resolution, a second coded picture having a second spatial resolution, and a third coded picture having a third spatial resolution, the bitstream being decodable by a compliant decoder, in which the decoder is configured to: receive the coded bit stream;execute a block-based mode in which a reference picture of one resolution is used to form a predictor for a picture of another resolution;decode the first coded picture and store the first picture as a first reference picture;using the mode, form a first predictor for a block of the second coded picture from the first reference picture using a first spatial resolution changing scale factor signaled to the decoder by the encoder and a first filter;decode the second coded picture using the first predictor and store the second picture as a second reference picture;using the mode, form a second predictor for a block of the third coded picture from the second reference picture using a second spatial resolution changing scale factor signaled to the decoder by the encoder and a second filter, anddecode the third coded picture using the second predictor.
  • 4. The video encoder of claim 3 wherein the first resolution and third resolution are the same and wherein the second scaling factor and second filter and first scaling factor and first filter inversely affect spatial resolution.
  • 5. A non-transitory computer readable medium having a coded bitstream stored therein including a first coded picture having a first spatial resolution, a second coded picture having a second spatial resolution, and a third coded picture having a third spatial resolution, the bitstream being decodable by a compliant decoder configured to: receive the coded bit stream;execute a block-based mode in which a reference picture of one resolution is used to form a predictor for a picture of another resolution;decode the first coded picture and store the first picture as a first reference picture;using the mode, form a first predictor for a block of the second coded picture from the first reference picture using a first spatial resolution changing scale factor signaled to the decoder by the encoder and a first filter;decode the second coded picture using the first predictor and store the second picture as a second reference picture;using the mode, form a second predictor for a block of the third coded picture from the second reference picture using a second spatial resolution changing scale factor signaled to the decoder by the encoder and a second filter, anddecode the third coded picture using the second predictor.
  • 6. The non-transitory computer readable medium of claim 5 wherein the first resolution and third resolution are the same and wherein the second scaling factor and second filter and first scaling factor and first filter inversely affect spatial resolution.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 17/633,245, filed on Feb. 7, 2022 and entitled FRAME BUFFERING IN ADAPTIVE RESOLUTION MANAGEMENT, which application is a National Phase Application claiming the benefit of priority of International Application No. PCT/US20/45234 filed on Aug. 6, 2020 and entitled “FRAME BUFFERING IN ADAPTIVE RESOLUTION MANAGEMENT,” the entirety of which is incorporated herein by reference, which in turn claims the benefit of priority of U.S. Provisional Patent Application Ser. No. 62/883,503, filed on Aug. 6, 2019, and entitled “FRAME BUFFERING IN ADAPTIVE RESOLUTION MANAGEMENT,” which is incorporated by reference herein in its entirety.

Provisional Applications (1)
Number Date Country
62883503 Aug 2019 US
Continuations (1)
Number Date Country
Parent 17633245 Feb 2022 US
Child 18740049 US