This invention relates to a frame connector for securing a first frame member to a second frame member.
Frames formed of multiple sections need to be secured together, in order to be able to securely hold a pane, for example a glazing pane for a window or door, in place. Doors and windows typically have multiple mitre joints which are formed when one section of frame is secured to another section at a right-angle. Prior art connectors are formed of two or more parts and secure the mitre joint by inserting a part of a connector within an inner channel of the respective sections, and sequentially expanding the connector until the required pressure was achieved within each section. The connector is accessed through a hole fabricated, for example by drilling, punching or machining, in the outer surface of each section of frame so that a user can manually expand each part of the connector in a direction perpendicular to a plane of the frame defined by the edges of the frame. This approach is undesirable for a number of reasons.
Firstly, by having to expand the connector sequentially, the pressure exerted on each frame member is often not equal, which can result in the frame being mis-aligned, which manifests as a step forming at the mitre joint line. Further, by only expanding the connector in a direction perpendicular to the plane of the frame, the abutting surfaces of the sections may not be aligned, resulting in mis-alignments at the corners of the frame. Such mis-alignments are unattractive and undesirable. Yet further, by accessing the frame from an outer surface of the frame, the resulting frame will still have a hole present, which may allow egress of glue or sealant used to permanently fix the two frame members together out of the hole, resulting in an unsightly finish, which is undesirable.
Prior art frame mitred connections typically incorporate a thermal break formed of strips of insulating material that space an inner portion of the frame from an outer portion of the frame. A further problem of the prior art is that the fabrication process of the thermal breaks to make up the frame members can happen in such a way that an error in the total width of the frame member is exhibited. This may result in one frame section having a different depth to a second frame sections, resulting in a mis-alignment between one or both surfaces of the first and second frame sections.
The present invention seeks to address at least some of these problems.
Viewed from a first aspect, the present invention provides a frame connector for securing a first frame member to a second frame member, the frame connector comprising a first body having a first pair of arms extending along first and second axes from a mitre plane to respective free ends; a second body adjacent to the first body and having a contact surface and a second pair of arms extending from the mitre plane to respective free ends, and an actuator secured to the first body and arranged to apply a force to the contact surface in a first direction. The first and second axes are non-colinear and define a first plane. The first direction forms an acute angle to the first plane. The actuator is arranged to displace the first body relative to the second body in the first direction.
Thus, the present invention provides a frame connector that is able to robustly and aesthetically secure a first frame member to a second frame member by expanding in multiple directions within an internal channel of the frame members. The frame connector is particularly advantageous, as the mutual expansion within both frame members using a single actuator significantly reduces the risk of forming steps across a mitre joint line. Further, multiple directions of expansion provide a more secure fit within the frame member, which allows for the same frame connector to be used in a wider range of applications.
The first direction may form an acute angle to a plane defined by the normal axis of the first plane and the first axis.
The frame connector may comprise a second actuator secured to the first body and arranged to apply a second force to the contact surface in a second direction. The second direction may form an acute angle with the first plane. The first direction may be different to the second direction, and the second actuator may be arranged to displace the first body relative to the second body in the second direction.
The second direction may be substantially perpendicular to the first direction. The second direction may be substantially perpendicular to a plane defined by the first direction and a normal axis of the first plane.
The actuator may be configured to apply the force to the second body following input from a tool. This is advantageous, as it allows for a user to expand the frame connector to the desired configuration. A further advantage of this approach is the actuator may be made with fewer components.
The actuator may comprise a threaded outer surface and the first body may comprise a hole having a threaded inner surface corresponding to the threaded outer surface to secure a portion of the actuator within the first body. The actuator may be arranged to separate the first body from the second body upon rotation of the tool. Using rotary motion to generate translation of the actuator is particularly advantageous, as it provides greater control to the user when expanding the frame connector by self-locking once rotation ceases. A further advantage, is the user is able to retract the frame connector by an amount if necessary.
The hole may extend through the first body at an angle to the first plane of between 1 and 89 degrees.
The contact surface may intersect the mitre plane. The contact surface may be substantially perpendicular to the first direction.
The frame connector may further comprise a first plurality of members extending from the first body along a series of parallel axes, and a second plurality of members extending from the second body towards the first body. Each of the second plurality of members may comprises a core extending along the series of parallel axes configured to receive a respective member of the first plurality of members. The first plurality of members may be arranged to constrain the displacement of the second plurality of members along the series of parallel axes. The series of parallel axes may be substantially parallel to the first direction. This is advantageous, as the relatively displacement between the first and second bodies can be guided along a desired axis of motion. A further advantage of providing multiple members is a reduced risk of the first body twisting, and possible becoming stuck, as it moves relative to the second body.
The first and second pluralities of members may be arranged symmetrically about the mitre plane.
A first subset of the first plurality of members may be configured to generate an interference fit with a first subset of the second plurality of members. The interference fit may be sufficient to maintain a first distance between the first and second bodies. Alternatively, the first distance may be maintained by a barbed surface on one or more of either of the guide pins or tubular members. In one example, the barbed surface may be disposed on the guide pin, which would enable the guide pin to bite into the inner surface of the tubular member to maintain the first distance.
The first subset of the first plurality of members may be configured to release the second subset of the first plurality of members upon application of the force.
The first subset of the second plurality of members may be adjacent to the mitre plane. This is particularly advantageous, as it reduces the risk of uneven divergence of the first body relative to the second body and further reduces the risk of rotation between the first and second bodies.
Viewed from a further independent aspect, the present invention provides a system comprising a frame connector according to any of the appended claims; a first frame member having a first face, and a first channel configured to receive the first arms of the respective first and second pairs of arms of the frame connector; a second frame member having a second face, a first channel configured to receive the second arms of the respective first and second pairs of arms of the frame connector, and an aperture adjacent the second face. The first face and second face may form a mitre joint plane. The aperture is located over the actuator. Thus, the invention also provides a system where only the necessary frame member components require additional time to machine as the offset aperture provides access for the tool by only requiring one frame member to be machined. By incorporating standard components where possible, a more time- and cost-effective frame assembly can be produced.
The second frame member may comprise a first side wall, and the first aperture may be formed within the first side wall.
The second frame member may comprise a second side wall connected to the first side wall, and the first aperture may be formed within the second side wall.
Viewed from a further independent aspect, the present invention provides a system comprising a frame connector according to any of the appended claims, a first frame member having a first face and a first channel configured to receive the first arms of the respective first and second pairs of arms of the frame connector, and a second frame member having a second face and a first channel configured to receive the second arms of the respective first and second pairs of arms of the frame connector. The frame connector is configured to secure the first frame member relative to the second frame member such that first face and the second face abut to form a mitre joint. This advantageously provides a system, for example in the form of a window frame, a door frame or a skylight framework, that can be assembled using one or more frame connectors and sections of frame that do not have an aperture machined therein to provide access to the actuator. Thus, a system can be assembled without needing to machine a slot or aperture into sections of the frame to accommodate a tool.
The second frame member may comprise a second channel, and first and second insulating members disposed between the first and second channels. The first and second insulating members may comprise a second aperture at the second face, and the second aperture may be arranged to allow relative displacement between the first and second channels. This is advantageous, as it allows for fine-tuning of the frame member due to errors in the fabrication process of the insulating members creating inconsistencies in the width of assembled frame members.
Viewed from a further independent aspect, the present invention provides a method of assembly, comprising providing a frame connector according to the appended claims, inserting the first pair of arms of the frame connector into a first channel of a first frame member, the first frame member having a first face intersecting the first channel of the first frame member, inserting the second pair of arms of the frame connector into a first channel of a second frame member, the second frame member having a second face intersecting the first channel of the second frame member, arranging the first and second frame members such that the first face is spaced from the second face, operating the actuator to secure the first frame member relative to the second frame member, and applying an external force to one of the first or second frame members so as to abut the first face against the second face, thereby forming a mitre joint. This advantageously allows sections of frame that do not have any additional slots machined to provide access for tools to be assembled using the corner key described herein. An installer is thus able to operate the actuator to secure the sections of frame relative to one another before bringing them together to form the mitre joint. The spacing between the first and second faces is preferably kept to a minimum as to reduce the amount of energy and effort required to form the mitre joint. By way of example, the spacing between the first and second face may be 10 mm. However, it would be apparent that a smaller spacing, for example between 5 mm and 10 mm, or a larger spacing, for example between 10 mm and 50 mm may be suitable. In some cases, the spacing may be greater than 50 mm or less than 5 mm.
The method may further comprise inserting a tool between the first face and the second face to operate the actuator. It would be understood that while a manual tool such as an Allen key is described, the actuator may also be operated by non-contact means. A magnetic connection or a wireless connection to an electric motor within the system that is arranged to actuate the first body relative to the second body are examples of such non- contact means.
Viewed from a further independent aspect, the present invention provides a method of assembly, comprising providing a frame connector according to any of the appended claims, inserting the first pair of arms of the frame connector into a first channel of a first frame member, the first frame member having a first face intersecting the first channel of the first frame member, inserting the second pair of arms of the frame connector into a first channel of a second frame member, the second frame member having a second face intersecting the first channel of the second frame member, arranging the first and second frame members such that the first face abuts the second face, and operating the actuator to secure the first frame member relative to the second frame member to form a mitre joint.
All scientific and technical terms used herein have meanings commonly used in the art unless otherwise specified. The definitions provided herein are to facilitate understanding of certain terms used frequently herein.
The terms “central” and “distal” refer to relative positions of elements of the frame connector described in relation to a mitre plane, represented by the plane defined where first and second frame sections join to form a mitre joint. The mitre plane also intersects the first and second pairs of arms where their respective first and second arms intersect. As used herein, “central” or “more central to” is defined as being closer or nearer to the mitre plane, with the mitre plane being central to the distal free ends. “Distal” or “distal to” is defined as being closer or nearer to the free ends of the respective first and second pairs of arms, with the free ends being distal to the mitre plane. The free ends refer to the distal ends of the frame connector.
Embodiments of the invention are further described hereinafter with reference to the accompanying drawings, in which:
A frame connector 10, such as that illustrated in
The first body 100 is best illustrated in
To guide the relative movement between the first 100 and second 200 bodies, the frame connector 10 includes an arrangement of pins and corresponding tubular elements. The arrangement of pins and tubular elements directs the motion the first body 100 relative to the second body 200 along an axis. This helps prevent rotation of the first body 100 relative to the second body 200 and ensures uniform and consistent expansion of the frame connector 10 within the frame member. While a particular arrangement is presently described, it would be apparent that this is an exemplary embodiment, and that other arrangements would be equally suited for the present invention. The arrangement of pins and tubular elements is best illustrated in
In one embodiment, the arrangement has tubular elements 130, 135 disposed on the first body 100 and pins 234, 239 disposed on the second body. Specifically, four tubular elements 130, 135 are located within an internal cavity 120 of the first body 100, with two of the tubular elements being located on each of the arms 105,110. The tubular elements 135 are arranged symmetrically about the mitre plane 445 and are disposed towards the distal free ends of each of the first 105 and second 110 arms. The tubular elements 135 project from an inner surface of the first body through the internal cavity 120 at an angle of approximately 45 degrees to the plane formed by the first pair of arms. The tubular elements 135 are formed as a hollow tube and are arranged to engage with a corresponding pin arrangement on the second body 200.
A first subset of the pin arrangement includes two bosses 237 extending from the second body 200 in a first direction by a first distance, with each boss 237 having a respective guide pin 239 extending therefrom in a second direction 245 by a second distance. The pin arrangement complements the tubular elements to facilitate engagement of the guide pin 239 with the respective tubular element 135. By constraining the guide pin 239 to remain within the tubular element 135, the displacement of the first body 100 relative to the second body 200 is substantially constrained to the second direction 245. As shown, the guide pins 239 and tubular elements 135 extend in the same direction. However, it is not essential for the bosses 237 to extend in the same direction 245 as the guide pins 239. Further, while an angle of 45 degrees relative to the first and second plane is preferable, it would be apparent this was not essential. An angle of between 1 and 89 degrees would be equally suitable in the present invention. While the illustrated arrangement of pins and tubular elements to guide the first 100 and second 200 bodies includes two tubular elements 135 and two corresponding guide pins 239, it would be apparent that an arrangement including only one or including more than two tubular elements 135 and two corresponding guide pins 239 would be equally suitable.
To secure the relative positions of the first 100 and second 200 bodies, some of the tubular elements 130 in the arrangement have a reduced inner diameter. This allows a second subset of the arrangement to grip their respective pins 234, subsequently referred to as interference pins, and prevent displacement of the first body 100 relative to the second body 200. The interference pins 234 provide a way of securing the first body 100 to the second body 200 in storage and during insertion. Once the actuator 300 begins to drive the first body 100 relative to the second body 200, the interference pins 234 release, allowing relative displacement between the first 100 and second 200 bodies. While a particular arrangement for gripping the interference pins 234 is described, it would be apparent that this is an exemplary embodiment, and that other arrangements would be equally suited for the present invention.
The second subset of the arrangement are arranged symmetrically about the mitre plane 445 and are disposed towards the mitre plane 445. The tubular elements 130 project from an inner surface of the first body through the internal cavity 120 at an angle of approximately 45 degrees to the plane formed by the first pair of arms. Each of the tubular elements 130 is formed as a hollow tube and is arranged to engage with a corresponding interference pin 234 extending from the second body 200. The interference pins 234 extend from respective bosses 232 formed on the second body 200. The interference pins 234 extend in a first direction by a first amount. To achieve the gripping necessary to hold the relative positions between the first 100 and second 200 bodies, the core of the tubular elements 130 are preferably under-sized compared to the interference pin 234. As best illustrated in
The tool 315 used to operate the actuator 300 may be operable by a user. As access to the actuator 300 may be restricted due to the structure of the frame member 400 (see
As shown in
The frame member 400 has a slot 465 formed in the second 430 component and, in combination with the first section 470A formed in the insulating member 455, facilitates access to the actuator 300 (see
The end 440 of the frame member 400 is cut at 45 degrees (see
Expansion of the frame connector 10 causes the first 100 and second 200 bodies to contact an inner surface of each of the frame members and the friction generated by this expansion secures the frame connector in place. Permanent methods of fixation include, but are not limited to, any of pinning, screwing, gluing and crimping. To facilitate crimping, the first body 100 includes a notch configured as a crimp seat 145 on each of the first 105 and second 110 arms of the first pair of arms. This allows an external machine to deform the outer wall of the frame member 400 into the crimp seat 145 to permanently secure the mitre joint. The first 100 and second 200 bodies may have features to enable glue to more easily flow around, across and through the frame connector 10. Such features may be on an internal or an external surface of the first 100 and/or second 200 bodies. The features may include any of grooves, channels, slots, recesses or holes. One example of such a feature is slot 252 on the second body 200 to facilitate the flow of glue when injected through the mitre joint 445 for permanent fixation (see
Alternatively, the frame may be assembled using frame members that have not been machined to incorporate a slot for a tool 315. In this case, an installer may start as described above. However, instead of bringing the first 440A and second 440B ends into contact, the installer leaves a space between the abutting faces of the first 400A and second 400B frame members so that the tool 315 can be inserted between the abutting faces. This provides a way for the installer to access and operate the actuator 300 to expand the frame connector 10 so as to secure the first frame member 400A relative to the second frame member 400B. This will secure the frame members 400A, 400B with a gap between the abutting faces. The installer is then able to remove the tool before closing the gap to form the mitre joint. This may be achieved by applying a force to either of the first 400A or second 400B frame members, for example by tapping with a mallet, to push the abutting faces together.
The first body 100 also includes two mounting holes 102 on the first 105 and second 110 arms of the first body 100 (
The words “preferred” and “preferably” refer to embodiments of the invention that may afford certain benefits, under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful, and is not intended to exclude other embodiments from the scope of the disclosure, including the claims.
Throughout the description and claims of this specification, the words “comprise” and “contain” and variations of them mean “including but not limited to”, and they are not intended to (and do not) exclude other moieties, additives, components, integers or steps. Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.
Features, integers and characteristics described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith.
All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The invention is not restricted to the details of any foregoing embodiments. The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
Number | Date | Country | Kind |
---|---|---|---|
1814022.8 | Aug 2018 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2019/051388 | 5/20/2019 | WO | 00 |