The present invention relates to a frame, and more specifically to a frame for an electrostatic precipitator cell.
Air cleaners and purifiers are widely used for removing foreign substances from the air. The foreign substances can include pollen, dander, smoke, pollutants, dust, etc. In addition, an air cleaner can be used to circulate room air. An air cleaner can be used in many settings, including at home, in offices, etc.
One type of air cleaner is an electrostatic precipitator. An electrostatic precipitator operates by creating an electrical field. Dirt and debris in the air becomes ionized when it is brought into the electrical field by an airflow. Charged positive and negative electrodes in the electrostatic precipitator air cleaner, such as positive and negative plates, attract the ionized dirt and debris. The electrodes can release the dirt and debris when not powered, and the electrostatic precipitator can be removed and cleaned. Because the electrostatic precipitator comprises electrodes or plates through which airflow can easily and quickly pass, only a low amount of energy is required to generate the airflow. As a result, foreign objects in the air can be efficiently and effectively removed without the need for a mechanical filter element.
In the prior art, an electrostatic precipitator is typically assembled by inserting a series of electrode plates into an air cleaner chassis. Alternatively, in the prior art the plates are assembled together into some manner of integral unit. The chassis can include plastic end plates that receive and hold the electrode plates. Alternatively, the prior art electrostatic precipitator can include electrode plates that are welded or bonded into a fixed unit.
The prior art has drawbacks. The prior does not include a frame that forms an electrostatic precipitator as an integral unit. In the prior art, there are no retainer devices that hold the frame into a chassis. In the prior art, the electrostatic precipitator cannot be front loaded (i.e., push in, pull out). In the prior art, the electrostatic precipitator rests in the chassis on its bottom surface.
A frame for an electrostatic precipitator cell is provided according to an embodiment of the invention. The frame comprises a first frame portion adapted to at least partially receive the electrostatic precipitator cell and a second frame portion adapted to at least partially receive the electrostatic precipitator cell. The second frame portion assembles to the first frame portion to form the frame. The frame includes one or more side portions, an open top end, and an open bottom end. The frame receives and holds the electrostatic precipitator cell:
A frame for an electrostatic precipitator cell is provided according to an embodiment of the invention. The frame comprises a frame portion adapted to receive the electrostatic precipitator cell. The frame portion includes a plurality of side portions, an open top end, and an open bottom end. The frame further comprises two or more support projections formed on the frame portion and configured to suspend the frame portion and the electrostatic precipitator cell when positioned in the frame.
A frame for an electrostatic precipitator cell is provided according to an embodiment of the invention. The frame comprises a frame portion adapted to receive the electrostatic precipitator cell. The frame portion includes a plurality of side portions, an open top end, and an open bottom end. The frame further comprises a handle formed on a side portion of the plurality of side portions.
A frame for an electrostatic precipitator cell is provided according to an embodiment of the invention. The frame comprises a frame portion adapted to receive the electrostatic precipitator cell. The frame portion includes a plurality of side portions, an open top end, and an open bottom end. The frame further comprises one or more retainer devices formed on the frame portion. The one or more retainer devices are adapted to engage an air cleaner chassis.
A frame for an electrostatic precipitator cell is provided according to an embodiment of the invention. The frame comprises a frame portion adapted to receive the electrostatic precipitator cell. The frame portion includes a plurality of side portions, an open top end, and an open bottom end. The frame further comprises a plurality of ground element apertures formed in substantially opposing regions of the frame portion. The plurality of ground element apertures are adapted to receive corresponding corona ground elements.
A frame for an electrostatic precipitator cell is provided according to an embodiment of the invention. The frame comprises a frame portion adapted to receive the electrostatic precipitator cell. The frame portion includes a plurality of side portions, an open top end, and an open bottom end. The frame further comprises a plurality of ground element apertures formed in substantially opposing regions of the frame portion. The plurality of ground element apertures are adapted to receive corresponding corona ground elements. The frame further comprises a plurality of weep holes. A ground element aperture includes a weep hole that drains moisture from the ground element aperture.
A frame for an electrostatic precipitator cell is provided according to an embodiment of the invention. The frame comprises a frame portion adapted to receive the electrostatic precipitator cell. The frame portion includes a plurality of side portions, an open top end, and an open bottom end. The frame further comprises a plurality of slot wells formed in substantially opposing regions of the frame portion. A slot well of the plurality of slot wells is adapted to receive a corresponding corona charge element. The frame further comprises a plurality of charge element slots leading from an edge of the frame portion to the plurality of slot wells.
A method of affixing an electrostatic precipitator assembly in an air cleaner chassis is provided according to an embodiment of the invention. The method comprises providing a frame, inserting an electrostatic precipitator cell into the frame to form the electrostatic precipitator assembly, and inserting the frame into an electrostatic precipitator receptacle of the air cleaner chassis in order to assemble the electrostatic precipitator assembly to the air cleaner chassis.
The same reference number represents the same element on all drawings. It should be noted that the drawings are not necessarily to scale.
In one embodiment, the frame 102 is formed of an electrically insulating material. However, it should be understood that any suitable material can be used for the frame 102.
The frame 102 receives and holds the electrostatic precipitator cell 104. In one embodiment, the electrostatic precipitator cell 104 is held in the frame 102 by a friction fit. The frame 102 can therefore be at least partially flexible, and can fit tightly to the electrostatic precipitator cell 104. The frame 102 in this embodiment can comprise a single portion, for example.
In another embodiment, the frame 102 clamps onto the electrostatic precipitator cell 104. In this second embodiment, the frame 102 comprises a first frame portion 105 and a second frame portion 106. The first frame portion 105 and the second frame portion 106 can comprise substantially equal portions (i.e., first and second frame halves 105 and 106), or can comprise unequal portions. The second frame portion 106 assembles to the first frame portion 105 to form the frame 102. The first frame portion 105 and the second frame portion 106 can further include two or more first assembly ear portions 235, two or more second assembly ear portions 236, and two or more fasteners (not shown). The fasteners can affix the two or more first assembly ear portions 235 to the two or more second assembly ear portions 236. In one embodiment, the fasteners removably affix the first frame portion 105 and the second frame portion 106, although alternatively the fasteners can permanently affix the two portions. The fastener in one embodiment comprises a screw. However, it should be understood that other fasteners are contemplated, such as threaded bolts and nuts, rivets, spring clips, snap rivets, snap-fit devices, etc., and are within the scope of the description and claims.
The frame 102 includes two or more support projections 110. The support projections 110 can comprise projections formed on the frame 102. The support projections 110 can comprise projections that have an outward dimension D and a length L. The support projections 110 are configured to slide into and be received by the projection channels 1407 of the air cleaner 1400 (see
In one embodiment, the support projections 110 are formed substantially at a top region 111 of the frame 102. However, it should be understood that the support projections 110 can be located anywhere on the frame 102. In the embodiment that includes the first frame portion 105 and the second frame portion 106, four support projections 110 can be formed on the frame 102 (i.e., two on each frame portion).
The handle 113 can comprise an integral portion of the frame 102 (shown), or can be permanently or removably affixed to the frame 102. The handle 113 enables the electrostatic precipitator assembly 100 to be easily grasped and manipulated and can be grasped and used to insert and remove the electrostatic precipitator assembly 100 from the air cleaner 1400. The handle 113 advantageously enables easy insertion of the electrostatic precipitator assembly 100 into the air cleaner. In addition, the handle 113 enables a user to more easily and reliably grip the electrostatic precipitator assembly 100 during washing, cleaning, or other servicing operations.
In one embodiment, the one or more retainer devices 116 comprise one or more rotatable retainer devices 116. The one or more retainer devices 116 can removably affix the electrostatic precipitator assembly 100 in an electrostatic precipitator receptacle 1403 by engaging the air cleaner chassis 1301 (see
The one or more side openings 117 reveal at least a portion of the electrostatic precipitator cell 104. For example, a side opening 117 can reveal (and provide access to) fasteners 140 of the electrostatic precipitator cell 104. A side opening 117 can also provide electrode contact access to the electrostatic precipitator cell 104 and will not trap and retain dirt when the electrostatic precipitator assembly 100 is being cleaned.
The frame 102 can include a thick wall portion 150. The thick wall portion 150 is formed on a side portion 106 where the corona charge elements 400 and the corona ground elements 500 will be received (see
One or more ground element apertures 120 are formed in the thick wall portion 150 and on the opposite frame side (see
One or more slot wells 123 are also formed in the thick wall portion 150 and on the opposite frame side. The slot wells 123 receive a retaining body 404 formed on an end of a corona charge element 400 (see
The slot wells 123 further include charge element slots 124 that lead from an edge (of the bottom opening 108) to a corresponding slot well 123. The charge element slots 124 are of a size to allow the wire portions 402 of the corona charge element 400 to pass.
The frame 102 can further include one or more weep holes 115 (see
The figure further shows the thick wall portion 150, which in one embodiment is included to reinforce the frame 102 where the corona charge elements 400 are retained by the frame 102. The ground element apertures 120, the slot wells 123, and the charge element slots 124 therefore can be formed in the thick wall portion 150. This figure shows the large blind aperture 221 and the small through aperture 222 that comprise a ground element aperture 120. The large blind aperture 221 can accommodate a retainer of a corona ground element 500.
A retaining body 404 comprises a mass, shape, bead, barrel, block, billet, etc., that is substantially solid and that is larger than the wire portion 402. A retaining body 404 can comprise a shape that is substantially spherical, cylindrical, rectangular, irregular, etc. A retaining body 404 includes a substantial length, height, and depth. A retaining body 404 includes a contact face 405 that contacts a retaining surface of the electrostatic precipitator assembly 100. In one embodiment, the contact face 405 is substantially planar and extends substantially perpendicularly from the wire portion 402. Alternatively, the contact face 405 can curve or slope away from the wire portion 402. The contact face 405 in one embodiment includes a contact face area that is at least twice a cross-sectional area of the wire portion 402.
In use, the retaining body 404 is placed behind a retaining portion such as a wall or lip, wherein the wire portion 402 extends through some manner of slot or gap in the retaining portion. Consequently, the retaining body 404 can be trapped in order to retain the end of the corona charge element 400, and even can be used to place a tension force on the corona charge element 400.
In the embodiment of
The wire portion 402 can be formed of any metal or alloy composition, and can have any desired diameter and flexibility. The length of the corona charge element 400 can be such that the frame 102 places a tension on the corona charge element 400 when in place in the frame (see
In one embodiment, the corona ground element 500 comprises a hollow body, such as a tube (see
The corona ground element 500H shown in
The corona ground element 500I shown in
The various embodiments shown and described above can include the projections 507 shown in
The body in this embodiment is substantially planar. It should be understood that the overall shape is just one embodiment. Other shapes are contemplated and are within the scope of the description and claims.
The retainer aperture 710 receives a projection 507 of one end of a corona ground element 500. The projection 507 can fit into the retainer aperture 710 in a friction or press fit, wherein the retainer 700 traps and retains the corona ground element 500 in a ground element aperture 120 of the frame 102. The retainer 700, by gripping the corona ground element 500, holds the corona ground element 500 in the frame 102. Alternatively, the retainer 700 can be affixed to the corona ground element 500 by a threaded fastener that passes through the retainer aperture 710 and threads into the threaded aperture 504 (see
Alternatively, in another embodiment, the retainer aperture 710 can extend completely through the body and the sleeve portion 713. Consequently, the retainer aperture 710 can receive a fastener that affixes (or removably affixes) the retainer 700 to a corona ground element 500.
The retainer 700 of any embodiment can optionally include one or more alignment devices 714. An alignment device 714 can comprise some manner of projection that fits to and interacts with some manner of depression of the frame 102, such as a slot, groove, etc., in order to prevent movement or rotation of a corona ground element 500. For example, the alignment device 714 can comprise the alignment rib shown in
In one embodiment of the invention, the retainer 700 is affixed or removably affixed to the corona ground element 500 by some manner of fastener, such as a threaded fastener, for example. The fastener can pass through the retainer aperture 710. In some embodiments, the retainer 700 can be clamped against the frame 102 by this fastener.
The charge element retaining member 800 in one embodiment is flexible and the flexible arm portions 802 therefore can bend or deform under pressure. The flexible arm portions 802 can retain a number of electrode wires of the electrostatic precipitator cell 104, such as the corona charge elements 400 of the pre-ionizer 930, for example. The flexible arm portions 802 include a retaining portion 804 formed on an outer end 803. The retaining portion 804 extends from a flexible arm portion 802, such as at an angle or at a right angle, and includes a slot 805. The wire portion 402 of a corona charge element 400 fits into the slot 805, and the retaining body 404 of the corona charge element 400 is held by the retaining portion 804.
The charge element retaining member 800 cooperates with the charge element slots 124 of the frame 102 in order to hold the corona charge elements 400. The charge element retaining member 800 fits into the frame 102 (see
The charge element retaining member 800 in one embodiment is formed of a flexible, electrically conductive material or at least partially of an electrically conductive material. For example, the charge element retaining member 800 can be formed of a metal material or a metal alloy. Alternatively, the charge element retaining member 800 can be formed of a flexible material that includes an electrically conductive layer, such as a metal plating layer. However, it should be understood that the charge element retaining member 800 can be formed of any suitable material, and various material compositions are within the scope of the description and claims.
The precipitator contact plate 810 provides an electrical contact member between charge plates 160 of the electrostatic precipitator cell 104 and the charge plate contact 1416b (see
This figure also shows the one or more mounting pins 1040. The mounting pins 1040 can comprise pins formed as part of or on the frame 102, for example. The mounting pins 1040 can be formed by ultrasonically staking the pins to the frame 102, can be molded into the frame 102, etc. The pins 1040 can hold and/or align the charge element retaining member 800.
The projection channels 1407 are configured to receive the support projections 110 of the frame 102. The electrostatic precipitator assembly 100 hangs in the projection channels 1407 by the support projections 110. Advantageously, this hanging mount enables the electrostatic precipitator assembly 100 to be easily installed and removed, and can provide a mount that offers little airflow blow-by. It should be understood that alternatively the electrostatic precipitator assembly 100 can be supported by other projection channels 1407/1409, or various combinations of projection channels.
In addition, the air cleaner 1400 can include one or more clearance channels 1409. The clearance channels 1409 are configured to receive the assembly ear portions 235 and 236 of the frame 102.
Furthermore, the chassis 1301 can include electrical contacts 1416 that provide electrical power, sensor capabilities, etc., to the electrostatic precipitator cell 104. The electrical contact 1416a is contacted by the charge element member 800 in order to provide electrical power to the pre-ionizer 930. The electrical contact 1416b is contacted by the precipitator contact plate 810 to provide electrical power to the charge plates 160. The electrical contacts 1416c provide a ground for both the pre-ionizer 930 and the charge plates 160.
The air cleaner according the invention can be implemented according to any of the embodiments in order to obtain several advantages, if desired. The invention provides a frame that provides structure for pre-ionizer components. The invention provides a frame that advantageously can clamp to electrostatic precipitator cell. The invention provides a frame that includes a handle. The invention provides a frame that includes one or more retainer devices. The invention provides a frame that enables easy manipulation of the electrostatic precipitator assembly for insertion and removal. The invention enables the electrostatic precipitator assembly to be inserted and removed as an integral unit. The invention provides a frame that enables easy manipulation of the electrostatic precipitator assembly for servicing, inspection, troubleshooting, and repair. The invention provides a frame that suspends the electrostatic precipitator cell in the air cleaner chassis. The invention provides a frame that provides an attachment to chassis of air cleaner. The invention reduces the likelihood of shorting or arcing. The invention provides an electrostatic precipitator assembly that does not require seals.
Number | Name | Date | Kind |
---|---|---|---|
3041807 | Getzin et al. | Jul 1962 | A |
3175341 | Winter | Mar 1965 | A |
3520111 | Revell et al. | Jul 1970 | A |
4253852 | Adams | Mar 1981 | A |
4325714 | Wooldridge | Apr 1982 | A |
4326861 | Matsumoto | Apr 1982 | A |
4473382 | Cheslock | Sep 1984 | A |
4516991 | Kawashima | May 1985 | A |
4976753 | Huang | Dec 1990 | A |
5035728 | Fang | Jul 1991 | A |
5290343 | Morita et al. | Mar 1994 | A |
5628818 | Smith et al. | May 1997 | A |
6176977 | Taylor et al. | Jan 2001 | B1 |
6679940 | Oda | Jan 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20080017035 A1 | Jan 2008 | US |