The present invention relates to a frame of an image forming apparatus, such as an electrophotographic copying machine or an electrophotographic printer (e.g., a laser-beam printer or an LED printer).
Conventionally, as a frame of an image forming apparatus, known has been a configuration including: support members, such as a side plate and a strut, which support an image forming unit which forms an image; and a bottom plate which is disposed below the support members in the vertical direction and has the support members secured thereto. Known has been a configuration in which casters are attached to the bottom face of such a bottom plate, enabling installation of the image forming apparatus to an installation face through the casters. Note that the shape of the bottom face of such a bottom plate is often substantially quadrangular.
Such a bottom plate receives, through the support members, the weight of the entirety including, for example, the image forming unit and sheets housed in the image forming apparatus. In a case where such a bottom plate has a substantially quadrangular bottom face and has casters attached one-to-one to the four corners of the bottom face, if a minutely uneven installation face is provided, all the four casters are not necessarily installed on the installation face, and thus any three of the four casters are installed on the installation face.
In this case, for example, the image forming unit and the sheets in the apparatus weigh on the periphery of the caster away from the installation face, on the bottom plate, so that the periphery of the caster is likely to deform. Such deformation of the bottom plate causes a deviation in the position of each support member supported by the bottom plate, so that deterioration occurs in the relative positional accuracy between each member included in the image forming unit. Thus, adverse influence is likely to occur in image quality.
As a solution to such problems, Japanese Patent Application Laid-Open No. 2018-142025 discloses a configuration in which three casters are attached to a bottom plate in balance with the following arrangement. Two casters are attached, respectively, near adjacent two corner portions among the four corner portions of a substantially quadrangular bottom face that the bottom plate has. The other caster is attached near the center of a side opposed to the side connecting the two corner portions to which the two casters are attached on the substantially quadrangular bottom face of the bottom plate. Three-point installation of an image forming apparatus with such three casters enables, even in a case where a minutely uneven installation face is provided, installation of the image forming apparatus along the installation face. Therefore, with inhibition of the bottom plate from deforming, the position of each support member can be inhibited from deviating.
However, according to the configuration disclosed in Japanese Patent Application Laid-Open No. 2018-142025, for example, in a case where a user weighs down the image forming apparatus, giving a load unexpected in normal use to the periphery of either of the other two corner portions at which no casters are disposed on the bottom face of the bottom plate, the following problem is likely to occur. That is, because the load is not received on the installation face through the casters, the portion given the load in the frame falls and the entire image forming apparatus slants, so that its attitude is likely to be unstable.
It is desirable to provide a frame of an image forming apparatus, the frame having a bottom plate to which casters are attached, the frame enabling inhibition of the bottom plate from deforming and additionally inhibition of the image forming apparatus from being unstable in attitude.
According to a representative configuration of the present invention, provided is a frame of an image forming apparatus including an image forming unit configured to form a toner image on a sheet, the frame including:
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
The entire configuration of an image forming apparatus according to an embodiment of the present invention will be described below together with the operation at the time of image forming with reference to the drawings. Note that, unless otherwise specified, the scope of the invention is not limited to the dimensions, materials, and shapes of the following constituent components and the relative arrangements thereof.
The image forming apparatus A according to the present embodiment is of an intermediate tandem type which transfers four-color toners of yellow Y, magenta M, cyan C, and black K to an intermediate transfer belt and then transfers an image to a sheet to form the image. Note that, in the following description, members which involve the yellow toner are denoted with Y as the suffix, members which involve the magenta toner are denoted with M as the suffix, members which involve the cyan toner are denoted with C as the suffix, and members which involve the black toner are denoted with K as the suffix. However, the configurations and operations of the members are substantially the same except for the colors of toner. Thus, the suffixes thereof will be appropriately omitted when no distinction is required.
The image forming unit 10 includes photoconductive drums 1 (1Y, 1M, 1C, and 1K), charging rollers 2 (2Y, 2M, 2C, and 2K), and developing devices 4 (4Y, 4M, 4C, and 4K). The image forming unit 10 includes primary transfer rollers 5 (5Y, 5M, 5C, and 5K), a laser scanner unit 3, an intermediate transfer belt 6, a secondary transfer roller 7, and a secondary transfer counter roller 8.
The feed unit 20 includes: sheet cassettes 11a to 11c which each house sheets S; and pickup rollers 12a to 12c which each pick up a sheet S housed in the corresponding sheet cassette 11a, 11b, or 11c. The feed unit 20 includes: feed rollers 13a to 13c which each feed the sheet S picked up by the corresponding pickup roller 12a, 12b, or 12c to a conveyance path; conveying rollers 14a to 14d which each convey the sheet S on the conveyance path; and a registration roller 15.
At the time of formation of an image by the image forming apparatus A, first, an image forming job signal is input to a controller not illustrated. This arrangement causes a sheet S housed in any of the sheet cassettes 11a to 11c to be picked up by the corresponding pickup roller 12a, 12b, or 12c. Next, the sheet S is sent to the registration roller 15 by the corresponding feed roller 13a, 13b, or 13c and conveying roller 14a, 14b, 14c, or 14d. After that, the sheet S is subjected to correction of skew by the registration roller 15. Then, at a predetermined timing, the sheet S is sent to a secondary transfer portion formed by the secondary transfer roller 7 and the secondary transfer counter roller 8.
Meanwhile, in the image forming unit 10, first, the surface of the photoconductive drum 1Y is charged by the charging roller 2Y. After that, according to image data transmitted from external equipment not illustrated, the laser scanner unit 3 irradiates the surface of the photoconductive drum 1Y with laser light, to form an electrostatic latent image on the surface of the photoconductive drum 1Y. After that, the developing device 4Y causes the yellow tonner to adhere to the electrostatic latent image formed on the surface of the photoconductive drum 1Y, so that a yellow toner image is formed on the surface of the photoconductive drum 1Y. In response to application of a primary transfer bias to the primary transfer roller 5Y, the tonner image formed on the surface of the photoconductive drum 1Y is primary-transferred to the intermediate transfer belt 6.
In similar processes, a magenta toner image, a cyan toner image, and a black toner image are formed on the photoconductive drums 1M, 1C, and 1K, respectively. Then, in response to application of a primary transfer bias to each of the primary transfer rollers 5M, 5C, and 5K, the corresponding toner image is transferred so as to be superimposed on the yellow toner image on the intermediate transfer belt 6. This arrangement results in formation of a full-color toner image, corresponding to the image signal, on the surface of the intermediate transfer belt 6. Note that, after the primary transfer, the toners adhering to the photoconductive drums 1Y, 1M, 1C, and 1K are each removed by a cleaning member not illustrated, resulting in being collected in a toner collection container 18.
After that, the full-color toner image is sent to the secondary transfer portion by a circumferential run of the intermediate transfer belt 6. Then, in response to application of a secondary transfer bias to the secondary transfer roller 7, the full-color toner image on the intermediate transfer belt 6 is transferred to the sheet S at the secondary transfer portion. The sheet S to which the toner image is transferred is conveyed to a fixing device 9 by a conveying roller 14e. Then, the sheet S is subjected to heating and pressing by the fixing device 9, so that the toner image on the sheet S is fixed to the sheet S. After that, the sheet S to which the toner image is fixed is discharged to a discharge tray 19 by a discharge roller 17.
Next, the configuration of a frame 100 for the image forming apparatus A will be described.
The upper frame 50 includes a front plate 53, a rear plate 52, and stays 58, 59, 60, and 61 which couple the front plate 53 and the rear plate 52 together. The front plate 53 includes an upper-right strut 54, an upper-left strut 55, and stays 56 and 57 which couple the upper-right strut 54 and the upper-left strut 55 together. The stays 56 and 57 are welded to the upper-right strut 54 and the upper-left strut 55. The stay 58 is welded to the upper-right strut 54 and the rear plate 52. The stay 59 is welded to the upper-left strut 55 and the rear plate 52. The stays 60 and 61 are welded to the stay 56 and the rear plate 52.
The lower frame 70 includes a bottom plate 71, a front plate 73, a rear plate 72, and stays 77 and 78 coupled to the front plate 73, the rear plate 72, and the bottom plate 71. The front plate 73 includes a lower-right strut 74, a lower-left strut 75, and a stay 76 which couples the lower-right strut 74 and the lower-left strut 75 together. The lower-right strut 74 is secured, through a screw not illustrated, to the upper-right strut 54 of the upper frame 50. The lower-left strut 75 is secured, through a screw not illustrated, to the upper-left strut 55 of the upper frame 50. The rear plate 72, the lower-right strut 74, and the lower-left strut 75 are secured, through screws not illustrated, to the bottom plate 71. The stay 76 is welded to the lower-right strut 74 and the lower-left strut 75. The stay 77 is secured, through screws not illustrated, to the lower-right strut 74, the rear plate 72, and the bottom plate 71. The stay 78 is secured, through screws not illustrated, to the lower-left strut 75, the rear plate 72, and the bottom plate 71.
Five casters 90a to 90e are attached to a bottom face 71v (attachment face) of the bottom plate 71 of the lower frame 70. The casters 90a to 90e are used at the time of movement of the image forming apparatus A or at the time of installation of the image forming apparatus A. The configuration of the casters 90a to 90e will be described in detail later.
A belt support member 82 which supports the intermediate transfer belt 6 is positioned and attached to the upper-right strut 54 and the upper-left strut 55 of the upper frame 50. The belt support member 82 supports, rotatably, one end portion in the direction of the rotational axis of each of the secondary transfer counter roller 8 and the other rollers around which the intermediate transfer belt 6 is stretched. The other end portion in the direction of the rotational axis of the secondary transfer counter roller 8 is supported rotatably by the rear plate 52.
A front plate as the frame on the front side of a fixing and conveying unit 84 (fixing unit) including the fixing device 9 and the conveying roller 14e united together, is attached to the upper-right strut 54 and the upper-left strut 55 of the upper frame 50. The position of the fixing and conveying unit 84 to the upper-right strut 54 and the upper-left strut 55 is determined by one-to-one fitting of pins, not illustrated, on the front plate of the fixing and conveying unit 84 to a fitting hole 54a2c formed on the upper-right strut 54 and a fitting hole 55a formed on the upper-left strut 55. The fixing and conveying unit 84 is capable of moving between the mount position at which the fixing and conveying unit 84 is mounted in the image forming apparatus A in order to perform fixing and the drawn position at which the fixing and conveying unit 84 is drawn out of the mount position to allow a user to carry out, for example, jam recovery.
That is, for example, the photoconductive drums 1, the developing devices 4, and the intermediate transfer belt 6 each serving as part of the image forming unit 10, are supported by the rear plate 52, the upper-right strut 54, and the upper-left strut 55 through the drum support member 81 or the belt support member 82. The rear plate 72, the lower-right strut 74, and the lower-left strut 75 coupled, from below in the vertical direction, to the rear plate 52, the upper-right strut 54, and the upper-left strut 55, receive the load of the photoconductive drums 1, the developing devices 4, and the intermediate transfer belt 6 and support the members indirectly. That is the drum support member 81, the belt support member 82, the rear plate 52, the upper-right strut 54, and the upper-left strut 55 of the upper frame 50, the rear plate 72, the lower-right strut 74, and the lower-left strut 75 of the lower frame 70 are each a support member which supports the image forming unit 10. The bottom plate 71 is disposed, in the vertical direction, below each support member which supports the image forming unit 10, and secures the rear plate 72, the lower-right strut 74, and the lower-left strut 75 which are part of the support members which support the image forming unit 10.
The conveying roller 14d is supported by the frame of the fixing and conveying unit 84. That is, determination of the position of the fixing and conveying unit 84 to the upper-right strut 54 and the upper-left strut 55 causes determination of the position of the conveying roller 14d. One end portion in the direction of the rotational axis of the conveying roller 14a which feeds a sheet S to the conveying roller 14d, is positioned to and then is supported rotatably by the lower-right strut 74. The other end portion in the direction of the rotational axis of the conveying roller 14a is supported rotatably by the rear plate 52.
A support rail 83a which supports the sheet cassette 11a, a support rail 83b which supports the sheet cassette 11b, and a support rail 83c which supports the sheet cassette 11c are positioned and attached to each of the lower-right strut 74 and the lower-left strut 75 of the lower frame 70. The support rails 83a, 83b, and 83c serve as stays which couple the lower-right strut 74, the lower-left strut 75, and the rear plate 72 together. At the position between the lower-right strut 74 and the lower-left strut 75, the sheet cassettes 11a to 11c slide-move while being guided by the support rails 83a to 83c. The sheet cassettes 11a to 11c are inserted in the direction of arrow −Y so as to be mounted in the image forming apparatus A. The sheet cassettes 11a to 11c mounted in the image forming apparatus A are supported by the support rails 83a to 83c and the rear plate 72. The sheet cassettes 11a to 11c are capable of moving between the mount position at which the sheet cassettes 11a to 11c are mounted in the image forming apparatus A and the drawn position at which the sheet cassettes 11a to 11c are drawn out of the mount position in the direction of arrow Y. The user replenishes, with sheets S, each of the sheet cassettes 11a to 11c at the drawn position.
In the present embodiment, the front face of the image forming apparatus A is oriented in the direction of arrow Y in which the sheet cassettes 11a to 11c are drawable, and the rear face of the image forming apparatus A is oriented in the direction of arrow−Yin which the sheet cassettes 11a to 11c are insertable. The right face of the image forming apparatus A is oriented in the direction of arrow X orthogonal to the directions of arrows Y and −Y and the directions of arrows Z and −Z along the vertical direction. The left face of the image forming apparatus A is oriented in the direction of arrow −X inverse to the direction of arrow X. That is, in the direction of movement of the sheet cassettes 11a to 11c, the lower-right strut 74 and the lower-left strut 75 are disposed opposed to the rear plate 72 in the lower frame 70. The lower-right strut 74 and the lower-left strut 75 are disposed opposed to each other in the direction orthogonal to the direction of movement of the sheet cassettes 11a to 11c and the vertical direction.
Next, the configuration of the casters 90a to 90e will be described.
The casters 90a to 90e are similar in configuration, and thus the caster 90d will be described exemplarily. As illustrated in
As illustrated in
The vicinities of the corner portions 71a1 to 71a4 of the bottom face 71v of the bottom plate 71 in which the casters 90a, 90b, 90d, and 90e are disposed mean the following positions. As illustrated in
The caster 90c (third caster) is attached near the side 71b3 (second side) opposed to the side 71b1 (first side) connecting the corner portion 71a1 and the corner portion 71a2 of the substantially quadrangular bottom face 71v of the bottom plate 71. The vicinity of the side 71b3 of the substantially quadrangular bottom face 71v of the bottom plate 71 in which the caster 90c is disposed means the following position. That is the pivot 90c2 of the caster 90c is disposed inside any of the regions E3, E6, and E9 as the region of the column closest to the side 71b3, among the regions E1 to E9 illustrated in
The caster 90c is disposed such that the barycentric position G of the image forming apparatus is located inside the triangle T formed by imaginary lines T1 connecting the casters 90a, 90b, and 90c. Specifically, the caster 90c is disposed such that the barycentric position G is located on the bisector T2 of the angle θ1 between the imaginary line connecting the casters 90a and 90c and the imaginary line connecting the casters 90b and 90c. Such disposition of the caster 90c causes the barycentric position G to remain easily inside the triangle T even in a case where the barycentric position G changes due to a change in the amount of sheets S housed in each of the sheet cassettes 11a to 11c or a change in the amount of toner in a toner bottle, not illustrated, which houses toner.
Note that, in the present embodiment, the barycentric position G of the image forming apparatus A is measured with each toner bottle, not illustrated, filled with toner to be supplied to the corresponding developing device 4 and the sheet cassettes 11a to 11c each housing no sheet S. In the present embodiment, the barycentric position G of the image forming apparatus A deviates from the center position W of the image forming apparatus A. In the present embodiment, the triangle T is formed by the imaginary lines T1 connecting the centers of pivoting of the casters 90a, 90b, and 90c.
As illustrated in
Such three-point installation of the image forming apparatus A with the three casters 90a to 90c on an installation face causes, even in a case where the installation face is minutely uneven, the casters to remain on the installation face. Thus, the image forming apparatus A can be installed along the installation face. The three casters 90a to 90c are disposed in balance such that the triangle T involves the barycentric position G of the image forming apparatus A, so that the three casters 90a to 90c receive load equally easily. Therefore, any unintended portion in the bottom plate 71 is inhibited from being given an excessive force. Thus, the bottom plate 71 is inhibited from deforming, so that the support members, such as the rear plate 72, which support the image forming unit 10, are inhibited from deviating in position. Thus, deterioration is inhibited from occurring in the relative positional accuracy between each member included in the image forming unit 10, so that deterioration can be inhibited from occurring in image quality.
For example, in a case where the user weighs down the image forming apparatus A, giving a load unexpected in normal use to the periphery of the corner portion 71a3 of the bottom face 71v of the bottom plate 71, the periphery of the corner portion 71a3 falls downward, so that the casters 90a and 90b intend to be away from the installation face. That is the entirety of the image forming apparatus A intends to slant. In a case where the periphery of the corner portion 71a4 of the bottom face 71v of the bottom plate 71 is given a load unexpected in normal use, the same applies. In either of the cases, because the casters 90d and 90e outside the triangle T are disposed closer to the side 71b3 than the barycentric position G of the image forming apparatus A in the direction of arrow X and are disposed differently from the caster 90c in the direction of arrow Y, the corresponding caster 90d or 90e comes in contact with the installation face. Thus, the corresponding caster 90d or 90e functions as an auxiliary wheel and receives repulsive force from the installation face, to inhibit the image forming apparatus A from slanting. Therefore, the image forming apparatus A can be inhibited from being unstable in attitude. Note that even a configuration in which one of the casters 90d and 90e is provided enables acquisition of an effect of inhibiting the image forming apparatus A from being unstable in attitude.
Due to the following reason, the caster 90c can be disposed between the caster 90d and the caster 90e in the direction of arrow Y.
Note that, in the present embodiment, in the direction of arrow X, the casters 90d and 90e are disposed closer to the side 71b3 of the bottom face 71v of the bottom plate 71 than the caster 90c is. However, any configuration in which the casters 90d and 90e are disposed closer to the side 71b3 than the barycentric position G of the image forming apparatus A at least in the direction of arrow X enables inhibition of the image forming apparatus A from slanting, with the casters 90d and 90e each functioning as an auxiliary wheel. As the casters 90d and 90e are closer to the side 71b3, the image forming apparatus A is more easily inhibited from slanting. Therefore, the casters 90d and 90e can be disposed such that part of each of the casters 90d and 90e overlap part of the caster 90c in the direction of arrow X.
As illustrated in
In the present embodiment, the caster 90d and the caster 90a are disposed identically in position in the direction of arrow Y. However, the caster 90d may be disposed closer to the side 71b2 of the bottom face 71v of the bottom plate 71 than the caster 90a is. Thus, when the image forming apparatus A is moved in the direction of arrow Y to get over a step, the caster 90d hits the step before the caster 90a hits the step, so that impact to be given to the caster 90a can be reduced.
In the present embodiment, the caster 90e and the caster 90b are disposed identically in position in the direction of arrow Y. However, the caster 90e may be disposed closer to the side 71b4 of the bottom face 71v of the bottom plate 71 than the caster 90b is. Thus, when the image forming apparatus A is moved in the direction of arrow −Y to get over a step, the caster 90e hits the step before the caster 90b hits the step, so that impact to be given to the caster 90b can be reduced.
In the present embodiment, the arrangement of each member supported by the upper frame 50 or the lower frame 70 can be changed appropriately. For example, as illustrated in
As above, in a case where the arrangement of a member which is supported by the upper frame 50 or the lower frame 70 is changed, the barycentric position G of the image forming apparatus A changes. For example, as illustrated in
In this case, as illustrated in
As illustrated in
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2020-086348, filed May 15, 2020, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2020-086348 | May 2020 | JP | national |