Active pixel sensors, such as described in U.S. Pat. No. 5,471,215, enable acquisition of images at relatively higher rates. Different pixel circuits have been designed which enable acquiring images at even higher rates. This can enable obtaining image information after a short time of integration, and hence allow very fast snapshots to be taken with such a sensor. The integration times for such a sensor may be considerably shorter than the time it takes to read out a frame, called the “frame readout time”. Fast-moving images, therefore, are effectively frozen in time.
A limit on the speed of such a system may be set by the time it takes to read out the entire active pixel array, which may include more than one million pixels. This read out time is typically at least 100 times the length of the frame integration time.
The inventors have found that the relatively long read out time may prevent capturing multiple images at short time separations. The present application teaches a technique of dividing certain kinds of resolution of the image into multiple different read out images, in order to obtain faster image read out.
These and other aspects of the invention will be described in detail with reference to the accompanying drawings, wherein:
The active pixel sensor includes a plurality of pixels such as 104. Each pixel includes a photoreceptor 120, e.g., a photodiode or a photogate, and a control part 122. The control part may include an in pixel follower circuit 124, and a pixel selector circuit 126. The selector circuit is actuated in order to couple charge from the pixel 102 to an output line shown as 128.
A standard frame shutter operates by controlling each of a plurality of timing lines for each row of the active pixel sensor simultaneously. The integration time for each row becomes identical.
The present system operates in a,.different way. The pixels are divided into groups. In the embodiment of
A controller 110 controls the integration and read out. The row drivers within the controller 110 operate to allow one set of timing for the even grouped pixels 102,106. As shown, the readout line 112 controls all of the even grouped pixels at the same time.
A separate timing, controlled by readout line 114, is used for the odd grouped pixels.
After each integration time, the results are read out using the standard CMOS active pixel sensor row-wise operation. The read out image includes two interleaved images. Each interleaved image has half of the vertical resolution of the sensor, but occurs at a much faster readout time.
The two interleaved images are coupled to an image processor 200, which can be a processor that separates the two images using software to separate the even-based image from the odd-based image.
An alternative provides a modified readout control in the controller 110. In this modified system, first the even group is read out, then the odd group. This directly produces the two interleaved images, and eliminates any need for later reconstruction of the two images.
The
In this embodiment, the readout can occur in the order of the images, that is in the order 0, n, 2n . . . . for the first image, then 1, n+1, 2n+1 . . . in order to allow the multiple images to be read out sequentially. When read out in this way, the first resolution divided image will be obtained first, followed by the second resolution divided image.
Alternatively, the
Although only a few embodiments have been disclosed in detail above, other modifications are possible. All such modifications are intended to be encompassed within the following claims.
Other embodiments are within the disclosed invention.
This application claims the benefit of the U.S. Provisional Application No. 60/184,202, filed on Feb. 22, 2000.
Number | Date | Country | |
---|---|---|---|
60184202 | Feb 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09792292 | Feb 2001 | US |
Child | 11490523 | Jul 2006 | US |