The present invention relates to mounting a solar module on a support surface and in one of its aspects relates to a system and an installation method installing solar modules onto an existing roof of a building without compromising or modifying the waterproof and/or fire resistance of the roof.
In recent years, considerable advances have been made in using photovoltaic cells or the like to directly convert solar energy into useful electrical energy. Typically, a plurality of photovoltaic cells are encased between a transparent cover sheet (e.g. glass, plastic, etc.) and a backsheet, to form flat, rectangular-shaped modules (sometimes also called “laminates”) of a manageable size (e.g. 2½′×5′). While some modules may be “unframed”, most manufacturers now provide frames around the peripheries of the modules to thereby increase the stability of the modules and to aid in the installation of the modules.
While several different installation techniques have been proposed, typically, a framed module is secured on a roof by fasteners (e.g. lag bolts, screws, etc.) which have to penetrate and pass through the existing roofing material. This can compromise the waterproof and/or fire resistance qualities of the roof and result in, for example, leaks.
Further, the positioning of a solar module or an array of several modules is effectively limited to spots on the roof which are adequately supported by a framing member (e.g. a rafter) or roofing material strong enough to properly receive and retain the lag screws over the operational life of the array. This can create problems where the roof is singled over slats or where the decking material is comprised of thin plywood, chipboard, or the like. Also, this may require an array to be positioned in a less desirable aesthetical or operational area on a particular roof.
Still further, the installation of arrays of framed modules can be relatively tedious and time consuming. That is, the task of (a) aligning two, relatively bulky and weighty modules, aligning the respective openings in adjacent frames, and (b) holding them in position while threading a lag screw or the like through the aligned openings and into and through the roof can be a difficult task for a single installer.
All of the above problems are magnified when an array of modules is to be installed onto a particular roof which is comprised of relatively thick or contoured units, (e.g. curved tiles, slabs of slate, etc.; hereinafter collectively called “tiles”). In addition to the time involved, the drilling of holes through slate or concrete or ceramic tiles for lag screws or the like presents the real problem of cracking or otherwise damaging that tile(s). As will be recognized, this can lead to substantial delays and increased costs due to need to replace the affected tiles before the installation can be completed.
Also, “tiled” roofs present an additional problem in that, the “flat” frame of a typical module will not lie flat on the tiles since it normally spans more than one row of the relative thick tiles. Accordingly this presents a real problem in securing the frame; hence the module, to the roof. Attempts to do so, if it can be done at all, can be labor intensive and the result may not be sufficiently aesthetically appealing to all viewers.
Since the total cost of any solar array includes its installation costs, any savings in time and man power needed in mounting the array, especially on existing tiled roofs, become important considerations in the use of solar energy over more conventional sources. Further, if the exact placement of an array is not limited to certain locations on the roof, the final appearance of the array can be made more esthetically pleasing which can also aid in the marketing of renewable, solar power to the public.
The present invention provides a framed, solar module of photovoltaic (PV) cells and a method for installing a solar array of framed modules on a support surface such as a roof of a building without requiring the use of any roof penetrating fasteners which might compromise the waterproof and fire resistance integrity of the roof.
More specifically, in one embodiment of the module of the present invention is comprised of one or more PV cells which are encased in a frame whose sides are contoured to basically conform with the contour of an inclined roof which has been surfaced with tiers roofing material, preferably a relatively thick roofing material such as, for example, concrete or ceramic, curved tiles. This allows the modules to lie substantially flat on the roof which simplifies installation and gives a pleasing appearance when the installation of the solar array is completed.
The array is installed with one or more front brackets, each having a clip portion and a face portion. Each front bracket is first manipulated between two adjacent overlapping tiers of tiles which will lie at the lower edge of the first or uppermost module in the array when the module is installed. The front bracket is pushed rearward between the tiles until the clip portion drops in behind the rear edge of the lowermost of the two tiers. The bracket is then positioned horizontally and pulled forward to pull the clip portion into engagement with the rear of the tile to thereby secure the bracket in place with the face of each front bracket extending upwardly.
Next, the first (i.e. uppermost) module in a row of the array is positioned on the tiles above the front brackets and is lowered onto the tiles whereby the front of the module can be attached to the front brackets. One means for attaching the module to the brackets involves lowering the module over the bracket so that the faces of the front brackets will lie just inside the front edge of the frame of the uppermost module. A threaded fastener (e.g. a bolt or the like) is passed through an opening the front of the frame and is threaded into an opening in the face of the front bracket. By tightening the bolt, the frame will be drawn towards the secured bracket thereby securing the module to the bracket and at the same time, forcing the contoured sides of the frame into good contact with the edge between the overlapping tiles.
If not installed at the same time as the first set of front brackets is installed, a second set of front brackets is then installed between two overlapping tiers of tiles which lie below the first module and which will lie adjacent the lower edge of a second module. The above-described procedure is repeated until all of the modules in the first row of the array are installed. If the array is to consist of more than one row of inclined modules, the second, third, etc. rows of modules will be installed as described above.
The uppermost module in each row of an array has at least one back bracket attached to the back of the frame. The back bracket is comprised of a clip portion similar to that of the front brackets and a surface to attach the back bracket to the underside of the rear of the frame. Preferably, the back brackets are attached to and are manipulated into position as the uppermost module is positioned onto the roof. As before, the brackets are moved inward until the clip portion drops below the edge of the tile in the uppermost tier and then pulled forward as the module is positioned so that the clip portion will engage the rear of the tile to there further secure the uppermost module against downward movement on the inclined roof.
The actual construction operation, and apparent advantages of the present invention will be better understood by referring to the drawings, not necessarily to scale, in which like numerals identify like parts and in which:
While the invention will be described in connection with its preferred embodiments, it will be understood that this invention is not limited thereto. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalents that may be included within the spirit and scope of the invention, as defined by the appended claims.
Referring now to the drawings,
Array 10 is comprised of a plurality (only two shown) of solar modules 12a, 12b, which have been positioned on and secured to the roofing material 13 without the need for fasteners (e.g. lag screws) penetrating the roofing material thereby maintaining the waterproof and fire resistance qualities of the roof. As will be fully understood in the art, a typical solar module 12 is formed by positioning a plurality of photovoltaic (PV) cells 15 (only a few numbered in
To complete the module 12, the assembled PV cells 15 are encased within a frame 17 which can be of metal, molded plastic, or other suitable material. Frame 17 has a front or lower edge, a back or upper edge, and two sides. As shown, the sides of the frame are formed with a contoured profile (17a in
After the modules 12 are assembled within their frames 17, the modules are then installed onto roof 11. The present invention allows the modules to be installed at almost any position on the roof since no screws, nails, bolts, or the like are used to affix the modules on the roof. Accordingly, the positioning of the modules are not restricted to areas overlying support members such as rafters, as is typically the case with prior installation techniques.
In accordance with the present invention, the modules 12 are secured to a tiled roof 11 with front brackets 20, as will be explained in detail below. Basically, the front brackets 20 are adapted to engage the rear edge of tiles in a particular tier and to the module to thereby secure the module in place and to keep it from moving downward on the roof. Where the module is to be the uppermost module in an array, a second set of brackets 19 are attached to the rear of the module and are adapted to engage the rear edge of a higher tier of tiles as will be more fully explained below.
While each bracket 20 may have a slightly different configuration depending on a particular roof, each bracket preferably has a (a) face portion 25 which is adapted to be attached to the inner side of the front edge 17b (
An installer manipulates the clip portion 26 of each front bracket 20 between the overlap of two adjacent tiers of tiles through, for example in the case of a curved tile, the respective, curved portions (i.e. channels 40, only numbered in
Next, the first or uppermost module 12a to be installed in the array 10 is positioned at the uppermost point of the array and the front of frame 17 is attached to each of the front brackets 20. While various means can be used to attach the frame to the brackets, preferably as illustrated, the front of frame 17 is lowered over the faces 25 of front brackets as best seen in
A second set of front brackets 20b are then manipulated into place behind a lower tier of tiles 14d (
As mentioned above, one or more back brackets 19 are also attached to the rear of a module on those modules which are to form the uppermost modules (i.e. 12a) in each, individual row of an array (only one row with two modules shown). Back bracket 19 is preferably comprise (a) a surface 21 which is adapted to be secured to the underside of the rear of module 12a and (b) a clip portion 22 which is adapted to engage the rear edge 31 of tile 14a, much in the same way as described above. In installing a first module 12a, back bracket(s) 19 is preferably secured to the rear of module 12a and is manipulated into place behind edge 31 of tile 14a as the module is being positioned. Once the clip portion 22 of bracket 19 is in place, the frame 17 of module 12a is lowered onto the tiles and the pre-positioned front brackets 20 are secured thereto to complete the installation of that module.
The above described process is repeated until all of the modules have been installed. Since no fasteners are needed which penetrate the tiles, the waterproof and fire integrity of the roof remains unaffected, regardless of the size or position of the array. Also, since no drilling or like is required, the real possibly of damage to the tiles is eliminated. Still further, the finished array presents a pleasing appearance when the installation is complete.
This application claims the benefit of priority from U.S. Provisional Patent Application No. 60/955,410, filed Aug. 13, 2007, and U.S. Provisional Patent Application No. 60/973,785, filed Sep. 20, 2007, the entirety of which is expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60973785 | Sep 2007 | US | |
60955410 | Aug 2007 | US |