This invention is drawn to the field of movable closures, and more particularly, to a novel frameless window module.
Wood stud frame walls of buildings or other structures include a longitudinally-extending cap piece at the top (typically two 2 by 4's), a longitudinally-extending sole plate at the bottom (typically one 2 by 4), and a continuous run of upstanding studs (typically 2 by 4's) interconnecting the cap piece and sole plate. Such walls are typically used in modular or prefab construction, new “on-site” construction and/or in the walls of already-existing homes or other buildings or structures.
A portion of one or more studs is usually cut-out of the wood stud frame to provide an opening thereinthrough to receive a window. The portion remaining above the opening of the one or more studs that have been cut is no longer capable of bearing loads, and a longitudinally-extending header (typically two 2 by 6's or 2 by 8's), connected thereto and to the longitudinally-adjacent uncut studs, is employed to distribute the load to the adjacent studs. A longitudinally-extending bottom piece (typically two 2 by 4's) is connected to the portion of the one or more cut studs remaining below the opening and to the longitudinally-adjacent uncut studs.
A window box is mounted in the opening provided by the header and bottom piece at each location in the wood stud frame wall where window receiving openings have been provided. Typically, the window box includes a casing by which it is attached to the wood stud frame wall when it is mounted in the opening, and a sash, sill and weather-stripping; one or more shims may be employed between the bottom piece and the window box to provide proper alignment.
Not only is the load bearing capability of the studs impaired and structural modifications to the frame required to provide support for each opening that receives a window box, but also, once a window box is inserted into an opening, the natural insulation properties of the wood stud frame wall are lost and there is heat loss between the window box/support interface.
Accordingly, it is one object of the present invention to disclose a frameless window module providing operable windows of any length in a wood stud frame wall without compromising the studs' load bearing capability.
It is another object of the present invention to disclose a frameless window module that utilizes the natural insulation properties of a wood stud frame wall to provide insulation.
It is a further object of the present invention to disclose a frameless window module that utilizes and controls the natural insulation properties of a wood stud frame wall to provide a variable-insulation aperture.
It is another object of the present invention to disclose a frameless window module providing operable windows in modular construction wood stud frame walls, new “on-site” construction wood stud frame walls and in already-existing walls of wood stud frame construction.
In accord therewith, and in broad terms, the present invention contemplates a frameless window module for a wood stud frame wall having opposing interior and exterior surfaces and a continuous run of studs, that includes a pair of glazing members each adapted for exterior mounting to opposing sides of the wood stud frame wall for motion between open and closed positions. When both glazing members of a module are moved to their open positions, an opening (for ventilation or viewing) is provided through the wood stud frame wall that is interrupted by the number of included studs of the continuous run of studs thereof, and when both glazing members of a module are moved to their closed positions, insulation is provided by the air interspace between the included studs captured therebetween. Operable windows of any length may be provided in modular construction, new “on-site” construction and in already-existing walls of wood stud frame construction in dependence on the number of modules arrayed.
The glazing members of the pair of glazing members of the frameless window module of the present invention each preferably include a pivot hinge subassembly adapted for exterior mounting to a corresponding one of the opposing interior and exterior surfaces of the wood stud frame wall, preferably a lift-off pivot hinge subassembly, for mounting that glazing member for pivoting motion towards and away from the corresponding one of the opposing interior and exterior surfaces of the wood stud frame wall. Although pivot hinges are preferred and lift-off pivot hinge subassemblies are easy to construct, allow pop-in and removal of each glazing member without the need for fasteners and are easy to maintain and to replace, any mechanism adapted for exterior mounting to opposing sides of the wood stud frame wall for motion between open and closed positions could be employed without departing from the inventive concepts.
An interconnection hinge subassembly coupled to each glazing member of the pair of glazing members is responsive to the pivoting motion of one glazing member towards and away from the corresponding one of the interior and external surfaces of the wood stud frame wall to cause pivoting motion of the other glazing member towards and away from the other one of the opposing interior and exterior surfaces of the wood stud frame wall. In this manner, the glazing members of a frameless window module in accord with the present invention move together in concert in a “butterfly” fashion between their open and closed positions. The interconnection hinge subassembly may be adapted to apply compressive pressure that securely locks the glazing member pivotally mounted to the exterior surface in its closed position.
Seals and cooperative seal-seats seal the lateral and longitudinal edges of the one or more frameless window modules when the glazing members thereof are in closed position to provide insulation. The seals may be of felt, neoprene or magnetic or other material. Pneumatic gaskets (and cooperative gas manifold and controller) may be employed for controlling the degree of seal of one or more frameless window modules when the glazing members thereof are in closed position to provide one or more variable-insulation apertures.
In one presently preferred embodiment, each glazing member includes a first glass pane adhesively laminated in laterally offset relation to a second glass pane defining flanges to either side thereof, and edge plates adhesively mounted to each of the flanges. A strip seal, and strip seal and closure hardware, are respectively mounted to one of the edge plates, and pivot rods and one or more interconnection hinges, are mounted to the other edge plates of each module. End terminations are provided for end (or single) frameless window modules. In another presently preferred embodiment, each glazing member of a module is constituted by a single glass pane, mounted in a generally rectangular sash that is pivotally mounted to a casement, which, in turn, is adapted for exterior mounting to the wood stud frame wall.
In another embodiment of the frameless window module of the present invention, only a single glazing member adapted for exterior mounting to the exterior surface of the wood stud frame wall for pivoting motion between open and closed positions may be employed to provide egress in emergency or other situations.
The principles of the present invention have application to frameless integument modules in general, such as doors, awnings and the like.
These and other objects, inventive aspects and advantageous features of the frameless window module of the present invention will become apparent as the invention becomes better understood by referring to the following, solely exemplary, detailed description of the presently preferred embodiments, and to the drawings, wherein:
Referring now to
Each frameless window module 12 includes a pair of glazing members generally designated 26, 28 to be described adapted for exterior mounting to opposing sides of the wood stud frame wall 14 for motion between open and closed positions. In their open positions illustrated, an opening (for ventilation or viewing) is provided through the wood stud frame wall 14 that is defined by the framing members 22, 24 and boundary studs, and that is interrupted by the included stud(s) of the continuous run of studs 20. As will readily be appreciated, boundary studs may need attachment for new “on-site” construction, and boundary studs and/or framing members may need attachment for already-existing wood stud frame walls, depending on the specific location and wall configuration of each actual application environment. In their closed positions illustrated, the air of the interspace between the headers and boundary and included studs captured therebetween provides insulation. As in other embodiments herein described, weep holes, not shown, are provided between laterally adjacent modules to allow air pressure equalization within the wall cavity to be distributed throughout the window/wall assembly. This produces an insulating air plenum that has the added benefit of preventing condensation. As appears more fully below, the insulating airspace may be regulated in a manner to be described to provide a variable-insulation aperture.
Each glazing member 26, 28 is of a laminated construction to be described exteriorly mounted to the wood stud frame wall 14 by upper and lower pivot hinges generally designated 30, 32 to be described for pivoting motion towards and away from a corresponding one of the opposing sides of the wood stud frame wall 14 between closed and open positions. Although laminated glazing members adapted for exterior mounting to opposing exterior surfaces for pivoting motion are presently preferred, it will be appreciated that glazing members of the same or of another configuration adapted for exterior mounting to opposing sides of a wood stud frame wall for pivoting motion between open and closed positions may be employed without departing from the inventive concepts.
Referring now briefly to
Upper and lower pivot hinges generally designated 60, 62 are threadably or otherwise fastened to the edge plates 54 of each glazing member 42, 44. The upper pivot hinges 60 include an angle bracket 64 supporting a comparatively-longer pivot rod 66, and the lower pivot hinges 62 include an angle bracket 68 supporting a comparatively-shorter pivot rod 70. The pivot rods 66, 70 of the upper and lower hinges 60, 62, together with rotary bearings provided by upper and lower angle brackets exteriorly mounted to the wood stud frame wall, not shown, provide lift-off pivot hinges.
A pair of upper and lower interconnection hinges generally designated 72, 74 are threadably or otherwise fastened to the edge strips 54 of each glazing member 42, 44 of the frameless window module 40. Each of the interconnection hinges 72, 74 includes a pair of angle brackets 76, 78 threadably or otherwise fastened to the edge strip 54 of the glazing member 42 and a pair of angle brackets 80, 82 threadably or otherwise fastened to the edge strip 54 of the glazing member 44. A plate 84 having an elongated slot generally designated 86 is threadably or otherwise attached between the angle brackets 76, 78, and a pair of plates 88, 90 having aligned openings generally designated 92, 94 are threadably or otherwise fastened respectively to the angle brackets 80, 82, with the plate 84 captured between the plates 88, 90 of each of the interconnection hinges 72, 74. A pin 96 is passed through the openings 92, 94 of the plates 88, 90 and slot 86 of the plate 84. An insulating washer 98 is provided around the pin 96 between the plate 88 and the plate 84, and an insulating washer 100 is provided around the pin 96 between the plate 90 and the plate 84 of each of the interconnection 72, 74.
In operation of the interconnection hinges 72, 74, whenever window locking hardware generally designated 102 is unlocked and the glazing member 44 is pivotally moved on the pair of upper and lower pivot hinges 60, 62, the interconnection hinges 72, 74 respond to the pivoting motion of the glazing member 44 to cause the glazing member 42 to pivotally move in concert therewith. As the glazing member 44 is pivotally moved, the pin 96 carried by the aligned apertures 92, 94 of the plates 88, 90 of each interconnection hinge 72, 74 traces an arc, which, because it is captured in the elongated slot 86 of the plate 84 of each interconnection hinge 72, 74, causes the glazing member 42 to pivotally move in concert therewith in “butterfly” fashion. The insulating washers 98, 100 help prevent thermal conduction through the interconnection hinges 72, 74.
Although interconnection hinges are presently preferred, it will be appreciated that any means responsive to pivoting motion of one glazing member to cause the other glazing member of a module to pivotally move in concert (in- or out-of-phase) therewith could be employed without departing from the inventive concepts.
The window locking hardware 102, that may be of any suitable configuration, is mounted to the edge strip 56 of the glazing member 44, and seal gaskets 104 are adhesively or otherwise fastened to the edge plates 56 of each of the glazing members 42, 44 of the frameless window module 40. As shown in
Returning now to
Referring now to
Referring now to
In operation, when the handle 154 is used to pivot the plate 148 inwardly, the motion thereof is communicated through the interconnection hinges 156, 158 to the single glazing member 142, which pivotally moves in concert therewith.
Frameless window modules in accord with the present invention may be provided for installation in new “on-site” construction or in already-existing walls of wood stud frame construction, or may be provided already installed in modular or prefabricated walls of wood stud frame construction, without departing from the inventive concepts.
Referring now to
Each frameless window module 162 includes a generally rectangular casement 164 adapted for exterior mounting to opposing sides of a wood stud frame wall, not shown, and a generally rectangular sash 166 mounted to the casement 164 for pivoting motion between open and closed positions via a lift-off pivot hinge subassembly generally designated 168. The lift-off pivot hinge subassembly of each module includes pivots 172, 174 provided on the sash 166 and pivot races 176, 178 provided on the casement 164. The race 178 of each lift-off pivot hinge subassembly is spaced above the casement 164 a distance larger than the extension of the pivot 172. To insert a sash into its casement, pivot 174 is inserted in race 178, the sash is lifted up through the offset provided by the race 178, and then lowered to seat pivot 172 in its race 176 (the process is reversed for removal, not separately described herein for the sake of brevity of explication). An interconnection hinge subassembly generally designated 180 to be described attached to the sashes of each frameless window module is adapted to cause the glazing members of each module to move in concert in a “butterfly” manner between open and closed positions respectively illustrated in
Referring now to
With reference now to
Many modifications and/or alternate embodiments of the frameless window module of the present invention will become apparent to those of skill in the art without departing from the inventive concepts.
Number | Name | Date | Kind |
---|---|---|---|
1586776 | Warner | Jun 1926 | A |
2000366 | Victor | May 1935 | A |
2226274 | Winship | Dec 1940 | A |
2286899 | Crescentini | Jun 1942 | A |
2434859 | McLoughlin | Jan 1948 | A |
2519998 | Burns | Aug 1950 | A |
2583627 | Burns | Jan 1952 | A |
3357136 | Marantier | Dec 1967 | A |
3631629 | Bercheux | Jan 1972 | A |
3660940 | Tavano | May 1972 | A |
3676955 | Schacht | Jul 1972 | A |
3791074 | Waffenschmidt | Feb 1974 | A |
3961821 | Mistopoulos, Jr. | Jun 1976 | A |
4004629 | Kelly | Jan 1977 | A |
4248018 | Casamayor | Feb 1981 | A |
4637299 | Harding | Jan 1987 | A |
4817354 | Bayer | Apr 1989 | A |
4875308 | Peetz et al. | Oct 1989 | A |
5116274 | Artwohl et al. | May 1992 | A |
5400557 | Glover | Mar 1995 | A |
5483770 | Marinoni | Jan 1996 | A |
5533314 | Kunert | Jul 1996 | A |
5737885 | Stoyke | Apr 1998 | A |
5806256 | Byrne | Sep 1998 | A |
5832666 | Flack et al. | Nov 1998 | A |
5937611 | Howes | Aug 1999 | A |
6155009 | Pena | Dec 2000 | A |
6244778 | Chesbrough | Jun 2001 | B1 |
6378248 | Jordal | Apr 2002 | B1 |
6412225 | McManus | Jul 2002 | B1 |
6519903 | Dirisamer et al. | Feb 2003 | B1 |
6823626 | Kinsey | Nov 2004 | B2 |
Number | Date | Country |
---|---|---|
WO 9801648 | Jul 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20030051421 A1 | Mar 2003 | US |