1. Field
The present invention relates to power driven cycles, and more specifically, to frames for electric motor driven cycles.
2. Background
Recently, due to the shortage of gasoline and the ecological consequences of such use, various proposals have been created dealing with alternative power sources for motor vehicles. One of the most popular and promising proposals relates to electric powered vehicles. The difficulty encountered with electric powered vehicles, however, is the inability to deliver sufficient power for long-range operation without utilizing an extremely large number of heavy batteries. This is due largely to the weight requirements of conventional automobiles. The cycle, on the other hand, is substantially lighter than the automobile, and therefore, tends to have significantly lower power requirements. As a result, cycles, such as motorcycles and bicycles, are ideal for electric power applications.
Conventional electric motor driven cycles have typically employed heavy tube frame structures with an array of brackets to support the batteries and the electric motor. This construction often results in a mass fraction for the electric motor driven cycle that is less than optimal. “Mass fraction” refers to the percentage that the batteries contribute to the overall weight of the electric motor driven cycle. Increased performance in terms of extended range can often be obtained by increasing the mass fraction. One way to increase the mass fraction is to reduce the weight of the frame. This tends to increase the range of the electric motor driven cycle for a given battery weight. Accordingly, a lightweight frame construction is needed with sufficient rigidity to support the weight of the batteries and motor.
In one aspect of the present invention, an electric motor driven cycle includes front and rear wheels, a monocoque frame suspended between the front and rear wheels, and electric motor coupled to one of the wheels, the electric motor being a load-bearing member of the frame.
In another aspect of the present invention, an electric motor driven vehicle includes front and rear wheels, a monocoque frame suspended between the front and rear wheels, a handle bar extending from the frame, and an electric motor coupled to one of the wheels, the electric motor being a load-bearing member of the frame.
It is understood that other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description, wherein it is shown and described only exemplary embodiments of the invention by way of illustration. As will be realized, the invention is capable of other and different embodiments and its several details are capable of modification in various other respects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
Aspects of the present invention are illustrated by way of example, and not by way of limitation, in the accompanying drawings, wherein:
The detailed description set forth below in connection with the appended drawings is intended as a description of exemplary embodiments in which the present invention can be practiced. The term “exemplary” used throughout this description means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments. The detailed description includes specific details for the purpose of providing a thorough understanding of the present invention. However, it will be apparent to those skilled in the art that the present invention may be practiced without these specific details. In some instances, well-known structures and devices are shown generally in order to avoid obscuring the concepts of the present invention.
The monocoque frame 104 has a lightweight construction with sufficient rigidity to support the internal components. As a result, the mass fraction of the electric motor driven cycle 102 can be optimized for higher performance in terms of extended range capability. In addition, the monocoque frame provides a high degree of design flexibility with respect to the location of the internal components within the frame. As a result, the designer can strategically position the internal components for optimal performance. By way of example, the batteries 108a and 108b can positioned within the frame 104 to provide good weight distribution to improve handling during operation. The electric motor 106 can be positioned within the frame 104 to optimize power delivery to the electric motor driven cycle 102. The electric motor 106 can also be strategically positioned to provide a structural support member for the frame. In the exemplary embodiment of
The frame 104 can be coupled to a front wheel 112 with a front fork assembly 114. The front, fork assembly 114 includes a bifurcated member 116 with right and left spring loaded damping tubes 118a and 118b extending downward to form a front fork. The axle of the front wheel 112 can be inserted into the front fork. A steered tube 120 extending upward from the center of the bifurcated member 116 can be rotatably inserted through the frame 104 with upper and lower bearings (not shown). Right and left cross-members 122a and 122b can be secured to the frame 104 to prevent buckling due to compressive loading between the two bearing points. A clamp 124 can be used to couple the steered tube 120 to a handle bar 126.
The frame 104 can be coupled to a rear wheel 128 with a rear suspension system 130. The rear suspension system 130 includes a swing arm 132 connecting the axle of the rear wheel 128 to the drive shaft of the motor 106. Alternatively, the swing arm 132 can be connected between the frame 104 and the rear wheel axle. A shock absorber 134 can be connected across the frame 104 and the swing arm 132 to absorb the energy produced by sudden bumps in the road.
Power can be delivered to the rear wheel 128 with a belt drive assembly between the electric motor 106 and the rear wheel 128. A drive belt 135 can be connected between a toothed pulley 136 at the end of the motor drive shaft and a toothed drive wheel 138 extending from the rear wheel axle. The toothed configuration of both the pulley and drive wheel tends to reduce slippage during rapid accelerations and decelerations. A drive belt can be used instead of a drive chain in applications where noise suppression is desirable. In applications where the swing arm 132 is connected between the frame 104 and the rear wheel axle, an idler tensioner (not shown) may be used to regulate the tension of the drive belt 135 as the swing arm moves in response to sudden bumps in the road.
The frame can be constructed from a pair of machined metal sheets which are shaped and connected together to form a monocoque structure. An exemplary machined cut metal sheet for either the right or left side of the frame is shown in
As shown in
The machining of the metal sheet can be achieved in a variety of ways. By way of example, the sheet metal pattern can be formed by laser cutting, chemical machining, water jet cutting, electron beam cutting, or any other conventional machining method. Once the sheet metal pattern is formed, the metal sheet can be shaped by manually bending the tabs, or by using a hydroforming or similar process. Alternatively, a progressive die stamp process can be used to perform both the cutting of the metal sheet and the bending of the tabs in an automated fashion. Either way, the two shaped metal sheets can then be brought together to form the frame as shown in
The electric motor driven cycle 102 may also include a front fender 508 to house the bifurcated member 116 of the front fork assembly 114 (see
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles, defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
The present application is a continuation of co-pending patent application Ser. No. 10/698,535, filed Oct. 31, 2003, which is a continuation of patent application, application Ser. No. 10/147,630, filed May 16, 2002, now U.S. Pat. No. 6,691,813, the contents of which are expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 10698535 | Oct 2003 | US |
Child | 11146519 | Jun 2005 | US |
Parent | 10147630 | May 2002 | US |
Child | 10698535 | Oct 2003 | US |