Framework for classifying an object as malicious with machine learning for deploying updated predictive models

Information

  • Patent Grant
  • 10366231
  • Patent Number
    10,366,231
  • Date Filed
    Monday, June 26, 2017
    7 years ago
  • Date Issued
    Tuesday, July 30, 2019
    5 years ago
Abstract
According to one embodiment, an apparatus comprises a first analysis engine and a second analysis engine. The first analysis engine analyzes an object to determine if the object is malicious. The second analysis engine is configured to (i) receive results of the analysis of the object from the first analysis engine and (ii) analyze, based at least in part on the analysis by the first analysis engine, whether the object is malicious in accordance with a predictive model. Responsive to the first analysis engine and the second analysis engine differing in determinations as to whether the object is malicious, information associated with an analysis of the object by at least one of the first analysis engine and the second analysis engine is uploaded for determining whether an update of the predictive model is to occur. An update of the predictive model is subsequently received by the classification engine.
Description
2. FIELD

Embodiments of the disclosure relate to the field of cyber security. More specifically, one embodiment of the disclosure relates to a system, apparatus and method for automatically updating a classification engine that analyzes an object and determines whether the object is to be classified as malicious.


3. GENERAL BACKGROUND

Over the last decade, network devices that access the Internet or other publicly accessible networks have been increasingly subjected to malicious attacks. These malicious attacks may simply involve the use of stolen credentials by an unauthorized person in efforts to illicitly gain access to information stored within a network device. However, other malicious attacks may be more complex.


In general, malicious attacks may be carried out via an exploit or malware. An exploit is information that attempts to take advantage of a vulnerability in computer software or systems by adversely influencing or attacking normal operations of a targeted computer


For example, malicious attacks may involve malicious software that has been downloaded by the network device. In some situations, the victim is unaware that the malicious software has been downloaded and stored within her network device. In other situations, the victim is aware that the software has been downloaded, but is unaware of its malicious activity. After being stored on the victim's network device, malicious software may, by design, compromise the network device, for example, by employing an exploit to take advantage of a software vulnerability in the network device in order to harm or co-opt operation of the network device. For instance, the malicious software may (i) gain access to certain stored information and attempt to upload such information to a targeted Command and Control (CnC) server or (ii) establish connectivity between the network device to a remote computer in efforts to exfiltrate stored information.


New malicious software is released to the Internet regularly. The speed at which attackers revise the attacks of their malicious software through code modifications requires cyber security service providers to match this speed in revising detection capabilities for these threats. For a two-stage threat detection platform, which conducts both static and dynamic analysis of incoming data, a classification engine that classifies whether the data under analysis is “malicious” (e.g., a classification that identifies a certain likelihood that the data is malicious), needs to be regularly updated to remain effective.


The classification engine is responsible for classifying data as malicious or not based on whether such data includes one or more features that already have been determined to suggest maliciousness at an associated probability level. These features may include (i) a particular file size, (ii) presence of an attachment, (iii) format type (e.g., whether the file includes an executable, a portable document format “pdf” document, etc.), (iv) specific data patterns, (v) source of the file, and (vi) a structure of the file. Reliance on manually initiated updates for the classification engine tends to be problematic as these updates are not regularly provided, due to human error in some cases. A technique is needed that will automatically update the detection capabilities of the classification engine with a reduced update cycle time.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1 is an exemplary block diagram of a sequence of operations for a threat detection platform.



FIG. 2 is an exemplary block diagram of a communication system deploying one or more threat detection platforms (TDPs) communicatively coupled to a management system.



FIG. 3 is an exemplary block diagram of logic associated with the TDP of FIG. 2.



FIG. 4 is an exemplary block diagram of logic associated with the classification testing system of FIG. 2.



FIGS. 5A-5C are general exemplary flowcharts that illustrates operation conducted by an electronic device for determining and conducting an update of a classification engine.



FIG. 6 is an exemplary embodiment of an endpoint device including a security agent that conducts the classification engine update scheme as described in FIG. 1.





DETAILED DESCRIPTION

Various embodiments of the disclosure relate to a framework which, based upon the threats detected, periodically, aperiodically, or continuously updates a classification engine to better recognize the presence of malicious software and/or exploits (referred collectively referred to herein as “malware”) within analyzed objects. This framework features a training engine that, based on information associated with detected threats, automatically (and without user intervention) issues an alert when the classification engine requires updating. Once the alert is issued by the training engine, one or more parameters (e.g., particulars to an analyzed feature of the object, including score, weighting, string length, bit size, character type, etc.) within a predictive model are modified (e.g., added, deleted and/or changed). The “predictive model” is logic that controls the analysis conducted by a classification engine, and modification of the predictive model is conducted to reduce the number or rate of false negative events by the classification engine.


As described herein, the classification engine may be deployed for classifying an object as malicious or not malicious based on static analysis results, although inventive aspects set forth in the disclosure may also be employed to automatically update a classification engine operating on behaviors observed during run-time analysis or operating on both static analysis results and observed behaviors.


I. DETAILED SUMMARY

According to one embodiment of the disclosure, logic is provided to enhance operability of a classification engine by evaluating results in the analysis of an object by that classification engine operating in accordance with a current predictive model. This logic, referred to herein as a “training engine,” conducts this evaluation in order to determine whether the current predictive model needs updating to more accurately classify whether an object (e.g., any collection of data including a file, document, web page, etc.) is “malicious” (e.g., varying in degree from definitely malicious to a level where the object is suspected to be malicious, sometimes referred to as “suspicious”), or benign (non-malicious). Additionally, the training engine is configured to automatically generate an updated predictive model (hereinafter referred to as a “reference model”) based on actual feature(s) of the suspect object.


Herein, the type of triggering event that causes the feature(s) of the suspect object to be provided to the training engine may vary, depending on the desired involvement of the training engine in the modification of the classification engine. As an example, one triggering event may be based on identifying a disagreement as to whether an object under analysis is malicious between a detection engine and a classification engine within the same security appliance (herein referred to as a “threat detection platform”). The disagreement may be based on difference in the degree (or level) of detected “maliciousness” or “non-maliciousness” (e.g., malicious v. non-malicious, detected “malicious” levels differ, etc.). According to this embodiment of the disclosure, the detection engine and the classification engine correspond to the same analysis engine (e.g., static analysis engine or the dynamic analysis engine as illustrated in FIG. 2).


Another triggering event may be based on outputted results from a collective classification engine that receives results from one of more of the analysis engines (e.g., detection engines from the static analysis engine and/or the dynamic analysis engine). Herein, the collective classification engine generates a result that identifies, for reporting purposes, whether the object under analysis is malicious—the triggering event may occur when the result fails to accurately identify the level of maliciousness for that object. For example, the collective classification engine may determine a confidence score (X) that barely classifies the object as “malicious”, and the triggering event occurs when the confidence score (X) deviates from a predetermined confidence score (X+Y or X−Y) by a prescribed threshold (e.g., less than a maximum confidence score (X+Y) by the prescribed threshold (Z, Z<Y) or greater than a set confidence score (X−Y) by less than the prescribed threshold (Z, Z>Y)).


For instance, as an illustrative embodiment, the training engine may be deployed to receive features associated with a suspect object that is considered to be “malicious” by a detection engine. In this embodiment, deployed within a static analysis engine, the detection engine conducts static analysis such as exploit-specific checks, vulnerability-specific checks or rule-based checks or checks based upon emulation for example, to determine whether the analyzed object includes one or more features that suggest that the object is “malicious” (e.g., indicates that there exists at least a prescribed probability that the one or more features may be associated with a malicious attack).


Where the detection engine determines that the suspect object may include one or more malicious features, but the classification engine using the current predictive model for analysis classifies the object as non-malicious (e.g., assigns a confidence value that falls below a certain threshold), this denotes a potential false negative event. As a result, the threat detection platform transmits a control message to the training engine, where the control message may include (1) an identifier of the object (e.g., hash value of the object), (2) one or more suspect features of the object that can be used by the predictive model to classify the file as malicious, and/or (3) results from the preliminary classification of the suspect object by this platform-based classification engine (e.g., confidence values). Concurrently, where the disagreement between the detection engine and the classification engine occurs in the static analysis engine, the object and perhaps the results from the detection engine may be provided to a virtual execution environment within the threat detection platform for dynamic analysis.


Otherwise, when the object is determined to be malicious by both the detection engine and the (platform-based) classification engine associated with the static analysis engine, the object under analysis is provided to the virtual execution environment without initiating a triggering event.


Potentially located outside the enterprise and accessible by a cyber-security service provider, the training engine receives the identifier of the suspect object (e.g., hash value of the object) to determine if the object has been evaluated previously in accordance with the current predictive model. If not, the training engine may modify one or more parameters associated with the current predictive model to better detect those feature(s) associated with the suspect object that have been determined to be malicious by the detection engine as described above. This modification may involve altering parameters by changing certain values in a decision-tree analysis associated with the current predictive model, which produces an updated predictive (reference) model.


As an illustrative example, the modification of the current predictive model may include changing character string values associated with a name of the object, which may signify the object is malicious. These character string values may include, but are not limited or restricted to length or character types. Another modification may include increasing values (e.g., confidence scores) that are assigned to certain types of features to decrease the number (or rate) of false negative events, or may involve decreasing values assigned to certain types of features to reduce the number (or rate) of false positive events. Additionally, modification may further involve adding or deleting analytical operations from the decision-tree analysis of the current predictive model (e.g., adding/removing certain analysis, etc.).


Based at least in part on the results from the preliminary classification by the platform-based classification engine (e.g., confidence values), which over time identifies whether the current predictive model is ineffective or is becoming less effective in detecting malicious attacks, an alert is provided from the training engine to update a reference classification engine accessible by the cyber security service provider along with one or more platform-based classification engines with the reference model.


It is contemplated that the classification engines may be updated based on analysis and classificaiton of objects conducted by other security appliances (for a more holistic view of malware features) and of forensic work by expert analysts and laboratories. As a result, the reference model is not modified based solely on objects uploaded by a single security appliance.


II. TERMINOLOGY

In the following description, certain terminology is used to describe features of the invention. For example, in certain situations, both terms “engine,” “component” and “logic” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, engine (or component/logic) may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but is not limited or restricted to a microprocessor, one or more processor cores, a programmable gate array, a microcontroller, an application specific integrated circuit, wireless receiver, transmitter and/or transceiver circuitry, semiconductor memory, or combinatorial logic.


Engine (or component/logic) may be software in the form of one or more software modules, such as executable code in the form of an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent data store such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code is stored in persistent storage.


The term “object” generally refers to a collection of data, whether in transit (e.g., over a network) or at rest (e.g., stored), often having a logical structure or organization that enables it to be classified for purposes of analysis. During analysis, for example, the object may exhibit a set of expected features and, during processing, a set of expected behaviors. The object may also exhibit a set of unexpected features and a set of unexpected behaviors that may evidence malware and potentially allow the object to be classified as malware.


The term “model” generally refers to logic that is used in classifying an object under analysis as malicious or not. One type of model includes a predictive model, which may be logic in the form of a decision-tree based analysis in which parameters associated with the analysis or certain decisions may be modified in order to “tune” the analysis to improve performance.


The term “transmission medium” is a physical or logical communication path between two or more electronic devices (e.g., any devices with data processing and network connectivity such as, for example, a security appliance, a server, a mainframe, a computer such as a desktop or laptop, netbook, tablet, firewall, smart phone, router, switch, bridge, etc.). For instance, the communication path may include wired and/or wireless segments, and/or shared memory locations. Examples of wired and/or wireless segments include electrical wiring, optical fiber, cable, bus trace, or a wireless channel using infrared, radio frequency (RF), or any other wired/wireless signaling mechanism.


The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware.


Lastly, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.


The invention may be utilized for updating classification engines. As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.


III. CLASSIFICATION ENGINE UPDATE SCHEME

Referring to FIG. 1, an exemplary block diagram of a sequence of operations for threat detection within a system that is configured to detect malicious attacks is shown. The system 100 may broadly include a plurality of components, namely a processing engine 110, one or more analysis engines 115, a training engine 130, and a reference classification engine 140. According to this embodiment, the processing engine 110 and the analysis engine(s) 115 operate on a security appliance (referred to as “threat detection platform”) located within an enterprise while the training engine 130 and the reference classification engine 140 may operate as cloud computing services for example, may operate in a different enterprise, or may operate within the same enterprise as the processing engine 110 and analysis engine(s) 115.


Located in the threat detection platform 150, the processing engine 110 receives an object and converts that object into a format, as needed or appropriate, on which deep scanning by at least a first analysis engine 120 can be applied. This conversion and scanning may involve decompression of the object, decompilation of the object, extraction of specific data associated with the object, and/or emulation of the extracted data (like Javascript).


Located in the threat detection platform 150 as part of the first analysis engine 120 (e.g., static analysis engine), a first detection engine 122 is configured to conduct exploit-specific checks, vulnerability-specific checks and/or rule-based checks on the data associated with the object, as described below. Based on the results of the check(s), the first detection engine 122 may uncover one or more features that may indicate that the suspect object is malicious. These features may also be supplied to a first, platform-based classification engine 124 that determines, based on analysis of the feature(s) given its predictive model, whether the suspect object is malicious or not.


According to one embodiment of the disclosure, in response to a triggering event, such as where the object is determined to be malicious by the first detection engine 122, but is classified by the first classification engine 124 as non-malicious, information associated with the object may be provided to the training engine 130. It is contemplated that this triggering event may occur in response to this discrepancy or may be programmed for throttling the triggering event based on the degree of discrepancy, the rate or periodicity of discrepancies, or the number of times that the discrepancy occurs. When provided, this object information may include, but is not limited or restricted to (1) an identifier 126 of the object (e.g., hash value of the object such as a message digest produced in accordance with Message Direct “MD5” algorithm), (2) one or more features 127 of the suspect object that are associated with a malicious attack, and/or (3) results 128 of the preliminary classification by the first classification engine 124 (e.g., confidence values). Concurrently, the object and results in the preliminary analysis by the first analysis engine 120 are provided to a second analysis engine 160.


Of course, it is contemplated that, where the object is determined to be non-malicious (or malicious) by both the first detection engine 122 and the first classification engine 124, the object and results are merely provided to the second (dynamic) analysis engine 160. The training engine 130 is to receive information where the analysis results from the first detection engine 122 and the first classification engine 124 differ as to whether the object under analysis is malicious or not. However, according to another embodiment of the disclosure, this difference in analysis may occur when the suspect object is determined to be malicious by both the first detection engine 122 and the first classification engine 124, but the confidence score produced by the first classification engine 124 falls below a prescribed score threshold.


Located remotely from the threat detection platform 150, such as part of a cloud computing service or within a different enterprise network for example, the training engine 130 is configured to receive an identifier for the object in order to determine if the object has been previously analyzed in a potential update of the current predictive model. If not, the training engine 130 makes use of one or more features of the suspect object from the first detection engine 122 to determine if the object is malicious and determines which portions within the current predictive model need to be modified to better detect such features for classifying files as malicious.


There exist a few schemes that may be used by the training engine 130 to determine when an alert should be issued to update the current predictive model used by the reference classification engine 140 and/or platform-based classification engine(s) 124 and/or 164. For instance, the training engine 130 may rely on the received confidence score from the first classification engine 124 to determine accuracy in classifying a detected malicious object. In response to consistent false negative events by the classification engine 124 (e.g., the detected false negative events exceed a certain number or a prescribed rate) or a prescribed period of time has elapsed between updates, the training engine 130 may issue signaling, referred to as an “alert,” to update the reference classification engine 140 and/or platform-based classification engines 124 and/or 164 deployed at the customer. According to one embodiment, the reference model is generated as part of the cloud computing services or as part of services for an enterprise.


Similarly, the training engine 130 may issue an alert to update the reference classification engine 140 and subsequently platform-based classification engines 124/164 within the TDP(s) when an average confidence score for different objects that are detected as malicious by the first detection engine 122 (but are considered non-malicious by the first classification engine 124), as measured over a prescribed period of time, falls below a minimum detection threshold. Alternatively, the training engine 130 may issue an alert in response to a series of confidence scores for different objects that are detected as malicious by the first detection engine 122 (but are considered non-malicious by the platform-based classification engine 124) are consistently decreasing (over a prescribed period of time) by a certain amount (or percentage). As yet another alternative, the training engine 130 may prompt the reference classification engine 140 to analyze one or more features associated with a subsequent object under analysis using the reference model and determine whether the resultant confidence score exceeds the received confidence score by a prescribed amount (in value or in percentage).


Located as a cloud computing service or within a separate enterprise network or within the same enterprise network but at a different location as TDP 150 for this embodiment, the reference classification engine 140 receives the reference model (updated predictive model) produced by the training engine 130 or receives specific updates that are applied to the current reference model by the reference classification engine 140 to produce the reference model. According to one embodiment of the disclosure, the reference model is returned to the threat detection platform 150 to update the classification engine 124 that classifies analytic results associated with the first detection engine 122 of the static analysis engine 120. Additionally, or in the alternative, the reference model may be returned to the threat detection platform 150 to update a classification engine 164 associated with the second analysis engine 160, or any other platform-based classification engine, as described below in further detail.


Of course, it is contemplated that object classification associated with the static analysis results may be handled as cloud computing services without deployment of the first classification engine 124. For this embodiment, information associated with malicious objects would be uploaded to the reference (cloud-based) classification engine 140. The reference classification engine 140 would determine whether information needs to be provided to the training engine 130 for modification of the predictive model associated with the classification engine. The reference model also may be returned to another classification engine within the TDP 150 for subsequent classification of the suspect object by the second (dynamic) analysis engine 160.


IV. EXEMPLARY SYSTEM ARCHITECTURES

Referring to FIG. 2, an exemplary block diagram of a communication system 200 deploying one or more threat detection platforms (TDPs) 1501-150N (N>1, N=3 for this embodiment) communicatively coupled to a management system 205 via a network 210 is shown. In general, the management system 205 is adapted to manage TDPs 1501-1503. While cloud computing services 230 (or services via a separate enterprise) may be responsible for updating predictive models utilized by one or more classification engines deployed within the TDP 1501, the management system 205 is responsible for updating software utilized by the TDPs 1501-1503. Such updating may be conducted automatically or conducted manually via uploads by an administrator. Also, such updating may be conducted freely among the TDPs 1501-1503 or subject to a subscription basis in which periodic or aperiodic updates of the predictive model are provided by a service including the classification testing system 235.


Herein, according to the embodiment illustrated in FIG. 2, a first TDP 1501 is an electronic device that is adapted to analyze information associated with network traffic from at least one network device 212 for transmission over a communication network 214, such as communications with server. The communication network 214 may include a public network such as the Internet, in which case an optional firewall 216 (represented by dashed lines) may be interposed prior to accessing another network device 220. Alternatively, the communication network 214 may be a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks.


As shown, the first TDP 1501 may be communicatively coupled with the communication network 214 via an interface 218. In general, the interface 218 operates as a data capturing device (sometimes referred to as a “tap” or “network tap”) that is configured to receive data propagating to/from the network device 220 within an enterprise network and provide at least some of this data to the first TDP 1501 or a duplicated copy of the data. Alternatively, although not shown in detail, the first TDP 1501 may be positioned behind the firewall 216 and at least partially in-line with network (client) device 220 so as to subject incoming traffic to analysis (e.g., through static analysis) and potentially block that which is classified as malware from reaching its destination.


According to an embodiment of the disclosure, the interface 218 may be further configured to capture metadata from network traffic associated with network device 220. According to one embodiment, the metadata may be used, at least in part, to determine protocols, application types and other information that may be used by logic within the first TDP 1501 to determine particular software profile(s). The software profile(s) are used for selecting and/or configuring one or more virtual machines 2851-285M (M≥1) within a run-time, virtual execution environment 162 of the dynamic analysis engine 160, as described below. These software profile(s) may be directed to different software or different versions of the same software application extracted from software image(s) fetched from storage device 270.


In some embodiments, interface 218 may provide connectivity to a server or any device with storage capability through a dedicated transmission medium such as a wireless channel, a wired cable or the like. Although not shown, interface 218 may be contained within the first TDP 1501. In other embodiments, the interface 218 can be integrated into an intermediary device in the communication path (e.g., firewall 216, router, switch or other networked electronic device, which in some embodiments may be equipped with SPAN ports) or can be a standalone component, such as an appropriate commercially available network tap.


As further shown in FIG. 2, the first TDP 1501 comprises processing engine 110, the first (static) analysis engine 120, a scheduler 265, a storage device 270, a second (dynamic) analysis engine 160, reporting engine 290 with an optional user interface capability, and/or a collective platform-based classification engine 295. The first TDP 1501 operates in combination with the classification testing system 235, which includes the training engine 130, by uploading information that may assist the training engine 130 in determining whether logic within the classification engine 124, 164 and/or 295 requires updating. The logic may include a predictive model, namely decision-tree learning logic at least partially developed using machine learning techniques from prior analysis of labelled and unlabeled malware, benign objects and/or experiential knowledge from human analysts that determines whether feature(s) of the suspect object indicate that the object is malicious (e.g., associated with a particular malware).


The processing engine 110 of the first TDP 1501 is configured to receive an incoming object 240 (operation 1) and to convert the object 240 into a format that may be subsequently analyzed by the static analysis engine 120 to determine if the object 240 includes one or more features that are considered potentially associated with malicious activity. This conversion may involve decompression and/or decompilation of the object 240, extraction of specific data of the object 240, and/or emulation of the extracted data.


The static analysis engine 120 comprises a controller 250, a first data store 252, the detection engine 122, object transformation logic 258 and the first classification engine 124. The controller 250 is logic that controls operations conducted within the static analysis engine 120. These operations may include data storage within first data store 252; pattern matching of the incoming object 240 to determine whether the object 240 includes one or more malicious features; preliminary classification of the object 240; and/or cryptographic operations on the object 240, including one-way hash operations.


Herein, the static analysis engine 120 includes the detection engine 122 that includes one or more software modules that, when executed by controller 250, analyzes features for the incoming object 240 (e.g., a portion of network traffic, an uploaded file, etc.). As such, the detection engine 122 analyzes the object 240 through one or more pattern checking operations without execution of the object 240. Examples of the pattern checking operations may include signature matching 255 to conduct (a) exploit signature checks, which may be adapted to compare at least a portion of the object 240 with one or more pre-stored exploit signatures (pre-configured and predetermined attack patterns) from signature database (not shown), and/or (b) vulnerability signature checks that may be adapted to uncover deviations in messaging practices (e.g., non-compliance in communication protocols, message formats or ordering, and/or payload parameters including size). Other examples of these pattern checking operations may include (i) heuristics 256, which is based on rules or policies as applied to the object and may determine whether one or more portions of the object 240 is associated with an anomalous or suspicious feature (e.g., a particular URL associated with known exploits, or a particular source or destination address etc.) associated with known exploits; or (ii) determinative rule-based analysis 257 that may include blacklist or whitelist checking.


After operations are conducted by the detection engine 122 to uncover potentially malicious features in the object 240, the classification engine 124 determines whether this object 240 is “malicious,” namely whether certain features of the object 240 suggest an association with a malicious attack. According to one embodiment of the disclosure, in addition (or in the alternative) to being stored in the first data store 252, some or all of results produced by the detection engine 122 may be provided to the first classification engine 124, which is configured to determine a probability (or level of confidence) that the suspect object 240 is malware.


More specifically, the first classification engine 124 may be configured to determine a probability (or level of confidence) that the object 240 is associated with a malicious attack. This probability may be represented through a value (referred to as a “static analysis confidence score”) that may be used by the training engine 130 to identify the need for updating the predictive model utilized by the first classification engine 124. The static analysis confidence score may be determined based, at least in part, on (i) the particular pattern matches; (ii) heuristic or determinative analysis results; (iii) analyzed deviations in messaging practices set forth in applicable communication protocols (e.g., HTTP, TCP, etc.); (iv) analyzed compliance with certain message formats established for the protocol (e.g., out-of-order commands); and/or (v) analyzed header or payload parameters to determine compliance


Furthermore, the static analysis engine 120 may route this suspect object 240 (or specific portions or features of the suspect object 240) to the dynamic analysis engine 160 for more in-depth analysis. Also, results 253 of the static analysis may be stored within the first data store 252. The static analysis results 253 may include (i) a static analysis confidence score (described above) and/or (ii) metadata associated with the object. The metadata may include (a) features associated with malware (e.g., matched signature patterns, certain heuristic or statistical information, etc.), and/or (b) other types of metadata associated with the object under analysis (e.g., name of malware or its family based on the detected exploit signature, anticipated malicious activity associated with this type of malware, etc.).


After analysis of the object, the static analysis engine 120 may route the suspect object 240 to the dynamic analysis engine 160, which is configured to provide more in-depth analysis by analyzing the suspect object in a VM-based operating environment. Although not shown, the suspect object 240 may be buffered by the first data store 252 or a second data store 282 until ready for processing by virtual execution environment 162. Of course, if the object 240 is not suspected of being part of a malicious attack, the static analysis engine 120 may denote that the object is benign, and thus, refrain from passing information associated with object 240 to the training engine 130. Instead, the object 240 is passed to the dynamic analysis engine 160 for subsequent analysis.


More specifically, after analysis of the features of the suspect object 240 has been completed (or after analysis of multiple suspect objects where certain features are buffered), the static analysis engine 120 may provide at least some or all of the features that are identified as being potentially associated with malware, to the training engine 130 for determination as to whether updating of the first classification engine 124 (and/or any other classification engine 140, 164 and/or 295) is necessary. According to one embodiment of the disclosure, the static analysis engine 120 provides (1) an identifier (e.g., hash value) of the suspect object 240, (2) one or more suspect features of the suspect object 240 and/or (3) some or all of the results 253 from the static analysis, which may include static analysis confidence value. The upload of this information is identified by operations 3-4.


Located outside an enterprise featuring the TDP 1501, the training engine 130 receives the identifier 126 of the object (e.g., hash value of the object) to determine if the object has been evaluated previously in accordance with the current predictive model. This may be accomplished by comparing a listing of identifiers maintained by the training engine 130, where each identifier represents an object whose features have already been evaluated in updating the current predictive model. If the suspect object 240 has been previously evaluated, the training engine 130 may disregard such features or further adjust parameters within the updated current predictive (reference) model given that there are repeated occurrences of this type of malicious object or the object now includes different features that have not been considered.


If the object has not been previously evaluated, the training engine 130 analyzes the results, and based on the analysis, may modify one or more parameters associated with the reference model to better detect the one or more features associated with the received object that have been determined to be malicious by the static analysis engine 120 as described above. Determined through analysis of the results 253 from the static analysis engine 120, this parameter modification may include changing certain values in the decision-tree analysis as provided by the current predictive model.


As an illustrative example, suppose that the filename analysis in the current predictive model is represented by the following in which a score of 80 out of a maximum 100 is applied if the name of the object is greater than 15 characters and does not begin with an alphanumeric character (A-Z or 0-9):

    • if length_of_string (string)>15
      • if first_char≠char ‘[A-Z]’
      • if first_char≠‘[0-9]’
    • score=80


      The parameter modification may involve altering the length of the string parameter, checking for first character, etc. upon the training engine 130 determining that this feature (e.g., name length and/or character string types) has a higher correlation to maliciousness than previously assigned. In combination with or in the alternative, the parameter modification may involve removal of the first character “0” as suspect objects that have been received by the training engine 130 are now tending to include the “0” at the start of the object name.


Based at least in part on the static analysis confidence values, which over time identifies whether the current predictive model remains ineffective or is becoming less effective, an alert is provided from the training engine 130 to update the reference classification engine 140, which is immediately accessible by the cyber security service provider. The reference classification engine 140 may be used to update platform-based classification engines (e.g., classification engine 124, 164 and/or 295) with the reference model as illustrated in operation 5. Of course, it is contemplated that the TDP 1501 may not feature any platform-based classification engines, and in this type of deployment, the reference classification engine 140 would only need to be updated.


Referring still to FIG. 2, in one embodiment of the disclosure, the scheduler 265 may be adapted to configure one or more VMs 2851-285M based on metadata associated with a flow that includes the object under analysis. For instance, the VMs 2851-285M may be configured with software profiles corresponding to the software images stored within storage device 270. As an alternative embodiment, the VMs 2851-285M may be configured according to one or more software configurations that are being used by electronic devices connected to a particular enterprise network (e.g., network “client” device(s) 220) or prevalent types of software configurations (e.g., a Windows® 7 OS; a certain version of a particular web browser such as Internet Explorer®; Adobe® PDF™ reader application). As yet another alternative embodiment, the VMs 2851-285M may be configured to support concurrent (e.g. at least partially simultaneous in time) virtual execution of a variety of different software configurations in efforts to verify that the suspicious object is part of a malicious attack. Of course, it is contemplated that the VM configuration described above may be handled by logic other than the scheduler 265.


According to one embodiment of the disclosure, the dynamic analysis engine 160 is adapted to execute one or more VMs 2851-285M to simulate the receipt and execution of content associated with the object under analysis within a run-time environment as expected by the type of object. For instance, dynamic analysis engine 160 may optionally include processing logic 280 to emulate and provide anticipated signaling to the VM(s) 2851, . . . , and/or 285M during virtual processing.


For example, the processing logic 280 may be adapted to provide, and sometimes modify (e.g., modify IP address, etc.) packets associated with the suspect object 240 in order to control return signaling back to the virtual execution environment 162. Hence, the processing logic 280 may suppress (e.g., discard) the return network traffic so that the return network traffic is not transmitted to a network providing connectivity to the network (client) device 220.


Although not shown in FIG. 2, monitoring logic within the virtual execution environment 162 may be configured to monitor behaviors of one or more VMs 2851, . . . , and/or 285M, such as VM 2851 configured to execute the suspect object 240. This monitoring is conducted to detect anomalous (e.g., unexpected, irregular, etc.) activity indicative of malware. When anomalous activity is detected, the monitoring logic operating with the second classification engine 164 to compute a dynamic analysis confidence score and provide VM-based results 288 (e.g., dynamic analysis confidence score, information associated with the detected anomalous behaviors, and/or other information associated with the detected malicious activity by the suspect object) to the platform-based classification engine 295.


It is noted that the second classification engine 164 may not be implemented within the dynamic analysis engine 160. Instead, the platform-based classification engine 295 receives the VM-based results 288 (without the dynamic analysis confidence score) and conducts a classification of the object based on the VM-based results and/or SA results (or static analysis confidence value). It is contemplated that the confidence score produced by the VM-based results 288 may be weighted differently than the static analysis confidence score.


In general, the collective platform-based classification engine 295 may be configured to receive the VM-based results 288. According to one embodiment of the disclosure, the classification engine 295 comprises prioritization logic 296 and score determination logic 297. The prioritization logic 296 may be configured to apply weighting to VM-based results 288 and/or static analysis-based results 260 from static analysis engine 120. According to one embodiment, these VM-based results 288 may include the dynamic analysis confidence score and/or the SA-based result 260 may include the static analysis confidence score.


The score determination logic 297 comprises one or more software modules that are used to determine a final probability as to whether the suspect object 240 is malicious, and the resultant score representative of this final probability may be included as part of results provided to the reporting engine 290 for reporting. The score determination logic 297 may rely on the predictive model (or updated predictive model provided as the reference model) to determine the score assigned to the object.


Herein, the reporting engine 290 generates reports (e.g., various types of signaling such as messages including text messages and email messages, display images, or other types of information over a wired or wireless communication path) to identify to a network administrator the presence of a detected suspect object in the received network traffic. The reports may include a detailed summary of at least the malware detected by the TDP 1501.


Although the illustrative embodiment describes the updating of the predictive model for the classification engine 124 within the static analysis engine, it is contemplated that the similar operations may be conducted for the classification engine 164 of the dynamic analysis engine 160 and/or the collective classification engine, where the results from the detection engines of the static analysis engine 140 and/or dynamic analysis engine 160 is in disagreement and the result of the classification engine 295.


V. EXEMPLARY LOGIC LAYOUT OF TDP

Referring now to FIG. 3, an exemplary block diagram of logic associated with TDP 1501 of FIG. 2 is shown. TDP 1501 comprises one or more processors 300 that are coupled to communication interface logic 310 via a first transmission medium 320. Communication interface logic 310 enables communications with other TDPs 1502-1503 and management system 205 of FIG. 2. According to one embodiment of the disclosure, communication interface logic 310 may be implemented as a physical interface including one or more ports for wired connectors. Additionally, or in the alternative, communication interface logic 310 may be implemented with one or more radio units for supporting wireless communications with other electronic devices.


Processor(s) 300 is further coupled to persistent storage 340 via transmission medium 330. According to one embodiment of the disclosure, persistent storage 340 may include (a) static analysis engine 120, including the first detection engine 122 and the first classification engine 124; (b) the dynamic analysis engine 160 that comprises the second detection engine 162 that includes the virtual execution environment and the second classification engine 164; (c) the platform-based classification engine 295 including prioritization logic 296, score determination logic 297; (d) reporting engine 290; and (e) data stores 252 and 282. Of course, when implemented as hardware, one or more of these logic units could be implemented separately from each other. The engines contained within persistent storage 340 are executed by processor(s) and perform operations as described above.


VI. EXEMPLARY LOGIC LAYOUT OF CLASSIFICATION TESTING SYSTEM

Referring now to FIG. 4, an exemplary block diagram of logic associated with the classification testing system 235 of FIG. 2 is shown. The classification testing system 235 comprises a housing 405 that at least partially encases one or more processors 400, which are coupled to communication interface logic 410 via a first transmission medium 420. Communication interface logic 410 enables communications with one or more TDPs (e.g., TDP 1501) to receive information associated with the suspect object for adjustment of logic associated with classification engine 140 and/or classification engines deployed with the TDP 1501. According to one embodiment of the disclosure, communication interface logic 410 may be implemented as a physical interface including one or more ports for wired connectors. Additionally, or in the alternative, communication interface logic 410 may be implemented with one or more radio units for supporting wireless communications with other electronic devices.


Processor(s) 400 is further coupled to persistent storage 440 via transmission medium 430. According to one embodiment of the disclosure, persistent storage 440 may include (a) training engine 130, including object comparison logic 450, parameter modification logic 455 and model comparison logic 460; (b) the reference classification engine 140; (c) reference model update logic 465; and (d) data store 470. Of course, when implemented as hardware, one or more of these logic units could be implemented separately from each other.


Herein, executed by the processor(s) 400, the training engine 130 receives an identifier of the object and activates the object comparison logic 450 to determine if the object has been evaluated previously in accordance with the current predictive model. The object comparison logic 450 maintains a listing of identifiers that represent those objects for which features have been evaluated in an update of the current predictive model.


If the object is determined by the object comparison logic 450 to have been previously evaluated in generation of the reference model 475, the parameter modification logic 455 may disregard such features or further adjust parameters within a current predictive model 480 (e.g., decision-tree analysis) given that there are repeated occurrences of this type of malicious object. If the object has not been previously evaluated in generation of the reference model 475, the parameter modification logic 455 analyzes the static analysis results of the object, and based on these results, may modify one or more parameters associated with the current predictive model 480 in generation of the reference model 475 to better detect malicious objects with these types of features. Examples of parameter modifications may include changing certain values in the decision-tree analysis as provided by the current predictive model.


Upon the model comparison logic 460 determining that the current predictive model 480 remains ineffective in detecting malicious objects or is becoming less effective in detecting malicious objects, an alert is provided to the reference model update logic 465 to update the current predictive model 480 by substitution of the reference model 475 at the reference classification engine 140 (or provide the updates 485 as represented as an optional feature by dashed lines). Furthermore, reference classification engine 140 may propagate the reference model 480 to other classification engines, including classification engine 124 and 164 that are utilized by the analysis engines 120 and 160 as well as platform-based classification engine 295.


VII. EXEMPLARY THREAT DETECTION AND PREVENTION PROCESSES

Referring to FIG. 5A, a general exemplary flowchart is shown that illustrates operations conducted by an electronic device, such as a TDP or a portable device of FIG. 6 for example, for determining whether an update of the classification engine may be warranted. Upon receiving a suspect object, an analysis is conducted to determine whether the results produced by different engines in analyzing the same object for malicious features represent a false negative result, which suggests that a potential update of the classification engine is warranted (blocks 500 and 510). More specifically, this analysis may involve (i) a first analysis by a detection engine that determines whether an object under analysis is malicious and (ii) a second analysis by the classification engine that determines either (a) the suspect object is non-malicious or (b) the suspect object is malicious but the degree of malicious falls below a prescribed threshold. Based on the analysis associated with the object, if there are no potential false negative events in the analysis, no modification of the classification engine is needed.


If the analysis denotes a potential false negative event, information associated with the analysis of the object is provided to a training engine to determine whether the classification engine should be updated (block 520). As described above, this information may include, but is not limited or restricted to (1) the identifier of the object (e.g., hash value of the object such as a message digest produced in accordance with Message Direct “MD5” algorithm), (2) one or more suspect features of the object and/or (3) results of the preliminary classification by the classification engine (e.g., confidence values).


Thereafter, as shown in FIG. 5B, without user intervention and when an update of the classification engine is needed, the TDP automatically receives a reference model, namely an updated predictive model, which is used to modify the functionality of the classification engine (block 530). Upon receipt, the classification engine is updated with the reference model (block 540).


Referring now to FIG. 5C, a general exemplary flowchart is shown that illustrates a process for determining whether the update of the classification engine is warranted. First, a training engine receives information associated with the suspect object that is associated with a preliminary false negative event (block 550). Stated differently, the training engine receives one or more features of the object where a detection engine determined that the object includes malicious features, but the classification engine determined that the suspect object is non-malicious or is malicious but the degree of malicious falls below a prescribed threshold. As described above, this information may include, but is not limited or restricted to (1) an identifier of the object (e.g., hash value of the object such as a message digest produced in accordance with Message Direct “MD5” algorithm), (2) one or more suspect features of the object and/or (3) results of the preliminary classification by the classification engine (e.g., confidence values).


Thereafter, the training engine determines whether the suspect object is included in a training data set that is used to produce a current predictive model (block 555). This may involve a comparison of the provided identifier to a list of identifiers representing those objects that have been analyzed in determination of the current predictive model. If not, a secondary determination is made as to whether there exist certain features of the suspect object that were not present in any of the prior objects considered in generation of the current predictive model (block 560). If the objects include different features for analysis or the suspect object is not part of the training set data used to produce the current predictive model, the training data set is updated with the different features, along with different weighting and/or scores (block 565). Otherwise, the training data set is not updated.


Thereafter, the current predictive model is updated using the updated training data set to produce the reference model (block 570). Using at least part of the information received with the feature(s) of the suspect object, if the level of effectiveness of the current predictive model falls below a particular threshold (e.g., number of false negative events is now greater than a preset number, confidence values for detected malicious features falls below a set value, etc.), the classification engine is updated with the reference model (blocks 575, 580 and 585). Otherwise, the classification engine continues to utilize the current predictive model for classification of suspect objects as malicious or not (block 590).


It is contemplated that the classification engine update scheme, as described above, may also be conducted by a security agent 600 as shown in FIG. 6. Herein, the security agent 600 is stored within a memory 610 encased within a housing 625 of an endpoint device 620. Upon execution by a processor 630, the security agent 600 activates a static analysis engine 635 to conduct a static analysis of at least a portion of information 640 received by a transceiver 650 of the endpoint device 620. As before, in response to the static analysis engine and the classification engine 660 reaching different determinations (or the same determinations with results that exceed a certain difference threshold), security agent 600 uploads the control message including the one or more malicious features to a training engine located as part of cloud computing services or residing within a particular enterprise network (not shown). Thereafter, the classification engine 660 may be automatically updated, without user intervention, depending on the findings by the training engine.


VIII. SECOND EMBODIMENT FOR A CLASSIFICATION ENGINE UPDATE SCHEME

More specifically, according to another illustrative embodiment, malware may be discovered through a two-stage process in the threat detection platform 150, including the static analysis engine 120 and the dynamic analysis engine 160. Herein, the static analysis engine 120, upon determining that a suspect object is suspicious (e.g., exceeds a certain likelihood that the object is malicious), submits the suspect object for behavior analysis by processing this object in a run-time (virtual) environment. After behavioral analysis, the object may be classified as malicious or non-malicious.


If the initial static analysis determines that an object is not malicious, the object may be further analyzed through a secondary static analysis operable after the behavioral analysis, which extracts and analyzes relevant features of the object. The relevant features include those that may have been obfuscated during the initial static analysis but manifested themselves during execution (e.g., due to encryption or other encoding). Maintained within the threat detection platform 150 or located in the cloud, as shown, the classification engine 140 associated with the secondary static analysis may be configured to determine if the object is malicious by evaluating each feature and pattern of features received from the secondary static analysis engine.


As before, this classification engine 140 may use a decision-tree learning algorithm as a predictive model, where the decision-tree learning algorithm may be developed using machine learning techniques from prior analysis of labelled and unlabeled malware and benign objects and/or experiential knowledge from human analysts. Herein, the classification engine 140 computes a score associated with the features and pattern of features reflecting the probability that the object is malicious. Once the score for the features has been determined, the classification engine 140 may transmit that score to the dynamic analysis engine 160 to be used in the analysis of the object or may transmit information to the training engine 130 to modify the predictive model to account for malicious detection discrepancies, as described above.


According to another embodiment of the disclosure, where the object is determined to be malicious by the first detection engine 122 (e.g., static analysis engine) and is classified by the platform-based classification engine 140 as malicious by assigning a confidence score (e.g., a value representing a probability of the object being malicious), but the confidence score fails to exceed a prescribed threshold score, the above-described information associated with the object may also be provided to the training engine 130. Concurrently, the object and results by the static analysis engine 120 are provided to the dynamic engine 160 for analysis.


The training engine 130 is responsible for generating a new feature-specific predictive (reference) model from features and patterns of features identified through actual static analysis of the object, but for this embodiment, where a “current” predictive model used in the platform-based classification engine 140 determines that the object is malicious. For this embodiment, results produced by a test analysis conducted in accordance with the reference model, is compared to results produced by a test analysis conducted in accordance with the current predictive model. The comparison is conducted to assess whether the two results yield substantially different scores related to the probability that the object is malicious. If the difference in scores exceeds a threshold, the current predictive model may be modified to reflect the reference model, at least with respect to the features or pattern of features identified in the static analysis.


In arriving at the scores prescribed by the reference model, the following operations may be practiced. The current predictive model may yield, for example, a score of “80” for the object, where any score over “75” denotes that the object is to be classified by malicious. Since an object is classified as malicious, it may be deemed to deserve an overall score of “100”, and thus, the difference is determined to be “20” (100 minus 80). If the threshold for updating the predictive model is 15, for example, the predictive model associated with the classification engine requires updating with the reference model or modification of the current predictive model in accordance with the generated updates. The updates may be achieved by simply (1) decomposing that “100” score and (2) assigning component scores to each feature or pattern of features so as to yield a higher score for some than that associated with the feature (or pattern) by the current predictive model. For example, if the current predictive model associates a score of 30 with a particular feature (e.g., length of a string) identified in the object, but the reference model determines that that string is a stronger indicator of maliciousness, and accords this feature with a score of 40, the predictive model is modified by changing the associated score from 30 to 40 for future analysis of object. This approach is not dependent on the type of object analyzed, which may be an Office® document, PDF file, or JAR files, for example.


In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention.

Claims
  • 1. An apparatus comprising: one or more processors; anda non-transitory storage medium communicatively coupled to the one or more processors, the non-transitory storage medium comprises a first analysis engine that, during execution by the one or more processors, analyzes an object to determine if one or more features of the object indicate that the object is malicious, anda second analysis engine that, during execution by the one or more processors, receives results of the analysis of the object conducted by the first analysis engine, and analyzes, based at least in part on the results from the first analysis engine, whether the object is malicious in accordance with a predictive model,wherein, in response to the first analysis engine and the second analysis engine differing in a determination as to whether the object is classified as malicious, uploading information associated with an analysis of the object by at least one of the first analysis engine and the second analysis engine for determining whether an update of the predictive model is to occur, the update of the predictive model being trained using one or more features of the object.
  • 2. The apparatus of claim 1, wherein the second analysis engine further receives the update of the predictive model in response to the first analysis engine determining that the object is malicious while the second analysis engine determining that the object is non-malicious.
  • 3. The apparatus of claim 1, wherein the second analysis engine further receives the update of the predictive model in response to (i) a confirmation that the apparatus subscribes to a service that automatically updates predictive models used by the second analysis engine and (ii) the first analysis engine determines that the object is malicious while the second analysis engine determines that the object is non-malicious.
  • 4. The apparatus of claim 1, wherein the first analysis engine and the second analysis engine are part of a static analysis engine that performs pattern checking operations on the object including heuristic or determinative rule-based analysis.
  • 5. The apparatus of claim 4, wherein the one or more features includes information associated with the object obtained from at least the first analysis engine.
  • 6. The apparatus of claim 5, wherein the first analysis engine is part of a static analysis engine.
  • 7. The apparatus of claim 1, wherein the first analysis engine is part of a static analysis engine and the second analysis engine is part of a dynamic analysis engine, the dynamic analysis engine includes one or more virtual machines that process the object and are configured in accordance with one or more software configurations.
  • 8. The apparatus of claim 1, wherein the uploaded information is transmitted to a cloud computing service and comprises (1) an identifier of the object, and (2) the one or more features of the object for use by the predictive model to classify the object as malicious or non-malicious.
  • 9. The apparatus of claim 8, wherein the uploaded information further comprises (3) results from a preliminary classification of the object by the second analysis engine.
  • 10. The apparatus of claim 8, wherein the identifier of the object is a hash value of the object.
  • 11. The apparatus of claim 8, wherein the uploaded information further comprises (3) the results from a preliminary classification of the object by the first analysis engine.
  • 12. The apparatus of claim 1, wherein the first analysis engine and the second analysis engine differing in the determination as to whether the object is classified as malicious when the detection engine determines that the object is associated with a first level of maliciousness and the classification engine determines that the object is associated with a second level of maliciousness, the second level of maliciousness differing from the first level of maliciousness by at least a prescribed threshold.
  • 13. The system of claim 1, wherein the one or more features includes information associated with the object obtained from static analysis of the object.
  • 14. An apparatus comprising: one or more processors; anda memory coupled to the one or more processors, the memory comprises a detection engine that, when executed by the one or more processors, analyzes an object to determine whether the object includes one or more features that indicate the object is malicious; anda classification engine that, when executed by the one or more processors, analyzes whether the object is malicious in accordance with a predictive model maintained at a cloud computing service based at least in part on results from the detection engine,wherein, in response to the detection engine and the classification engine differing in a determination as to whether the object is malicious, uploading information associated with at least a portion of results from the analysis of the object by at least one of the detection engine and the classification engine for determining whether an update of the predictive model is to occur, the update of the predictive model being received from the cloud computing device by the classification engine.
  • 15. The apparatus of claim 14, wherein the classification engine to receive the update of the predictive model subsequent and in response to the detection engine determining that the object is malicious and the classification engine determining that the object is non-malicious.
  • 16. The apparatus of claim 14, wherein the classification engine to receive the update of the predictive model subsequent and in response to (i) the apparatus subscribing to a service that automatically updates predictive models used by the classification engine and (ii) the detection engine determining that the object is malicious and the classification engine determining that the object is non-malicious.
  • 17. The apparatus of claim 14, wherein the detection engine is part of a static analysis engine and the classification engine is part of a dynamic analysis engine, the dynamic analysis engine includes one or more virtual machines that process the object and are configured in accordance with one or more software configurations.
  • 18. The apparatus of claim 14, wherein the uploaded information comprises (1) an identifier of the object, and (2) one or more features of the object that can be used by the predictive model to classify the object as malicious.
  • 19. The apparatus of claim 18, wherein the uploaded information further comprises (3) the results from a preliminary classification of the object by the classification engine that include a confidence score that identifies a likelihood of the object being malicious.
  • 20. The apparatus of claim 14, wherein the detection engine and the classification engine differing in the determination as to whether the object is malicious when the detection engine determines that the object is associated with a first level of maliciousness and the classification engine determines that the object is associated with a second level of maliciousness, the second level of maliciousness differing from the first level of maliciousness by at least a prescribed threshold.
  • 21. An apparatus comprising: a detection engine including circuitry that analyzes an object to determine if one or more features of the object indicate that the object is malicious; anda classification engine communicatively coupled to the detection engine, the classification engine being configured to (i) receive results of the analysis of the object conducted by the detection engine, (ii) determine, based at least in part on the results from the detection engine and in accordance with values assigned to different parameters of a predictive model to identify features of the object that tend to be associated with malware and a confidence score associated with the object, the confidence score corresponds to a probability of the object being malicious,wherein, in response to the detection engine and the classification engine differing in a determination as to whether the object is classified as malicious, uploading information including at least the features of the object and the confidence score to cloud computing services for training a reference model to be returned to the classification engine upon determining that an update of values associated with one or more parameters of the predictive model is needed.
  • 22. The apparatus of claim 21, wherein the classification engine to receive the update of the values associated with the one or more parameters of the predictive model subsequent and in response to the detection engine determining that the object is malicious and the classification engine determining that the object is non-malicious.
  • 23. The apparatus of claim 21, wherein the detection engine and the classification engine differing in the determination as to whether the object is classified as malicious when the detection engine determining that the object is associated with a first level of maliciousness and the classification engine determining that the object is associated with a second level of maliciousness, the second level of maliciousness differing from the first level of maliciousness by at least a prescribed threshold.
  • 24. The apparatus of claim 21, wherein the classification engine to receive the update of the values associated with the one or more parameters of the predictive model subsequent and in response to (i) the apparatus subscribing to a service that automatically updates predictive models used by the classification engine and (ii) the detection engine determining that the object is malicious and the classification engine determining that the object is non-malicious.
  • 25. The apparatus of claim 21, wherein the detection engine is part of a static analysis engine and the classification engine is part of a dynamic analysis engine, the dynamic analysis engine includes one or more virtual machines that process the object and are configured in accordance with one or more software configurations.
1. CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/579,896 filed Dec. 22, 2014, now U.S. Pat. No. 9,690,933 issued Jun. 27, 2017, the entire contents of all of which are incorporated by reference herein.

US Referenced Citations (640)
Number Name Date Kind
4292580 Ott et al. Sep 1981 A
5175732 Hendel et al. Dec 1992 A
5278901 Shieh et al. Jan 1994 A
5440723 Arnold et al. Aug 1995 A
5452442 Kephart Sep 1995 A
5490249 Miller Feb 1996 A
5657473 Killean et al. Aug 1997 A
5842002 Schnurer et al. Nov 1998 A
5889973 Moyer Mar 1999 A
5960170 Chen et al. Sep 1999 A
5978917 Chi Nov 1999 A
5983348 Ji Nov 1999 A
6088803 Tso et al. Jul 2000 A
6092194 Touboul Jul 2000 A
6094677 Capek et al. Jul 2000 A
6108799 Boulay et al. Aug 2000 A
6118382 Hibbs et al. Sep 2000 A
6154844 Touboul et al. Nov 2000 A
6269330 Cidon et al. Jul 2001 B1
6272641 Ji Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6298445 Shostack et al. Oct 2001 B1
6357008 Nachenberg Mar 2002 B1
6417774 Hibbs et al. Jul 2002 B1
6424627 Sørhaug et al. Jul 2002 B1
6442696 Wray et al. Aug 2002 B1
6484315 Ziese Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6493756 O'Brien et al. Dec 2002 B1
6550012 Villa et al. Apr 2003 B1
6700497 Hibbs et al. Mar 2004 B2
6775657 Baker Aug 2004 B1
6831893 Ben Nun et al. Dec 2004 B1
6832367 Choi et al. Dec 2004 B1
6895550 Kanchirayappa et al. May 2005 B2
6898632 Gordy et al. May 2005 B2
6907396 Muttik et al. Jun 2005 B1
6941348 Petry et al. Sep 2005 B2
6971097 Wallman Nov 2005 B1
6981279 Arnold et al. Dec 2005 B1
6995665 Appelt et al. Feb 2006 B2
7007107 Ivchenko et al. Feb 2006 B1
7028179 Anderson et al. Apr 2006 B2
7043757 Hoefelmeyer et al. May 2006 B2
7069316 Gryaznov Jun 2006 B1
7080407 Zhao et al. Jul 2006 B1
7080408 Pak et al. Jul 2006 B1
7093002 Wolff et al. Aug 2006 B2
7093239 van der Made Aug 2006 B1
7096498 Judge Aug 2006 B2
7100201 Izatt Aug 2006 B2
7107617 Hursey et al. Sep 2006 B2
7159149 Spiegel et al. Jan 2007 B2
7213260 Judge May 2007 B2
7231667 Jordan Jun 2007 B2
7240364 Branscomb et al. Jul 2007 B1
7240368 Roesch et al. Jul 2007 B1
7243371 Kasper et al. Jul 2007 B1
7249175 Donaldson Jul 2007 B1
7287278 Liang Oct 2007 B2
7308716 Danford et al. Dec 2007 B2
7328453 Merkle, Jr. et al. Feb 2008 B2
7346486 Ivancic et al. Mar 2008 B2
7356736 Natvig Apr 2008 B2
7386888 Liang et al. Jun 2008 B2
7392542 Bucher Jun 2008 B2
7418729 Szor Aug 2008 B2
7428300 Drew et al. Sep 2008 B1
7441272 Durham et al. Oct 2008 B2
7448084 Apap et al. Nov 2008 B1
7458098 Judge et al. Nov 2008 B2
7464404 Carpenter et al. Dec 2008 B2
7464407 Nakae et al. Dec 2008 B2
7467408 O'Toole, Jr. Dec 2008 B1
7478428 Thomlinson Jan 2009 B1
7480773 Reed Jan 2009 B1
7487543 Arnold et al. Feb 2009 B2
7496960 Chen et al. Feb 2009 B1
7496961 Zimmer et al. Feb 2009 B2
7519990 Xie Apr 2009 B1
7523493 Liang et al. Apr 2009 B2
7530104 Thrower et al. May 2009 B1
7540025 Tzadikario May 2009 B2
7565550 Liang et al. Jul 2009 B2
7568233 Szor et al. Jul 2009 B1
7584455 Ball Sep 2009 B2
7603715 Costa et al. Oct 2009 B2
7607171 Marsden et al. Oct 2009 B1
7639714 Stolfo et al. Dec 2009 B2
7644441 Schmid et al. Jan 2010 B2
7657419 van der Made Feb 2010 B2
7676841 Sobchuk et al. Mar 2010 B2
7698548 Shelest et al. Apr 2010 B2
7707633 Danford et al. Apr 2010 B2
7712136 Sprosts et al. May 2010 B2
7730011 Deninger et al. Jun 2010 B1
7739740 Nachenberg et al. Jun 2010 B1
7779463 Stolfo et al. Aug 2010 B2
7784097 Stolfo et al. Aug 2010 B1
7832008 Kraemer Nov 2010 B1
7836502 Zhao et al. Nov 2010 B1
7849506 Dansey et al. Dec 2010 B1
7854007 Sprosts et al. Dec 2010 B2
7869073 Oshima Jan 2011 B2
7877803 Enstone et al. Jan 2011 B2
7904959 Sidiroglou et al. Mar 2011 B2
7908660 Bahl Mar 2011 B2
7930738 Petersen Apr 2011 B1
7937387 Frazier et al. May 2011 B2
7937761 Bennett May 2011 B1
7949849 Lowe et al. May 2011 B2
7996556 Raghavan et al. Aug 2011 B2
7996836 McCorkendale et al. Aug 2011 B1
7996904 Chiueh et al. Aug 2011 B1
7996905 Arnold et al. Aug 2011 B2
8006305 Aziz Aug 2011 B2
8010667 Zhang et al. Aug 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8028338 Schneider et al. Sep 2011 B1
8042184 Batenin Oct 2011 B1
8045094 Teragawa Oct 2011 B2
8045458 Alperovitch et al. Oct 2011 B2
8069484 McMillan et al. Nov 2011 B2
8087086 Lai et al. Dec 2011 B1
8171553 Aziz et al. May 2012 B2
8176049 Deninger et al. May 2012 B2
8176480 Spertus May 2012 B1
8201072 Matulic Jun 2012 B2
8201246 Wu et al. Jun 2012 B1
8204984 Aziz et al. Jun 2012 B1
8214905 Doukhvalov et al. Jul 2012 B1
8220055 Kennedy Jul 2012 B1
8225288 Miller et al. Jul 2012 B2
8225373 Kraemer Jul 2012 B2
8233882 Rogel Jul 2012 B2
8234640 Fitzgerald et al. Jul 2012 B1
8234709 Viljoen et al. Jul 2012 B2
8239944 Nachenberg et al. Aug 2012 B1
8260914 Ranjan Sep 2012 B1
8266091 Gubin et al. Sep 2012 B1
8286251 Eker et al. Oct 2012 B2
8291198 Mott et al. Oct 2012 B2
8291499 Aziz et al. Oct 2012 B2
8307435 Mann et al. Nov 2012 B1
8307443 Wang et al. Nov 2012 B2
8312545 Tuvell et al. Nov 2012 B2
8321240 Lorsch Nov 2012 B2
8321936 Green et al. Nov 2012 B1
8321941 Tuvell et al. Nov 2012 B2
8332571 Edwards, Sr. Dec 2012 B1
8365286 Poston Jan 2013 B2
8365297 Parshin et al. Jan 2013 B1
8370938 Daswani et al. Feb 2013 B1
8370939 Zaitsev et al. Feb 2013 B2
8375444 Aziz et al. Feb 2013 B2
8381299 Stolfo et al. Feb 2013 B2
8402529 Green et al. Mar 2013 B1
8464340 Ahn et al. Jun 2013 B2
8468604 Claudatos et al. Jun 2013 B2
8479174 Chiriac Jul 2013 B2
8479276 Vaystikh et al. Jul 2013 B1
8479291 Bodke Jul 2013 B1
8510827 Leake et al. Aug 2013 B1
8510828 Guo et al. Aug 2013 B1
8510842 Amit et al. Aug 2013 B2
8516478 Edwards et al. Aug 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8516593 Aziz Aug 2013 B2
8522348 Chen et al. Aug 2013 B2
8528086 Aziz Sep 2013 B1
8533824 Hutton et al. Sep 2013 B2
8539582 Aziz et al. Sep 2013 B1
8549638 Aziz Oct 2013 B2
8555391 Demir et al. Oct 2013 B1
8561177 Aziz et al. Oct 2013 B1
8566476 Shiffer et al. Oct 2013 B2
8566946 Aziz et al. Oct 2013 B1
8584094 Dadhia et al. Nov 2013 B2
8584234 Sobel et al. Nov 2013 B1
8584239 Aziz et al. Nov 2013 B2
8595834 Xie et al. Nov 2013 B2
8627476 Satish et al. Jan 2014 B1
8635696 Aziz Jan 2014 B1
8682054 Xue et al. Mar 2014 B2
8682812 Ranjan Mar 2014 B1
8689333 Aziz Apr 2014 B2
8695096 Zhang Apr 2014 B1
8713631 Pavlyushchik Apr 2014 B1
8713681 Silberman et al. Apr 2014 B2
8726392 McCorkendale et al. May 2014 B1
8739280 Chess et al. May 2014 B2
8769692 Muttik et al. Jul 2014 B1
8776229 Aziz Jul 2014 B1
8782792 Bodke Jul 2014 B1
8789172 Stolfo et al. Jul 2014 B2
8789178 Kejriwal et al. Jul 2014 B2
8793278 Frazier et al. Jul 2014 B2
8793787 Ismael et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806647 Daswani et al. Aug 2014 B1
8832829 Manni et al. Sep 2014 B2
8850570 Ramzan Sep 2014 B1
8850571 Staniford et al. Sep 2014 B2
8879558 Rijsman Nov 2014 B1
8881234 Narasimhan et al. Nov 2014 B2
8881271 Butler, II Nov 2014 B2
8881282 Aziz et al. Nov 2014 B1
8898788 Aziz et al. Nov 2014 B1
8935779 Manni et al. Jan 2015 B2
8949257 Shiffer et al. Feb 2015 B2
8959428 Majidian Feb 2015 B2
8984638 Aziz et al. Mar 2015 B1
8990939 Staniford et al. Mar 2015 B2
8990944 Singh et al. Mar 2015 B1
8997219 Staniford et al. Mar 2015 B2
9009822 Ismael et al. Apr 2015 B1
9009823 Ismael et al. Apr 2015 B1
9027135 Aziz May 2015 B1
9071638 Aziz et al. Jun 2015 B1
9104867 Thioux et al. Aug 2015 B1
9106630 Frazier et al. Aug 2015 B2
9106694 Aziz et al. Aug 2015 B2
9118715 Staniford et al. Aug 2015 B2
9159035 Ismael et al. Oct 2015 B1
9165142 Sanders et al. Oct 2015 B1
9171160 Vincent et al. Oct 2015 B2
9176843 Ismael et al. Nov 2015 B1
9189627 Islam Nov 2015 B1
9195829 Goradia et al. Nov 2015 B1
9197664 Aziz et al. Nov 2015 B1
9223972 Vincent et al. Dec 2015 B1
9225740 Ismael et al. Dec 2015 B1
9241010 Bennett et al. Jan 2016 B1
9251343 Vincent et al. Feb 2016 B1
9262635 Paithane et al. Feb 2016 B2
9268936 Butler Feb 2016 B2
9275229 LeMasters Mar 2016 B2
9282109 Aziz et al. Mar 2016 B1
9294501 Mesdaq et al. Mar 2016 B2
9300686 Pidathala et al. Mar 2016 B2
9306960 Aziz Apr 2016 B1
9306974 Aziz et al. Apr 2016 B1
9311479 Manni et al. Apr 2016 B1
9355246 Wan et al. May 2016 B1
9355247 Thioux et al. May 2016 B1
9356944 Aziz May 2016 B1
9363280 Rivlin et al. Jun 2016 B1
9367681 Ismael et al. Jun 2016 B1
9398028 Karandikar et al. Jul 2016 B1
9430646 Mushtaq et al. Aug 2016 B1
9432389 Khalid et al. Aug 2016 B1
9438613 Paithane et al. Sep 2016 B1
9438622 Staniford et al. Sep 2016 B1
9438623 Thioux et al. Sep 2016 B1
9459901 Jung et al. Oct 2016 B2
9483644 Paithane et al. Nov 2016 B1
9495180 Ismael Nov 2016 B2
9516057 Aziz Dec 2016 B2
9519782 Aziz et al. Dec 2016 B2
9536091 Paithane et al. Jan 2017 B2
9560059 Islam Jan 2017 B1
9565202 Kindlund et al. Feb 2017 B1
9591015 Amin et al. Mar 2017 B1
9591020 Aziz Mar 2017 B1
9594904 Jain et al. Mar 2017 B1
9594905 Ismael et al. Mar 2017 B1
9594912 Thioux et al. Mar 2017 B1
9609007 Rivlin et al. Mar 2017 B1
9626509 Khalid et al. Apr 2017 B1
9628498 Aziz et al. Apr 2017 B1
9628507 Haq et al. Apr 2017 B2
9635039 Islam et al. Apr 2017 B1
9641546 Manni et al. May 2017 B1
9661009 Karandikar et al. May 2017 B1
9661018 Aziz May 2017 B1
9690933 Singh et al. Jun 2017 B1
9787700 Amin et al. Oct 2017 B1
20010005889 Albrecht Jun 2001 A1
20010047326 Broadbent et al. Nov 2001 A1
20020018903 Kokubo et al. Feb 2002 A1
20020038430 Edwards et al. Mar 2002 A1
20020091819 Melchione et al. Jul 2002 A1
20020095607 Lin-Hendel Jul 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020144156 Copeland Oct 2002 A1
20020162015 Tang Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020169952 DiSanto et al. Nov 2002 A1
20020184528 Shevenell et al. Dec 2002 A1
20020188887 Largman et al. Dec 2002 A1
20020194490 Halperin et al. Dec 2002 A1
20030074578 Ford et al. Apr 2003 A1
20030084318 Schertz May 2003 A1
20030101381 Mateev et al. May 2003 A1
20030115483 Liang Jun 2003 A1
20030188190 Aaron et al. Oct 2003 A1
20030191957 Hypponen et al. Oct 2003 A1
20030200460 Morota et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030229801 Kouznetsov et al. Dec 2003 A1
20030237000 Denton et al. Dec 2003 A1
20040003323 Bennett et al. Jan 2004 A1
20040015712 Szor Jan 2004 A1
20040019832 Arnold et al. Jan 2004 A1
20040047356 Bauer Mar 2004 A1
20040083408 Spiegel et al. Apr 2004 A1
20040088581 Brawn et al. May 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040117478 Triulzi et al. Jun 2004 A1
20040117624 Brandt et al. Jun 2004 A1
20040128355 Chao et al. Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040236963 Danford et al. Nov 2004 A1
20040243349 Greifeneder et al. Dec 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268147 Wiederin et al. Dec 2004 A1
20050005159 Oliphant Jan 2005 A1
20050021740 Bar et al. Jan 2005 A1
20050022018 Szor Jan 2005 A1
20050033960 Vialen et al. Feb 2005 A1
20050033989 Poletto et al. Feb 2005 A1
20050050148 Mohammadioun et al. Mar 2005 A1
20050086523 Zimmer et al. Apr 2005 A1
20050091513 Mitomo et al. Apr 2005 A1
20050091533 Omote et al. Apr 2005 A1
20050091652 Ross et al. Apr 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114663 Cornell et al. May 2005 A1
20050125195 Brendel Jun 2005 A1
20050149726 Joshi et al. Jul 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050201297 Peikari Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050238005 Chen et al. Oct 2005 A1
20050240781 Gassoway Oct 2005 A1
20050262562 Gassoway Nov 2005 A1
20050265331 Stolfo Dec 2005 A1
20050283839 Cowbum Dec 2005 A1
20060010495 Cohen et al. Jan 2006 A1
20060015416 Hoffman et al. Jan 2006 A1
20060015715 Anderson Jan 2006 A1
20060015747 Van de Ven Jan 2006 A1
20060021029 Brickell et al. Jan 2006 A1
20060021054 Costa et al. Jan 2006 A1
20060031476 Mathes et al. Feb 2006 A1
20060047665 Neil Mar 2006 A1
20060070130 Costea et al. Mar 2006 A1
20060075496 Carpenter et al. Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060101517 Banzhof et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060129382 Anand et al. Jun 2006 A1
20060143709 Brooks et al. Jun 2006 A1
20060150249 Gassen et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060161987 Levy-Yurista Jul 2006 A1
20060161989 Reshef et al. Jul 2006 A1
20060164199 Gilde et al. Jul 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060179147 Tran et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060190561 Conboy et al. Aug 2006 A1
20060191010 Benjamin Aug 2006 A1
20060221956 Narayan et al. Oct 2006 A1
20060236393 Kramer et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248519 Jaeger et al. Nov 2006 A1
20060248582 Panjwani et al. Nov 2006 A1
20060251104 Koga Nov 2006 A1
20060253906 Rubin et al. Nov 2006 A1
20060288417 Bookbinder et al. Dec 2006 A1
20070006288 Mayfield et al. Jan 2007 A1
20070006313 Porras et al. Jan 2007 A1
20070011174 Takaragi et al. Jan 2007 A1
20070016951 Piccard et al. Jan 2007 A1
20070033645 Jones Feb 2007 A1
20070038943 FitzGerald et al. Feb 2007 A1
20070064689 Shin et al. Mar 2007 A1
20070074169 Chess et al. Mar 2007 A1
20070094730 Bhikkaji et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070128855 Cho et al. Jun 2007 A1
20070142030 Sinha et al. Jun 2007 A1
20070143827 Nicodemus et al. Jun 2007 A1
20070156895 Vuong Jul 2007 A1
20070157180 Tillmann et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070168988 Eisner et al. Jul 2007 A1
20070169195 Anand et al. Jul 2007 A1
20070171824 Ruello et al. Jul 2007 A1
20070174915 Gribble et al. Jul 2007 A1
20070192500 Lum Aug 2007 A1
20070192858 Lum Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070208822 Wang et al. Sep 2007 A1
20070220607 Sprosts et al. Sep 2007 A1
20070240217 Tuvell et al. Oct 2007 A1
20070240218 Tuvell et al. Oct 2007 A1
20070240219 Tuvell et al. Oct 2007 A1
20070240220 Tuvell et al. Oct 2007 A1
20070240222 Tuvell et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070256132 Oliphant Nov 2007 A2
20070271446 Nakamura Nov 2007 A1
20080005782 Aziz Jan 2008 A1
20080028463 Dagon et al. Jan 2008 A1
20080032556 Schreier Feb 2008 A1
20080040710 Chiriac Feb 2008 A1
20080046781 Childs et al. Feb 2008 A1
20080066179 Liu Mar 2008 A1
20080072326 Danford et al. Mar 2008 A1
20080077793 Tan et al. Mar 2008 A1
20080080518 Hoeflin et al. Apr 2008 A1
20080086720 Lekel Apr 2008 A1
20080098476 Syversen Apr 2008 A1
20080120722 Sima et al. May 2008 A1
20080134178 Fitzgerald et al. Jun 2008 A1
20080134334 Kim et al. Jun 2008 A1
20080141376 Clausen et al. Jun 2008 A1
20080163356 Won-Jip et al. Jul 2008 A1
20080181227 Todd Jul 2008 A1
20080184367 McMillan et al. Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080189787 Arnold et al. Aug 2008 A1
20080201778 Guo et al. Aug 2008 A1
20080209557 Herley et al. Aug 2008 A1
20080215742 Goldszmidt et al. Sep 2008 A1
20080222729 Chen et al. Sep 2008 A1
20080263665 Ma et al. Oct 2008 A1
20080295172 Bohacek Nov 2008 A1
20080301810 Lehane et al. Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20080313738 Enderby Dec 2008 A1
20080320594 Jiang Dec 2008 A1
20090003317 Kasralikar et al. Jan 2009 A1
20090007100 Field et al. Jan 2009 A1
20090013408 Schipka Jan 2009 A1
20090031423 Liu et al. Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090037835 Goldman Feb 2009 A1
20090044024 Oberheide et al. Feb 2009 A1
20090044274 Budko et al. Feb 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090077666 Chen et al. Mar 2009 A1
20090083369 Marmor Mar 2009 A1
20090083855 Apap et al. Mar 2009 A1
20090089879 Wang et al. Apr 2009 A1
20090094697 Provos et al. Apr 2009 A1
20090113425 Ports et al. Apr 2009 A1
20090125976 Wassermann et al. May 2009 A1
20090126015 Monastyrsky et al. May 2009 A1
20090126016 Sobko et al. May 2009 A1
20090133125 Choi et al. May 2009 A1
20090144823 Lamastra et al. Jun 2009 A1
20090158430 Borders Jun 2009 A1
20090172815 Gu et al. Jul 2009 A1
20090187992 Poston Jul 2009 A1
20090193293 Stolfo et al. Jul 2009 A1
20090198651 Shiffer et al. Aug 2009 A1
20090198670 Shiffer et al. Aug 2009 A1
20090198689 Frazier et al. Aug 2009 A1
20090199274 Frazier et al. Aug 2009 A1
20090199296 Xie et al. Aug 2009 A1
20090228233 Anderson et al. Sep 2009 A1
20090241187 Troyansky Sep 2009 A1
20090241190 Todd et al. Sep 2009 A1
20090265692 Godefroid et al. Oct 2009 A1
20090271867 Zhang Oct 2009 A1
20090300415 Zhang et al. Dec 2009 A1
20090300761 Park et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20090328221 Blumfield et al. Dec 2009 A1
20100005146 Drako et al. Jan 2010 A1
20100011205 McKenna Jan 2010 A1
20100017546 Poo et al. Jan 2010 A1
20100030996 Butler, II Feb 2010 A1
20100031353 Thomas et al. Feb 2010 A1
20100037314 Perdisci et al. Feb 2010 A1
20100043073 Kuwamura Feb 2010 A1
20100054278 Stolfo et al. Mar 2010 A1
20100058474 Hicks Mar 2010 A1
20100064044 Nonoyama Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100083376 Pereira et al. Apr 2010 A1
20100115621 Staniford et al. May 2010 A1
20100132038 Zaitsev May 2010 A1
20100154056 Smith et al. Jun 2010 A1
20100180344 Malyshev et al. Jul 2010 A1
20100192057 Majidian Jul 2010 A1
20100192223 Ismael et al. Jul 2010 A1
20100220863 Dupaquis et al. Sep 2010 A1
20100235831 Dittmer Sep 2010 A1
20100251104 Massand Sep 2010 A1
20100275210 Phillips et al. Oct 2010 A1
20100281102 Chinta et al. Nov 2010 A1
20100281541 Stolfo et al. Nov 2010 A1
20100281542 Stolfo et al. Nov 2010 A1
20100287260 Peterson et al. Nov 2010 A1
20100299754 Amit et al. Nov 2010 A1
20100306173 Frank Dec 2010 A1
20110004737 Greenebaum Jan 2011 A1
20110025504 Lyon et al. Feb 2011 A1
20110041179 Ståhlberg Feb 2011 A1
20110047594 Mahaffey et al. Feb 2011 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110055907 Narasimhan et al. Mar 2011 A1
20110078794 Manni et al. Mar 2011 A1
20110093951 Aziz Apr 2011 A1
20110099620 Stavrou et al. Apr 2011 A1
20110099633 Aziz Apr 2011 A1
20110099635 Silberman et al. Apr 2011 A1
20110113231 Kaminsky May 2011 A1
20110145918 Jung et al. Jun 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110145934 Abramovici et al. Jun 2011 A1
20110167493 Song et al. Jul 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110173178 Conboy et al. Jul 2011 A1
20110173213 Frazier et al. Jul 2011 A1
20110173460 Ito et al. Jul 2011 A1
20110219449 St. Neitzel et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225624 Sawhney et al. Sep 2011 A1
20110225655 Niemela et al. Sep 2011 A1
20110247072 Staniford et al. Oct 2011 A1
20110265182 Peinado et al. Oct 2011 A1
20110289582 Kejriwal et al. Nov 2011 A1
20110302587 Nishikawa et al. Dec 2011 A1
20110302656 El-Moussa Dec 2011 A1
20110307954 Melnik et al. Dec 2011 A1
20110307955 Kaplan et al. Dec 2011 A1
20110307956 Yermakov et al. Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20120023593 Puder et al. Jan 2012 A1
20120054869 Yen et al. Mar 2012 A1
20120066698 Yanoo Mar 2012 A1
20120079596 Thomas et al. Mar 2012 A1
20120084859 Radinsky et al. Apr 2012 A1
20120110667 Zubrilin et al. May 2012 A1
20120117652 Manni et al. May 2012 A1
20120121154 Xue et al. May 2012 A1
20120124426 Maybee et al. May 2012 A1
20120167219 Zaitsev et al. Jun 2012 A1
20120174186 Aziz et al. Jul 2012 A1
20120174196 Bhogavilli et al. Jul 2012 A1
20120174218 McCoy et al. Jul 2012 A1
20120198279 Schroeder Aug 2012 A1
20120210423 Friedrichs et al. Aug 2012 A1
20120222121 Staniford et al. Aug 2012 A1
20120255015 Sahita et al. Oct 2012 A1
20120255017 Sallam Oct 2012 A1
20120260342 Dube et al. Oct 2012 A1
20120266244 Green et al. Oct 2012 A1
20120278886 Luna Nov 2012 A1
20120297489 Dequevy Nov 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20120331553 Aziz et al. Dec 2012 A1
20130014259 Gribble et al. Jan 2013 A1
20130036472 Aziz Feb 2013 A1
20130047257 Aziz Feb 2013 A1
20130074185 McDougal et al. Mar 2013 A1
20130086684 Mohler Apr 2013 A1
20130097699 Balupari et al. Apr 2013 A1
20130097706 Titonis et al. Apr 2013 A1
20130111587 Goel et al. May 2013 A1
20130117852 Stute May 2013 A1
20130117855 Kim et al. May 2013 A1
20130139264 Brinkley et al. May 2013 A1
20130160125 Likhachev et al. Jun 2013 A1
20130160127 Jeong et al. Jun 2013 A1
20130160130 Mendelev et al. Jun 2013 A1
20130160131 Madou et al. Jun 2013 A1
20130167236 Sick Jun 2013 A1
20130174214 Duncan Jul 2013 A1
20130185789 Hagiwara et al. Jul 2013 A1
20130185795 Winn et al. Jul 2013 A1
20130185798 Saunders et al. Jul 2013 A1
20130191915 Antonakakis et al. Jul 2013 A1
20130196649 Paddon et al. Aug 2013 A1
20130227691 Aziz et al. Aug 2013 A1
20130246370 Bartram et al. Sep 2013 A1
20130247186 LeMasters Sep 2013 A1
20130247187 Hsiao et al. Sep 2013 A1
20130263260 Mahaffey et al. Oct 2013 A1
20130291109 Staniford et al. Oct 2013 A1
20130298243 Kumar et al. Nov 2013 A1
20130318038 Shiffer et al. Nov 2013 A1
20130318073 Shiffer et al. Nov 2013 A1
20130325791 Shiffer et al. Dec 2013 A1
20130325792 Shiffer et al. Dec 2013 A1
20130325871 Shiffer et al. Dec 2013 A1
20130325872 Shiffer et al. Dec 2013 A1
20140032875 Butler Jan 2014 A1
20140053260 Gupta et al. Feb 2014 A1
20140053261 Gupta et al. Feb 2014 A1
20140130158 Wang et al. May 2014 A1
20140137180 Lukacs et al. May 2014 A1
20140169762 Ryu Jun 2014 A1
20140179360 Jackson et al. Jun 2014 A1
20140181131 Ross Jun 2014 A1
20140181975 Spernow et al. Jun 2014 A1
20140189687 Jung et al. Jul 2014 A1
20140189866 Shiffer et al. Jul 2014 A1
20140189882 Jung et al. Jul 2014 A1
20140237600 Silberman et al. Aug 2014 A1
20140280245 Wilson Sep 2014 A1
20140283037 Sikorski et al. Sep 2014 A1
20140283063 Thompson et al. Sep 2014 A1
20140325344 Bourke et al. Oct 2014 A1
20140328204 Klotsche et al. Nov 2014 A1
20140337836 Ismael Nov 2014 A1
20140344926 Cunningham et al. Nov 2014 A1
20140351935 Shao et al. Nov 2014 A1
20140380473 Bu et al. Dec 2014 A1
20140380474 Paithane et al. Dec 2014 A1
20150007312 Pidathala et al. Jan 2015 A1
20150026810 Friedrichs et al. Jan 2015 A1
20150096022 Vincent et al. Apr 2015 A1
20150096023 Mesdaq et al. Apr 2015 A1
20150096024 Haq et al. Apr 2015 A1
20150096025 Ismael Apr 2015 A1
20150121526 McLarnon et al. Apr 2015 A1
20150180886 Staniford et al. Jun 2015 A1
20150186645 Aziz et al. Jul 2015 A1
20150220735 Paithane et al. Aug 2015 A1
20150244732 Golshan et al. Aug 2015 A1
20150372980 Eyada Dec 2015 A1
20160044000 Cunningham Feb 2016 A1
20160127393 Aziz et al. May 2016 A1
20160191547 Zafar et al. Jun 2016 A1
20160261612 Mesdaq et al. Sep 2016 A1
20160285914 Singh et al. Sep 2016 A1
20160301703 Aziz Oct 2016 A1
20160335110 Paithane et al. Nov 2016 A1
20170083703 Abbasi et al. Mar 2017 A1
Foreign Referenced Citations (11)
Number Date Country
2439806 Jan 2008 GB
2490431 Oct 2012 GB
0223805 Mar 2002 WO
0206928 Nov 2003 WO
2007117636 Oct 2007 WO
2008041950 Apr 2008 WO
2011084431 Jul 2011 WO
2011112348 Sep 2011 WO
2012075336 Jun 2012 WO
2012145066 Oct 2012 WO
2013067505 May 2013 WO
Non-Patent Literature Citations (96)
Entry
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlaq Berlin Heidelberg, (2006), pp. 165-184.
Baldi, Mario; Risso, Fulvio; “A Framework for Rapid Development and Portable Execution of Packet-Handling Applications”, 5th IEEE International Symposium Processing and Information Technology, Dec. 21, 2005, pp. 233-238.
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists,org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003).
Bowen, B. M. et al “BotSwindler: Tamper Resistant Injection of Believable Decoys in VM-Based Hosts for Crimeware Detection”, in Recent Advances in Intrusion Detection, Springer ISBN: 978-3-642-15511-6 (pp. 118-137) (Sep. 15, 2010).
Chaudet, C., et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT ′05, Toulousse, France, (Oct. 2005), pp. 71-82.
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012).
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”), (1992-2003).
Clark, John, Sylvian Leblanc,and Scott Knight. “Risks associated with usb hardware trojan devices used by insiders.” Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011.
Cohen, M.I, “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Costa, M., et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05 Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“Packet”, Microsoft Computer Dictionary Microsoft Press, (Mar. 2002), 1 page.
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.iso?reload=true&arnumber=990073, (Dec. 7, 2013).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo, et al., “Network Intrusion Detection & Response System”, (“Adetoye”) (Sep. 2003).
AltaVista Advanced Search Results (subset). “attack vector identifier” Http://www.altavista.com/web/results?ltag=ody&pg=aq&aqmode=aqa=Event+Orchestrator . . . , (Accessed on Sep. 15, 2009).
AltaVista Advanced Search Results (subset). “Event Orchestrator”. Http://www.altavista.com/web/results?ltag=ody&pg=aq&aqmode=aqa=Event+Orchesrator . . . , (Accessed on Sep. 3, 2009).
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126.
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Kreibich, C., et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J., “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages.
Leading Colleges Select FireEye to Stop Malware-Related Data Breaches, FireEye Inc., 2009.
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711.
Liljenstam, Michael, et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College, (“Liljenstam”), (Oct. 27, 2003).
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Lok Kwong et al: “DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis”, Aug. 10, 2012, XP055158513, Retrieved from the Internet: URL:https://www.usenix.org/system/files/conference/usenixsecurity12/sec12- -final107.pdf [retrieved on Dec. 15, 2014].
Marchette, David J., Computer Intrusion Detection and Network Monitoring: A Statistical (“Marchette”), (2001).
Crandall, J.R., et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004).
Deutsch, P., ““Zlib compressed data format specification version 3.3” RFC 1950, (1996)”.
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002).
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005).
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007).
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010.
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010.
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011.
Gibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012.
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review vol. 42 Issue 3, pp. 21-28.
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-id/1035069? [retrieved on Jun. 1, 2016].
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007.
Hjelmvik, Erik, “Passive Network Security Analysis with NetworkMiner”, (IN)SECURE, Issue 18, (Oct. 2008), pp. 1-100.
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University.
IEEE Xplore Digital Library Sear Results (subset) for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc&ResultC . . . (Accessed on Aug. 28, 2009).
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kaeo, Merike, “Designing Network Security”, (“Kaeo”), (Nov. 2003).
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6.
Kim, H., et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th USENIX Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”), (Dec. 2002).
Krasnyansky, Max, et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”).
Margolis, P.E., “Random House Webster's 'Computer & Internet Dictionary 3rd Edition”, ISBN 0375703519, p. 595 (Dec. 1998).
Moore, D., et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg.
Natvig, Kurt, “SANDBOXII: INTERNET”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J., et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Newsome, J., et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005).
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
U.S. Appl. No. 11/717,475, filed Mar. 12, 2007 Final Office Action dated Nov. 22, 2010.
U.S. Appl. No. 11/717,475, filed Mar. 12, 2007 Non-Final Office Action dated Aug. 28, 2012.
U.S. Appl. No. 11/717,475, filed Mar. 12, 2007 Non-Final Office Action dated May 6, 2010.
U.S. Appl. No. 13/925,688, filed Jun. 24, 2013 Final Office Action dated Jan. 12, 2017.
U.S. Appl. No. 13/925,688, filed Jun. 24, 2013 Final Office Action dated Mar. 11, 2016.
U.S. Appl. No. 13/925,688, filed Jun. 24, 2013 Non-Final Office Action dated Jun. 2, 2015.
U.S. Appl. No. 13/925,688, filed Jun. 24, 2013 Non-Final Office Action dated Sep. 16, 2016.
U.S. Appl. No. 14/059,381, filed Oct. 21, 2013 Non-Final Office Action dated Oct. 29, 2014.
U.S. Appl. No. 14/229,541, filed Mar. 28, 2014 Non-Final Office Action dated Apr. 20, 2016.
U.S. Appl. No. 14/579,896, filed Dec. 22, 2014 Advisory Action dated Aug. 23, 2016.
U.S. Appl. No. 14/579,896, filed Dec. 22, 2014 Final Office Action dated Jul. 6, 2016.
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA.
PCT/US2014/043726 filed Jun. 23, 2014 International Search Report and Written Opinion dated Oct. 9, 2014.
PCT/US2015/067082 filed Dec. 21, 2015 International Search Report and Written Opinion dated Feb. 24, 2016.
Peter M. Chen, and Brian D. Noble, “When Virtual Is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”), (2001).
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doom, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Approach to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”).
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25.
Singh, S., et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Spitzner, Lance, “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002).
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/˜casado/pcap/sectionl.html, (Jan. 6, 2014).
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998).
U.S. Appl. No. 11/717,475, filed Mar. 12, 2007 Final Office Action dated Feb. 27, 2013.
U.S. Appl. No. 14/579,896, filed Dec. 22, 2014 Non-Final Office Action dated Mar. 22, 2016.
U.S. Appl. No. 14/579,896, filed Dec. 22, 2014 Non-Final Office Action dated Oct. 18, 2016.
U.S. Appl. No. 14/579,896, filed Dec. 22, 2014 Notice of Allowance dated Mar. 1, 2017.
U.S. Appl. No. 14/620,060, filed Feb. 11, 2015, Non-Final Office Action dated Apr. 3, 2015.
U.S. Appl. No. 14/675,648, filed Mar. 31, 2015 Notice of Allowance dated Jul. 5, 2016.
U.S. Appl. No. 15/339,459, filed Oct. 31, 2016 Non-Final Office Action dated Feb. 9, 2017.
U.S. Appl. No. 15/451,243, filed Mar. 6, 2017 Notice of Allowance dated Jul. 26, 2017.
U.S. Pat. No. 8,171,553 filed Apr. 20, 2006, Inter Parties Review Decision dated Jul. 10, 2015.
U.S. Pat. No. 8,291,499 filed Mar. 16, 2012, Inter Parties Review Decision dated Jul. 10, 2015.
Venezia, Paul, “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003).
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350.
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Mathew M., “Throttling Virses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1.
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82.
Continuations (1)
Number Date Country
Parent 14579896 Dec 2014 US
Child 15633072 US