This disclosure relates to a framework for developing and deploying applications.
Under conventional approaches, a data analysis platform for analyzing various data may be deployed. The data may be obtained from many disparate data sources and, in some instances, the data may be ingested into one or more object-based data models that are supported by the data analysis platform. Users can interact with the data analysis platform using a workspace through which various operations, or workflows, for accessing and manipulating data may be utilized. In some instances, users may also need access to other types of operations and/or data sources that are not yet supported by the data analysis platform or whose integration with the data analysis platform is not feasible. In such instances, the users will typically need to develop a separate solution through which the other types of operations and/or data sources can be surfaced. Having to create and deploy such separate solutions that also easily integrate with the data analysis platform can be both challenging and inefficient.
Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to determine a first data source which the system is configured to access; provide a set of application programming interfaces (APIs) for interacting with data stored in the first data source, the APIs being accessible to a first web application which the system is configured to serve; determine that the first web application has requested a first operation for interacting with the data through a first API in the set of APIs; determine one or more first responses based at least in part on the first operation requested by the first web application; and provide the one or more first responses to the first web application.
In some embodiments, the systems, methods, and non-transitory computer readable media are configured to determine that the first operation involves interacting with the first data source; provide information describing the first operation to the first data source for processing; and obtain the one or more first responses from the first data source.
In some embodiments, the systems, methods, and non-transitory computer readable media are configured to determine that the first operation involves interacting with the first data source; provide information describing the first operation to a data analysis platform for processing; and obtain the one or more first responses from the data analysis platform.
In some embodiments, the systems, methods, and non-transitory computer readable media are configured to cause the system to integrate with a data analysis platform through which a second data source is accessible, wherein the first data source is not accessible through the data analysis platform; provide information describing a second operation to the data analysis platform for processing using data stored in the second data source; and obtain one or more second responses from the data analysis platform.
In some embodiments, the systems, methods, and non-transitory computer readable media are configured to configure the system to serve a second web application, the second web application being deployed to process data stored in a second data source; and cause the system to integrate with the second data source, the system being configured to restrict access to the second data source to only the second web application.
In some embodiments, a server plugin provides a second set of APIs for interacting with the data stored in the first data source, the server plugin being deployed in a workspace running on a computing device; wherein the systems, methods, and non-transitory computer readable media are configured to process requests from the server plugin; determine that the server plugin has requested a second operation for interacting with the data through one or more of the set of APIs; determine one or more second responses based at least in part on the second operation requested by the server plugin; and provide the one or more second responses to the server plugin.
In some embodiments, the server plugin is configured to serve a second web application deployed in the workspace running on the computing device; and the server plugin provides the one or more second responses to the second web application.
In some embodiments, the second web application is deployed a Java workspace running on the computing device.
In some embodiments, the second web application is able to be deployed separately for execution through a web browser application.
In some embodiments, the first web application is running a web browser application.
These and other features of the systems, methods, and non-transitory computer readable media disclosed herein, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for purposes of illustration and description only and are not intended as a definition of the limits of the invention.
A claimed solution rooted in computer technology overcomes problems specifically arising in the realm of computer technology. In various implementations, a computing system is configured to provide a set of application programming interfaces (APIs) that allow users to interact with the data analysis platform. The computing system may also be configured to implement various modularized services through which operations for accessing and manipulating data can be performed. Such operations can allow for querying data as well as accessing and manipulating object graphs. The computing system may also be configured to implement various plugins that extend the functionality of the computing system. One example plugin can allow the computing system to access and ingest new data sources on which various operations will be performed. In one example, the computing system may be implemented as a web server. Users can develop web applications that can run on the web server and can utilize the various integrations that have been configured through the web server. In another example, a plugin (e.g., an embedded web server) that implements some, or all, of the features of the web server can be installed in a workspace client. In this example, any web applications that were developed can be executed on the stand-alone workspace client.
In various embodiments, the S-server 110 provides a platform on which applications (e.g., web applications) can be developed and deployed. In some embodiments, the S-server 110 is configured to operate as a web server on which a set of application programming interfaces (APIs) 100 that provide various functionality are implemented. In one example, the web application A 122 may utilize the APIs 100 to request various operations to be performed on data (e.g., loading and storing data objects with properties and links, searching for data objects, tagging data objects, to name some examples). Such data may be stored in a data source (or data store) such as the data source A 132. In some embodiments, the data may be stored in other data sources that are not directly accessible to the S-server. For example, the data sources may be accessible through a separate data analysis platform. In such instances, the APIs 100 and/or a separate set of APIs implemented by the data analysis platform may be utilized to request operations to be performed on data stored in the other data sources, as described below.
The S-server 110 may be configured to serve the web application A 122. In one example, the S-server 110 may provide the web application A 122 with resources and/or access to data sources (e.g., the data source A 132), for example, for purposes of accessing, creating, and/or modifying data stored in the data source A 132. In general, an application (e.g., web application) may be a software application that runs on one or more computing systems (e.g., S-server 110, P-server, etc.). A web application may provide one or more frontend interfaces through which various operations may be performed. In general, web applications can be created using any generally known programming language including, for example, the Java programming language. In performing such operations, the web application may interact with one or more data sources (and/or data analysis platform) through a set of APIs provided by the one or more computing systems (e.g., S-server 110 and/or a P-server). In one example, the web application may be executed using various browser applications (e.g., web browsers). In another example, the same web applications may be configured to execute as applications in a Java workspace, as described below.
As mentioned, the S-server 110 provides the set of APIs 100 through which applications, e.g., the web application A 122, can request operations to be performed. In one example, the web application A 122 can utilize the APIs 100 to interact with data (e.g., access, create, and/or modify data) stored in the data source A 132. The APIs 100 may provide mechanisms by which web applications are able to communicate with other computing systems (e.g., the S-server 110, a P-server, a data analysis platform, and/or data sources). In some embodiments, the APIs 100 may include one or more sets of routines, protocols, and/or tools for building web applications. The APIs may also specify routines, protocols, and/or tools that define how a web application communicates with the computing systems. In various embodiments, the APIs may be modular and individually comprehensive packages for performing data operations, such as data read, data write, data search, data tag, data promotion, and/or other operations, to name some examples. In some embodiments, such data operations may be used on object graphs to perform, for example, object loads, searches, writes, organization, and publication. In various embodiments, the APIs 100 may include a set of Hypertext Transfer Protocol (HTTP)/JavaScript Object Notation (JSON) APIs that provide functionalities receiving and processing data operations over one or more networks. For example, APIs 100 may provide functionalities for loading, storing, editing, searching, and/or otherwise interacting with data. The APIs 100 can allow web applications to make API calls, which may specify one or more actions, one or more parameters, and/or one or more values for interacting with data. In some implementations, the S-server 110 can be configured so that a web application may communicate with other web applications using calls made through the APIs 100.
In various embodiments, the S-server 110 can be configured to access one or more data sources. In some embodiments, the S-server 110 can be configured to interact with data sources based on a configuration file that provides information needed to access the respective data sources. Such information can specify an address (e.g., network address, etc.) for connecting to the data source A 132, access credentials, type of data source (e.g., type of database), to name some examples. In some instances, a data source itself may be capable of performing operations. For example, the data source may provide data processing functionalities for data stored in the data source including, for example, creating objects, updating objects, searching for objects, aggregating objects, to name some examples. In such instances, the S-server 110 can be configured to leverage the capabilities of the data source when requesting operations to be performed. Some example data sources that can include various types of databases, CSV files, text files, to name some examples. In various embodiments, the data source, e.g., the data source A 132, may refer to an electronic storage and/or database that stores data for use by web applications, an S-server, a P-server, and/or a data analysis platform.
In the example of
In some implementations, the S-server 210 may be integrated with, e.g., configured to communicate and access, one or more data sources. For example, the S-server 210 may be configured to access the data source A 232 and the data source B 234. The S-server 210 may provide access to data stored in the data source A 232 and/or the data source B 234 to web applications through the set of APIs 200. In some embodiments, the S-server 210 can be configured to restrict access to the data sources. For example, the S-server 210 can be configured to restrict access to the data source A 232 to the web application A 222 and to restrict access to the data source B 234 to the web application B 224. Such access restrictions may be granular so that web applications can be restricted to perform one or more pre-defined operations on data stored in a given data source.
In various embodiments, the S-server 210 may be configured to run and serve both the web application A 222 and the web application B 224. For example, the S-server 210 may serve resources provided by the S-server 210, the data source A 232, and/or data source B 234. Assuming they have been granted the appropriate permissions, the web application A 222 and/or the web application B 224 can interact with the S-server 210 through the APIs 200 to access, create, and/or modify data that is stored in the data source A 232 and/or the data source B 234. For example, the S-server 210 may determine that the web application A 222 has requested to perform one or more write operations to the data stored in the data source A 232 through the APIs 200. The S-server 210 can process the request from the web application A 222 and determine the requested operations involved. As mentioned, in some embodiments, the operations may be performed by the respective data source on which the data is stored. In such embodiments, for example, if the web application A 222 requests one or more operations to be performed using data stored in the data source A 232, then the data source A 232 can perform the requested operations and provide responses to the S-server 210 and/or the web application A 222. These responses may include data requested by the web application A 222 and/or messages from the data source A 232 (e.g., error messages, status messages, etc.). In some embodiments, the operations may be performed by the S-server 210 by interacting with the respective data source on which the data is stored. For example, in such embodiments, if the web application A 222 requests one or more operations to be performed using data stored in the data source A 232, then the S-server 210 can interact with the data source A 232 to perform the requested operations and provide responses to the web application A 222.
The S-server 310 may be configured to serve the web application A 322, for example, using resources from the S-server 310, the data analysis platform 340, the data source A 332, and/or the data source C 336. In various embodiments, the S-server 310 may implement APIs 300 that can be used by the web application A 322 for purposes of interacting with data stored in the data analysis platform 340, the data source A 332, and/or the data source C 336, for example. For example, the S-server 310 may determine that the web application A 322 has requested to perform one or more operations for interacting with the data (e.g., accessing, creating, and/or modifying data) through the APIs 300. In various embodiments, the S-server 310 may utilize the APIs 300 and/or other APIs to interact with the data source A 332 and/or the data analysis platform 340. In one example, the data analysis platform 340 may provide a separate set of APIs which are accessible to the S-server 310 for requesting operations to be performed by the data analysis platform 340 and/or data to be retrieved through the data analysis platform 340. In various embodiments, a data analysis platform, e.g., the data analysis platform 340, may refer to software and/or hardware that provides data processing functionalities to one or more servers and/or one or more web applications. In one example, the data analysis platform may provide functionalities for accessing, creating, processing, and/or modifying data (or data objects) stored in one or more data sources.
In some embodiments, the S-server 310 can delegate, or route, the requested operations to the appropriate data entity (e.g., the data source A 332, the data analysis platform 340, etc.) for processing the operations. The data entity can provide the S-server 310 with one or more responses that were determined based at least in part on the operation(s) requested by the web application A 322. For example, the web application A 322 may request an operation to search for various data in the data source A 332. In this example, the web application A 322 can interact with the data source A 332 using the APIs 300 provided by the S-server 310. The data source A 332 can perform the requested operation and provide one or more responses to the web application A 322. For example, the data source A 332 can provide a response (e.g., a JSON object) with information responsive to the requested search operation to the S-server 310, which then forwards the response to the web application A 322. In another example, the web application A 322 may request an operation to update (or modify) data stored in the data source C 336. In this example, the web application A 322 can interact with the data source C 336 through the data analysis platform 340 using the APIs 300 provided by the S-server 310. The data analysis platform 340 and/or the data source C 336 can perform the requested operation and provide one or more responses to the web application A 322. For example, the data source C 336 can provide a response (e.g., a JSON object) to the data analysis platform 340 with information responsive to the requested update operation. In this example, the data analysis platform 340 can send the response to the S-server 310 which then sends the response to the web application A 322.
In some embodiments, the S-server 310 may convert data stored in one or more data sources to a native format that is recognized by the data analysis platform 340. For example, the data in the data source A 332 may be stored in a legacy system. The operation of the legacy system may be slow and/or the legacy system may not allow for certain operations on the data stored in data source A 332. In this example, a user accessing the web application A 322 may request to perform operations that can be performed by the data analysis platform 340 but that are not supported the by data source A 332. In such instances, converting the legacy system to a format recognized by the data analysis platform 340 may be slow and/or require vast amounts of processing/storage resources. Instead, the S-server 310 may be configured to selectively promote data stored in the data source A 332. That is, rather than converting all of the data stored in the data source A 332, the S-server 310 may “promote” the data required for the operation. In some embodiments, promoting data may include selecting the relevant data in the data source A 332 and converting the relevant data to a format that is recognized by the data analysis platform 340. Promotion of data may be performed in real-time. For example, in response to a request for an operation on a particular data in data source A 332, the S-server 310 may convert the particular data so that the data is accessible by the data analysis platform 340. The converted data may be stored in the S-server 310, the data analysis platform 340, and/or other electronic storage accessible to the data analysis platform 340 (e.g., data source C 336). When a subsequent operation on the particular data in the data source A 332 is requested, the data analysis platform 340 may use the converted data to perform the operation. Promotion of the data may enable users accessing web applications to make use of the data without having to fully integrate the S-server 310 with the legacy server.
The P-server 450 may implement a set of APIs 400 that are configured to implement some, or all, of the functionalities of the APIs described above. As a result, the P-server 450 can provide the workspace 452 with the functionalities of the S-server without requiring a separate web server to be deployed. In some embodiments, implementation of the same APIs by an S-server and the P-server 450 allows web applications to run on an S-server and/or the P-server 450 while using the same APIs. Thus, using the same APIs allows frontend applications (e.g., web applications) to be developed agnostic of whether the frontend applications will be deployed on top of an S-server (e.g., web server), P-server (e.g., within a workspace), and/or future back-end systems. In various embodiments, the P-server 450 may utilize the APIs 400 and/or other APIs to interact with the data analysis platform 440. In one example, the data analysis platform 440 may provide a separate set of APIs which are accessible to the P-server 450 for requesting operations to be performed by the data analysis platform 440 and/or data to be retrieved through the data analysis platform 440.
For example, the P-server 450 may determine that the web application C 426 has requested one or more operations for interacting with the data (e.g., accessing, creating, and/or modifying data) through one or more of the APIs 400. The P-server 450 can process the request(s) from the web application C 426 and determine the requested operations involved. As mentioned, in some embodiments, the operations may be performed by the respective data source on which the data is stored. For example, in such embodiments, if the web application C 426 requests one or more operations to be performed using data stored in the data source C 436, then the data analysis platform 440 and/or the data source C 436 can perform the requested operations and provide responses to the P-server 450, for example, through the data analysis platform 440. In some embodiments, the operations may be performed by the P-server 450 by interacting with the respective data source on which the data is stored. For example, in such embodiments, if the web application C 426 requests one or more operations to be performed using data stored in the data source C 436, then the P-server 450 can interact with the data source C 436 directly to perform the requested operations and provide responses to the web application C 426.
In the example of
In various embodiments, the P-server 550 provides a set of APIs 500 through which the web application C 526 and/or web application D 528 can request one or more operations for interacting with various data (e.g., accessing, creating, and/or modifying data). For example, the web application C 526 can use the APIs 500 to request operations to be performed on data stored in the data source C 536. In this example, the data source C 536 can perform the operations and provide responses to be delivered to the web application C 526. In some embodiments, web applications can request operations to be performed by the data analysis platform 540 on various data. For example, the P-server 550 can interact with the data analysis platform 540 to have the data analysis platform 540 perform the requested operations. As mentioned, in some embodiments, the data analysis platform 540 may provide a separate set of APIs which are accessible to the P-server 550 for requesting operations to be performed by the data analysis platform 540 and/or data to be retrieved through the data analysis platform 540. Similarly, in some embodiments, the S-server 510 may provide a separate set of APIs which are accessible to the P-server 550 for requesting operations to be performed by the S-server 510 and/or data to be retrieved through the S-server 510. When processing web application requests, the P-server 550 can be configured to determine whether the requesting web application has been granted the appropriate level of permissions for performing the requested operations.
As described above, the P-server 550 may determine one or more responses based at least in part on the operation(s) requested by web application C 526 and/or web application D 528. In some embodiments, one or more response(s) may be determined by the P-server 550. In some embodiments, the P-server 550 may receive one or more of the responses from data source C 536 and/or data analysis platform 540. The P-server 550 can then provide the response(s) to the web application that requested the operations.
In some embodiments, the P-server 550 may delegate data retrieval functionalities to S-server 510. For example, the P-server 550 may want to access data stored in the data source A 532. In this example, the S-server 510 may receive the data retrieval request from P-server 550, retrieve the requested data from data source A 532, and provide the data to P-server 550. The P-server 550 can then provide the requested data to web application D 528. In some embodiments, the P-server 550 may delegate data operation functionalities to the S-server 510. The S-server 510 may receive the data operation request from P-server 550, retrieve the data from data source A 532, perform the operation to the data, generate the responses, and provide the responses to the P-server 550. In some implementations, the S-server 510 may provide information describing the requested data operations to the data source A 532 and the data source A 532 may perform the requested operations.
Implementations of the disclosure may be made in hardware, firmware, software, or any suitable combination thereof. Aspects of the disclosure may be implemented as instructions stored on a machine-readable medium, which may be read and executed by one or more processors. A machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computing device). For example, a tangible computer readable storage medium may include read only memory, random access memory, magnetic disk storage media, optical storage media, flash memory devices, and others. Firmware, software, routines, or instructions may be described herein in terms of specific exemplary aspects and implementations of the disclosure, and performing certain actions.
Any communication medium may be used to facilitate interaction between any components of the disclosure. One or more components shown in
At block 601, a data source that is accessible may be determined. The data source may be the same as or similar to data sources (e.g., 132, 232, 234, 332, 336, 436, 532, 536) described herein. The data source may be accessible to a component the same as or similar to S-server (e.g., 110, 210, 310, 510) described herein. In some implementation, operation 201 may be performed by a component the same as or similar to S-server (e.g., 110, 210, 310, 510) described herein.
At block 602, a set of application programming interfaces (APIs) for interacting with data stored in the data source may be provided. The APIs may be accessible to a web application. The web application may be the same as or similar to web applications (e.g., 122, 222, 224, 322, 426, 526, 528) described herein. In some implementation, operation 602 may be performed by a component the same as or similar to S-server (e.g., 110, 210, 310, 510) described herein.
At block 603, an operation for interacting with the data may be determined. The operation may have been requested by the web application through an API in the set of APIs. In some implementation, operation 603 may be performed by a component the same as or similar to S-server (e.g., 110, 210, 310, 510) described herein.
At block 604, one or more responses may be determined at least in part on the operation requested by the web application. In some implementation, operation 604 may be performed by a component the same as or similar to S-server (e.g., 110, 210, 310, 510) described herein.
At block 605, one or more responses may be provided to the web application. In some implementation, operation 605 may be performed by a component the same as or similar to S-server (e.g., 110, 210, 310, 510) described herein.
Hardware Implementation
The computer system 700 also includes a main memory 706, such as a random access memory (RAM), cache and/or other dynamic storage devices, coupled to bus 702 for storing information and instructions to be executed by processor 704. Main memory 706 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 704. Such instructions, when stored in storage media accessible to processor 704, render computer system 700 into a special-purpose machine that is customized to perform the operations specified in the instructions.
The computer system 700 further includes a read only memory (ROM) 708 or other static storage device coupled to bus 702 for storing static information and instructions for processor 704. A storage device 710, such as a magnetic disk, optical disk, or USB thumb drive (Flash drive), etc., is provided and coupled to bus 702 for storing information and instructions.
The computer system 700 may be coupled via bus 702 to a display 712, such as a cathode ray tube (CRT) or LCD display (or touch screen), for displaying information to a computer user. An input device 714, including alphanumeric and other keys, is coupled to bus 702 for communicating information and command selections to processor 704. Another type of user input device is cursor control 716, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 704 and for controlling cursor movement on display 712. This input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane. In some embodiments, the same direction information and command selections as cursor control may be implemented via receiving touches on a touch screen without a cursor.
The computing system 700 may include a user interface module to implement a GUI that may be stored in a mass storage device as executable software codes that are executed by the computing device(s). This and other modules may include, by way of example, components, such as software components, object-oriented software components, class components and task components, processes, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
In general, the word “module,” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, C or C++. A software module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules may be callable from other modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software modules configured for execution on computing devices may be provided on a computer readable medium, such as a compact disc, digital video disc, flash drive, magnetic disc, or any other tangible medium, or as a digital download (and may be originally stored in a compressed or installable format that requires installation, decompression or decryption prior to execution). Such software code may be stored, partially or fully, on a memory device of the executing computing device, for execution by the computing device. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors. The modules or computing device functionality described herein are preferably implemented as software modules, but may be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that may be combined with other modules or divided into sub-modules despite their physical organization or storage.
The computer system 700 may implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 700 to be a special-purpose machine. According to one embodiment, the techniques herein are performed by computer system 700 in response to processor(s) 704 executing one or more sequences of one or more instructions contained in main memory 706. Such instructions may be read into main memory 706 from another storage medium, such as storage device 710. Execution of the sequences of instructions contained in main memory 706 causes processor(s) 704 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions.
The term “non-transitory media,” and similar terms, as used herein refers to any media that store data and/or instructions that cause a machine to operate in a specific fashion. Such non-transitory media may comprise non-volatile media and/or volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 710. Volatile media includes dynamic memory, such as main memory 706. Common forms of non-transitory media include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge, and networked versions of the same.
Non-transitory media is distinct from but may be used in conjunction with transmission media. Transmission media participates in transferring information between non-transitory media. For example, transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 702. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.
Various forms of media may be involved in carrying one or more sequences of one or more instructions to processor 704 for execution. For example, the instructions may initially be carried on a magnetic disk or solid state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system 700 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 702. Bus 702 carries the data to main memory 706, from which processor 704 retrieves and executes the instructions. The instructions received by main memory 706 may optionally be stored on storage device 710 either before or after execution by processor 704.
The computer system 700 also includes a communication interface 718 coupled to bus 702. Communication interface 718 provides a two-way data communication coupling to one or more network links that are connected to one or more local networks. For example, communication interface 718 may be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 718 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN (or WAN component to communicated with a WAN). Wireless links may also be implemented. In any such implementation, communication interface 718 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.
A network link typically provides data communication through one or more networks to other data devices. For example, a network link may provide a connection through local network to a host computer or to data equipment operated by an Internet Service Provider (ISP). The ISP in turn provides data communication services through the world wide packet data communication network now commonly referred to as the “Internet”. Local network and Internet both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link and through communication interface 718, which carry the digital data to and from computer system 700, are example forms of transmission media.
The computer system 700 can send messages and receive data, including program code, through the network(s), network link and communication interface 718. In the Internet example, a server might transmit a requested code for an application program through the Internet, the ISP, the local network and the communication interface 718.
The received code may be executed by processor 704 as it is received, and/or stored in storage device 710, or other non-volatile storage for later execution.
Each of the processes, methods, and algorithms described in the preceding sections may be embodied in, and fully or partially automated by, code modules executed by one or more computer systems or computer processors comprising computer hardware. The processes and algorithms may be implemented partially or wholly in application-specific circuitry.
The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and sub-combinations are intended to fall within the scope of this disclosure. In addition, certain method or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described blocks or states may be performed in an order other than that specifically disclosed, or multiple blocks or states may be combined in a single block or state. The example blocks or states may be performed in serial, in parallel, or in some other manner. Blocks or states may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.
Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art.
It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof.
This application is a continuation application of U.S. patent application Ser. No. 17/000,256, filed Aug. 21, 2020, now U.S. Pat. No. 11,397,566 B2, which is a continuation application of U.S. patent application Ser. No. 16/213,936, filed Dec. 7, 2018, now U.S. Pat. No. 10,754,627, which is a continuation application of U.S. patent application Ser. No. 15/730,646, filed Oct. 11, 2017, now U.S. Pat. No. 10,152,306, which claims the benefit under 35 U.S.C. § 119(e) of the U.S. Provisional Application Ser. No. 62/418,397, filed Nov. 7, 2016, the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5418950 | Li et al. | May 1995 | A |
5428737 | Li et al. | Jun 1995 | A |
5428776 | Rothfield | Jun 1995 | A |
5542089 | Lindsay et al. | Jul 1996 | A |
5608899 | Li et al. | Mar 1997 | A |
5613105 | Zbikowski et al. | Mar 1997 | A |
5701456 | Jacopi et al. | Dec 1997 | A |
5724575 | Hoover et al. | Mar 1998 | A |
5794228 | French et al. | Aug 1998 | A |
5794229 | French et al. | Aug 1998 | A |
5857329 | Bigham | Jan 1999 | A |
5911138 | Li et al. | Jun 1999 | A |
5918225 | White et al. | Jun 1999 | A |
6141759 | Braddy | Oct 2000 | A |
6208985 | Krehel | Mar 2001 | B1 |
6236994 | Swartz et al. | May 2001 | B1 |
6289334 | Reiner et al. | Sep 2001 | B1 |
6311181 | Lee et al. | Oct 2001 | B1 |
6321274 | Shakib et al. | Nov 2001 | B1 |
6434619 | Lim | Aug 2002 | B1 |
6643613 | McGee et al. | Nov 2003 | B2 |
6684214 | Bata et al. | Jan 2004 | B2 |
6745382 | Zothner | Jun 2004 | B1 |
6851108 | Syme et al. | Feb 2005 | B1 |
6857120 | Arnold et al. | Feb 2005 | B1 |
6877137 | Rivette et al. | Apr 2005 | B1 |
6976024 | Chavez, Jr. et al. | Dec 2005 | B1 |
6980984 | Huffman et al. | Dec 2005 | B1 |
7028223 | Kolawa et al. | Apr 2006 | B1 |
7062483 | Ferrari et al. | Jun 2006 | B2 |
7085890 | Kashyap | Aug 2006 | B2 |
7099888 | Gollapudi et al. | Aug 2006 | B2 |
7100147 | Miller et al. | Aug 2006 | B2 |
7127467 | Yalamanchi et al. | Oct 2006 | B2 |
7155728 | Prabhu et al. | Dec 2006 | B1 |
7165061 | K et al. | Jan 2007 | B2 |
7165101 | Daniels et al. | Jan 2007 | B2 |
7216133 | Wu et al. | May 2007 | B2 |
7243093 | Cragun et al. | Jul 2007 | B2 |
7290113 | Weinreb et al. | Oct 2007 | B2 |
7299202 | Swanson | Nov 2007 | B2 |
7343552 | Denoue et al. | Mar 2008 | B2 |
7366723 | Shaburov | Apr 2008 | B2 |
7369912 | Sherriff et al. | May 2008 | B2 |
7383513 | Goldberg et al. | Jun 2008 | B2 |
7406592 | Polyudov | Jul 2008 | B1 |
7409676 | Agarwal et al. | Aug 2008 | B2 |
7483028 | Wong et al. | Jan 2009 | B2 |
7490100 | Dettinger et al. | Feb 2009 | B2 |
7512738 | Balakrishnan et al. | Mar 2009 | B2 |
7519589 | Charnock et al. | Apr 2009 | B2 |
7546353 | Hesselink et al. | Jun 2009 | B2 |
7546607 | Demsey et al. | Jun 2009 | B2 |
7571192 | Gupta et al. | Aug 2009 | B2 |
7610290 | Kruy et al. | Oct 2009 | B2 |
7620648 | Cragun et al. | Nov 2009 | B2 |
7627489 | Schaeffer et al. | Dec 2009 | B2 |
7657540 | Bayliss | Feb 2010 | B1 |
7680939 | Trevor et al. | Mar 2010 | B2 |
7689624 | Huang et al. | Mar 2010 | B2 |
7761525 | Moraes et al. | Jul 2010 | B2 |
7783679 | Bley | Aug 2010 | B2 |
7801912 | Ransil et al. | Sep 2010 | B2 |
7853573 | Warner et al. | Dec 2010 | B2 |
7853614 | Hoffman et al. | Dec 2010 | B2 |
7870512 | Misovski | Jan 2011 | B2 |
7873710 | Kiley et al. | Jan 2011 | B2 |
7877367 | Ross et al. | Jan 2011 | B2 |
7877421 | Berger et al. | Jan 2011 | B2 |
7899796 | Borthwick et al. | Mar 2011 | B1 |
7900052 | Jonas | Mar 2011 | B2 |
7908286 | Krishnaprasad et al. | Mar 2011 | B2 |
7908521 | Sridharan et al. | Mar 2011 | B2 |
7925637 | Ma et al. | Apr 2011 | B2 |
7962842 | Carro | Jun 2011 | B2 |
7979424 | Dettinger et al. | Jul 2011 | B2 |
8020110 | Hurst | Sep 2011 | B2 |
8055672 | Djugash et al. | Nov 2011 | B2 |
8073857 | Sreekanth | Dec 2011 | B2 |
8103962 | Embley et al. | Jan 2012 | B2 |
8112262 | Michelsen | Feb 2012 | B1 |
8122008 | Li et al. | Feb 2012 | B2 |
8161122 | Sood et al. | Apr 2012 | B2 |
8161468 | Todd | Apr 2012 | B2 |
8244895 | Mukherjee et al. | Aug 2012 | B2 |
8271477 | Sood et al. | Sep 2012 | B2 |
8312038 | Ceballos et al. | Nov 2012 | B2 |
8352908 | Jhoney et al. | Jan 2013 | B2 |
8386996 | Prigge et al. | Feb 2013 | B2 |
8417715 | Bruckhaus et al. | Apr 2013 | B1 |
8429194 | Aymeloglu et al. | Apr 2013 | B2 |
8433702 | Carrino et al. | Apr 2013 | B1 |
8499287 | Shafi et al. | Jul 2013 | B2 |
8547349 | Lee et al. | Oct 2013 | B2 |
8560494 | Downing et al. | Oct 2013 | B1 |
8606804 | Merz et al. | Dec 2013 | B2 |
8626545 | Van Pelt et al. | Jan 2014 | B2 |
8626770 | He et al. | Jan 2014 | B2 |
8627345 | Malik et al. | Jan 2014 | B2 |
8639552 | Chen et al. | Jan 2014 | B1 |
8661062 | Jamail et al. | Feb 2014 | B1 |
8719252 | Miranker et al. | May 2014 | B2 |
8719267 | Chen et al. | May 2014 | B2 |
8739118 | Meek et al. | May 2014 | B2 |
8751466 | Tsay | Jun 2014 | B1 |
8769503 | Baker | Jul 2014 | B2 |
8775608 | Westlake | Jul 2014 | B2 |
8799867 | Peri-Glass et al. | Aug 2014 | B1 |
8805861 | Boyan et al. | Aug 2014 | B2 |
8844028 | Cheng | Sep 2014 | B1 |
8909597 | Aymeloglu et al. | Dec 2014 | B2 |
8924429 | Fisher et al. | Dec 2014 | B1 |
8935201 | Fisher et al. | Jan 2015 | B1 |
8954553 | Colton | Feb 2015 | B1 |
8957553 | Hasegawa | Feb 2015 | B2 |
8959443 | Law | Feb 2015 | B2 |
8965422 | Khan | Feb 2015 | B2 |
8966486 | Phan et al. | Feb 2015 | B2 |
8976955 | Liberman Ben-Ami | Mar 2015 | B2 |
9027039 | Michels et al. | May 2015 | B2 |
9031981 | Potter et al. | May 2015 | B1 |
9032254 | Shochat et al. | May 2015 | B2 |
9098315 | Kapoor | Aug 2015 | B1 |
9105000 | White et al. | Aug 2015 | B1 |
9158816 | Schindlauer et al. | Oct 2015 | B2 |
9245049 | Fang | Jan 2016 | B2 |
9268761 | Baldwin et al. | Feb 2016 | B2 |
9274923 | Burton et al. | Mar 2016 | B2 |
9292388 | Fisher et al. | Mar 2016 | B2 |
9330120 | Downing et al. | May 2016 | B2 |
9336184 | Mital et al. | May 2016 | B2 |
9348677 | Marinelli, III et al. | May 2016 | B2 |
9348920 | Kesin | May 2016 | B1 |
9378526 | Sampson | Jun 2016 | B2 |
9390178 | Laredo et al. | Jul 2016 | B2 |
9417992 | Huang et al. | Aug 2016 | B2 |
9471370 | Marinelli, III et al. | Oct 2016 | B2 |
9552387 | Foebel et al. | Jan 2017 | B2 |
9576006 | Boero et al. | Feb 2017 | B2 |
9600823 | Lanciani et al. | Mar 2017 | B2 |
9710512 | Foebel | Jul 2017 | B2 |
9727314 | Michelsen | Aug 2017 | B2 |
9734004 | Berg et al. | Aug 2017 | B2 |
9753744 | Wells | Sep 2017 | B1 |
9767127 | Feldschuh | Sep 2017 | B2 |
9792194 | Faraj | Oct 2017 | B2 |
9798768 | Potter et al. | Oct 2017 | B2 |
9805407 | Shen et al. | Oct 2017 | B2 |
9842000 | Bishop et al. | Dec 2017 | B2 |
9851953 | Straub et al. | Dec 2017 | B2 |
9922078 | Shiverick et al. | Mar 2018 | B2 |
9959100 | Straub | May 2018 | B2 |
9996807 | Miller et al. | Jun 2018 | B2 |
10002159 | Kuriakose et al. | Jun 2018 | B2 |
10013668 | Straub | Jul 2018 | B2 |
10067978 | Park | Sep 2018 | B2 |
10142204 | Nickolov et al. | Nov 2018 | B2 |
10152306 | Ryan et al. | Dec 2018 | B2 |
10264016 | Walsh | Apr 2019 | B2 |
10324773 | Wing et al. | Jun 2019 | B2 |
10419514 | Straub et al. | Sep 2019 | B2 |
10437635 | Layman et al. | Oct 2019 | B2 |
10452497 | Straub et al. | Oct 2019 | B2 |
10582001 | Straub | Mar 2020 | B2 |
10767154 | Damren et al. | Sep 2020 | B2 |
20020091702 | Mullins | Jul 2002 | A1 |
20030023620 | Trotta | Jan 2003 | A1 |
20030028533 | Bata et al. | Feb 2003 | A1 |
20040088177 | Travis et al. | May 2004 | A1 |
20040123048 | Mullins | Jun 2004 | A1 |
20040126840 | Cheng et al. | Jul 2004 | A1 |
20040153837 | Preston et al. | Aug 2004 | A1 |
20050021397 | Cui et al. | Jan 2005 | A1 |
20050172306 | Agarwal et al. | Aug 2005 | A1 |
20050226473 | Ramesh | Oct 2005 | A1 |
20060080616 | Vogel et al. | Apr 2006 | A1 |
20060116991 | Calderwood | Jun 2006 | A1 |
20060122982 | Krishnaprasad et al. | Jun 2006 | A1 |
20060129992 | Oberholtzer et al. | Jun 2006 | A1 |
20060142949 | Helt | Jun 2006 | A1 |
20070005582 | Navratil et al. | Jan 2007 | A1 |
20070094248 | McVeigh et al. | Apr 2007 | A1 |
20070113164 | Hansen et al. | May 2007 | A1 |
20070130206 | Zhou et al. | Jun 2007 | A1 |
20070178501 | Rabinowitz et al. | Aug 2007 | A1 |
20070192281 | Cradick et al. | Aug 2007 | A1 |
20070260582 | Liang | Nov 2007 | A1 |
20080071796 | Ghuneim | Mar 2008 | A1 |
20080189360 | Kiley et al. | Aug 2008 | A1 |
20080209451 | Michels et al. | Aug 2008 | A1 |
20080267386 | Cooper | Oct 2008 | A1 |
20090006150 | Prigge et al. | Jan 2009 | A1 |
20090083275 | Jacob et al. | Mar 2009 | A1 |
20090094217 | Dettinger et al. | Apr 2009 | A1 |
20090161147 | Klave | Jun 2009 | A1 |
20090172674 | Bobak et al. | Jul 2009 | A1 |
20090193012 | Williams | Jul 2009 | A1 |
20090199047 | Vaitheeswaran et al. | Aug 2009 | A1 |
20090282068 | Shockro et al. | Nov 2009 | A1 |
20090299830 | West et al. | Dec 2009 | A1 |
20100011282 | Dollard et al. | Jan 2010 | A1 |
20100114887 | Conway et al. | May 2010 | A1 |
20100169376 | Chu | Jul 2010 | A1 |
20100169405 | Zhang | Jul 2010 | A1 |
20100199167 | Uematsu et al. | Aug 2010 | A1 |
20110041084 | Karam | Feb 2011 | A1 |
20110066497 | Gopinath et al. | Mar 2011 | A1 |
20110074811 | Hanson et al. | Mar 2011 | A1 |
20110131547 | Elaasar | Jun 2011 | A1 |
20110145689 | Campbell et al. | Jun 2011 | A1 |
20110208822 | Rathod | Aug 2011 | A1 |
20110258216 | Supakkul et al. | Oct 2011 | A1 |
20110320019 | Lanciani et al. | Dec 2011 | A1 |
20120078595 | Balandin et al. | Mar 2012 | A1 |
20120110174 | Wootton | May 2012 | A1 |
20120159449 | Arnold et al. | Jun 2012 | A1 |
20120173381 | Smith | Jul 2012 | A1 |
20120174057 | Narendra et al. | Jul 2012 | A1 |
20130024268 | Manickavelu | Jan 2013 | A1 |
20130054551 | Lange | Feb 2013 | A1 |
20130086482 | Parsons | Apr 2013 | A1 |
20130136253 | Liberman Ben-Ami et al. | May 2013 | A1 |
20130226944 | Baid et al. | Aug 2013 | A1 |
20140244388 | Manouchehri et al. | Aug 2014 | A1 |
20150150094 | Foebel et al. | May 2015 | A1 |
20150254124 | Berg et al. | Sep 2015 | A1 |
20150363492 | Laredo et al. | Dec 2015 | A1 |
20160026923 | Erenrich et al. | Jan 2016 | A1 |
20160085662 | Huang et al. | Mar 2016 | A1 |
20160094484 | Mordani | Mar 2016 | A1 |
20160094647 | Mordani | Mar 2016 | A1 |
20160094670 | Garcia Manchado | Mar 2016 | A1 |
20160098449 | Park | Apr 2016 | A1 |
20160112262 | Johnson | Apr 2016 | A1 |
20160112394 | Sahu | Apr 2016 | A1 |
20160203138 | Feldschuh | Jul 2016 | A1 |
20160203453 | Ito | Jul 2016 | A1 |
20160230138 | Damren et al. | Aug 2016 | A1 |
20160285957 | Haserodt | Sep 2016 | A1 |
20160359989 | Aycock | Dec 2016 | A1 |
20160378439 | Straub et al. | Dec 2016 | A1 |
20170004506 | Steinman | Jan 2017 | A1 |
20170026393 | Walsh | Jan 2017 | A1 |
20170034023 | Nickolov | Feb 2017 | A1 |
20170046134 | Straub | Feb 2017 | A1 |
20170046235 | Straub et al. | Feb 2017 | A1 |
20170048215 | Straub | Feb 2017 | A1 |
20170048252 | Straub et al. | Feb 2017 | A1 |
20170048319 | Straub | Feb 2017 | A1 |
20170048339 | Straub | Feb 2017 | A1 |
20170083378 | Bishop et al. | Mar 2017 | A1 |
20170083386 | Wing et al. | Mar 2017 | A1 |
20170091680 | Rosenthal | Mar 2017 | A1 |
20170149931 | Lochhead | May 2017 | A1 |
20170228253 | Layman et al. | Aug 2017 | A1 |
20170262852 | Florimond et al. | Sep 2017 | A1 |
20170310605 | Garcia | Oct 2017 | A1 |
20180144421 | Williams | May 2018 | A1 |
Number | Date | Country |
---|---|---|
102014103482 | Sep 2014 | DE |
1647908 | Apr 2006 | EP |
2634745 | Sep 2013 | EP |
2743839 | Jun 2014 | EP |
2778986 | Sep 2014 | EP |
2921975 | Sep 2015 | EP |
3037992 | Oct 2019 | EP |
2366498 | Mar 2002 | GB |
2508293 | May 2014 | GB |
2508503 | Jun 2014 | GB |
1194178 | Oct 2014 | HK |
622485 | Nov 2014 | NZ |
616212 | Jan 2015 | NZ |
616299 | Apr 2015 | NZ |
0034895 | Jun 2000 | WO |
2010030917 | Mar 2010 | WO |
2013030595 | Mar 2013 | WO |
Entry |
---|
Kerry Shih-Ping Chang et al., A Plug-in Architecture for Connecting to New Data Sources on Mobile Devices, 2013 IEEE, [Retrieved on Nov. 22, 2023]. Retrieved from the internet: < URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6645243 > 8 Pages (51-58) (Year: 2013). |
“A Quick Guide to UniProtKB Swiss-Prot & TrEMBL,” Sep. 2011, pp. 2. |
“A Tour of Pinboard,” <http://pinboard.in/tour> as printed May 15, 2014 in 6 pages. |
“Java Remote Method Invocation: 7-Remote Object Activation,” Dec. 31, 2010, retrieved from the internet Mar. 15, 2016 https://docs.oracle.com/javase/7/docs/platform/rmi/spec/rmi-activation2.h- tml. |
“The FASTA Program Package,” fasta-36.3.4, Mar. 25, 2011, pp. 29. |
Alur et al., “Chapter 2: IBM InfoSphere DataStage Stages,” IBM InfoSphere DataStage Data Flow and Job Design, Jul. 1, 2008, pp. 35-137. |
Anonymous, “Frequently Asked Questions about Office Binder 97,” http://web.archive.org/web/20100210112922/http://support.microsoft.com/kb- /843147 printed Dec. 18, 2006 in 5 pages. |
Bae et al., “Partitioning Algorithms for the Computation of Average Iceberg Queries,” DaWaK 2000, LNCS 1874, pp. 276_286. |
Ballesteros et al., “Batching: A Design Pattern for Efficient and Flexible Client/Server Interaction,” Transactions on Pattern Languages of Programming, Springer Berlin Heildeberg, 2009, pp. 48-66. |
Bogle et al., “Reducing Cross-Domain Call Overhead Using Batched Futures,” SIGPLAN No. 29, 10 (Oct. 1994) pp. 341-354. |
Bogle, “Reducing Cross-Domain Call Overhead Using Batched Futures,” May 1994, Massachusetts Institute of Technology, pp. 96. |
Bouajani et al., “Analysis of Recursively Parallel Programs,” PLDI09: Proceedings of the 2009 ACM Sigplan Conference on Programming Language Design and Implementation, Jun. 15-20, 2009, Dublin, Ireland, pp. 203-214. |
Canese et al., “Chapter 2: PubMed: The Bibliographic Database,” The NCBI Handbook, Oct. 2002, pp. 1-10. |
Chazelle et al., “The Bloomier Filter: An Efficient Data Structure for Static Support Lookup Tables,” SODA '04 Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2004, pp. 30-39. |
Delcher et al., “Identifying Bacterial Genes and Endosymbiont DNA with Glimmer,” BioInformatics, vol. 23, No. 6, 2007, pp. 673-679. |
Delicious, <http://delicious.com/> as printed May 15, 2014 in 1 page. |
Donjerkovic et al., “Probabilistic Optimization of Top N Queries,” Proceedings of the 25th VLDB Conference, Edinburgh, Scotland, 1999, pp. 411-422. |
Ettredge et al., Using web-based search data to predict macroeconomic statistics, 2005, [Retrieved on Jun. 27, 2018]. Retrieved from the internet: < URL: https://dl.acm.org/citation.cfm?id=1096010> 6 pp. 87-92 (Year: 2005). cited byapplicant. |
Extended European Search Report for EP Appln. No. EP19156063.0 dated Mar. 24, 2020, 15 pages. |
Fang et al., “Computing Iceberg Queries Efficiently,” Proceedings of the 24th VLDB Conference New York, 1998, pp. 299-310. |
Frantisek et al., “An Architectural View of Distributed Objects and Components in CORBA, Java RMI and Com/ Dcom,” Software-Concepts & Tools, vol. 19, No. 1, Jun. 1, 1998, pp. 14-28. |
Goldstein et al., “Stacks Lazy Threads: Implementing a Fast Parallel Call,” Journal of Parallel and Distributed Computing, Jan. 1, 1996, pp. 5-20. |
Han et al., “Efficient Computation of Iceberg Cubes with Complex Measures,” ACM Sigmod, May 21-24, 2001, pp. 1-12. |
Ivanova et al., “An Architecture for Recycling Intermediates in a Column-Store,” Proceedings of the 35th Sigmod International Conference on Management of Data, Sigmod '09, Jun. 29, 2009, p. 309. |
Jacques, “An extensible math expression parser with plug-ins,” Code Project, Mar. 13, 2008. Retrieved on Jan. 30, 2015 from the internet: <http://www.codeproject.com/Articles/7335/An-extensible-math-expressio- n-parser-with-plug-ins>. |
Jenks et al., “Nomadic Threads: A Migrating Multithreaded Approach to Remote Memory Accesses in Multiprocessors,” Parallel Architectures and Compilation Techniques, 1996, Oct. 20, 1996, pp. 2-11. |
Kahan et al., “Annotea: An Open RDF Infrastructure for Shared Web Annotations”, Computer Networks, Elsevier Science Publishers B.V., vol. 39, No. 5, dated Aug. 5, 2002, pp. 589-608. |
Karp et al., “A Simple Algorithm for Finding Frequent Elements in Streams and Bags,” ACM Transactions on Database Systems, vol. 28, No. 1, Mar. 2003, pp. 5155. |
Kitts, “Chapter 14: Genome Assembly and Annotation Process,” The NCBI Handbook, Oct. 2002, pp. 1-21. |
Leela et al., “On Incorporating Iceberg Queries in Query Processors,” Technical Report, TR-2002-01, Database Systems for Advanced Applications Lecture Notes in Computer Science, 2004, vol. 2973. |
Liu et al., “Methods for Mining Frequent Items in Data Streams: An Overview,” Knowledge and Information Systems, vol. 26, No. 1, Jan. 2011, pp. 1-30. |
Madden, “Chapter 16: The BLAST Sequence Analysis Tool,” The NCBI Handbook, Oct. 2002, pp. 1-15. |
Melchiori, Hybrid Techniques for Web APIs Recommendation, Mar. 25, 2011, [Retrieved on Apr. 8, 2020]. Retrieved from the internet: < URL: https://dl.acm.org/doi/pdf/10.1145/1966901.1966905?download=true> 7 pp. 17-23 (Year: 2011). |
Mendes et al., “TcruziKB: Enabling Complex Queries for Genomic Data Exploration,” IEEE International Conference on Semantic Computing, Aug. 2008, pp. 432-439. |
Michaux et al., An open-source platform for converged services, Oct. 15-17, 2013, [Retrieved on Apr. 8, 2020]. Retrieved from the internet:<URL: https://dl.acm.org/doi/pdf/10.1145/2589649.2554672?download=true> 8 pp. 1-8 (Year: 2013). |
Mizrachi, “Chapter 1: GenBank: The Nuckeotide Sequence Database,” The NCBI Handbook, Oct. 2002, pp. 1-14. |
North, et al., “Complex Adaptive Systems Modeling with Repast Simphony”, 2013, retrieved Jan. 31, 2022 from URL: https://link.springer/com/content/pdf/10.1186/2194-3206-1-3.pdf, 26 pages. |
Notice of Allowance for U.S. Appl. No. 15/730,646 dated Aug. 7, 2018. |
Official Communication for U.S. Appl. No. 15/730,646 dated Dec. 4, 2017. |
Official Communication for U.S. Appl. No. 15/730,646 dated Mar. 1, 2018. |
Russell et al., “NITELIGHT: A Graphical Tool for Semantic Query Construction,” 2008, pp. 10. |
Sigrist, et al., “PROSITE, a Protein Domain Database for Functional Characterization and Annotation,” Nucleic Acids Research, 2010, vol. 38, pp. D161-D166. |
Sirotkin et al., “Chapter 13: The Processing of Biological Sequence Data at NCBI,” The NCBI Handbook, Oct. 2002, pp. 1-11. |
Smart et al., “A Visual Approach to Semantic Query Design Using a Web-Based Graphical Query Designer,” 16th International Conference on Knowledge Engineering and Knowledge Management (EKAW 2008), EAcitrezza, Catania, Italy, Sep. E29-Oct. 3, 2008, pp. 16. |
Stamos et al., “Remote Evaluation,” Journal ACM Transactions on Programming Languages and Systems (TOPLAS) vol. 12, Issue 4, Oct. 1990, pp. 537-564. |
Wikipedia, “Machine Code”, p. 1-5, printed Aug. 11, 2014. |
Wollrath et al., “A Distributed Object Model for the Java System,” Proceedings of the 2nd Conference on USENEX, Conference on Object-Oriented Technologies (COOTS), Jun. 17, 1996, pp. 219-231. |
Ye et al., Design and Implementation of On-Line Hot Topic Discovery Model, 2006, [Retrieved on Jun. 27, 2018]. Retrieved from the internet: <URL: https://link.springer.com/content/pdf/10.1007%2FBF02831697.pdf> 6 pp. 21-26 (Year: 2006). |
Partial European Search Report dated Dec. 19, 2019, issued in related European Patent Application No. 19156063.0 (16 pages). |
Partial European Search Report dated Apr. 4, 2018, issued in related European Patent Application No. 17200096.0 (12 pages). |
Extended European Search Report dated Jul. 9, 2018, issued in related European Patent Application No. 17200096.0 (12 pages). |
First Action Interview Pilot Program Pre-Interview Communication dated Jan. 23, 2019, issued in related U.S. Appl. No. 16/213,936 (4 pages). |
First Action Interview Office Action Summary dated Apr. 11, 2019, issued in related U.S. Appl. No. 16/213,936 (6 pages). |
Ex-Parte Quayle Action dated Nov. 6, 2019, issued in related U.S. Appl. No. 16/213,936 (9 pages). |
Notice of Allowance mailed Apr. 16, 2020, issued in related U.S. Appl. No. 16/213,936 (13 pages). |
Non-Final Office Action dated Jul. 8, 2021, issued in related U.S. Appl. No. 17/000,256 (21 pages). |
Final Office Action dated Oct. 26, 2021, issued in related U.S. Appl. No. 17/000,256 (25 pages). |
Notice of Allowance dated Mar. 21, 2022, issued in related U.S. Appl. No. 17/000,256 (21 pages). |
Number | Date | Country | |
---|---|---|---|
20220350575 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
62418397 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17000256 | Aug 2020 | US |
Child | 17863365 | US | |
Parent | 16213936 | Dec 2018 | US |
Child | 17000256 | US | |
Parent | 15730646 | Oct 2017 | US |
Child | 16213936 | US |