As known in the art, a “stackable switch” is a network switch that can operate independently as a standalone device or in concert with one or more other stackable switches in a “stack” or “stacking system.”
In a system of interconnected devices like stacking system 150, port failures can occasionally occur that affect the ability of system members to communicate with each other. For instance, in
However, in some failure scenarios, a port may fail in a manner that does not cause its status to change. For example, ports that support speeds of 10 Gigabits per second (Gbps) or higher typically have sophisticated electronic and/or optical components and firmware logic. Further, such ports are internally connected to a packet processor that handles queuing, makes wire-speed forwarding decisions, and so on. A failure that arises due to a component/firmware problem or due to an issue with a connected packet processor may prevent the affected port from sending or receiving packets, but may nevertheless cause the port remain in an UP status. This, in turn, can prevent the switch that owns the port from detecting the failure, potentially leading to packet mis-forwarding, packet black holes, and other conditions that can result in a partial or complete network breakdown.
There are certain existing protocols, such as Unidirectional Link Detection Protocol (UDLD), that can mitigate the issue above by determining when a bidirectional link has become unidirectional or nonfunctional and marking the end ports of the link as being logically down. However, these existing protocols generally operate with respect to a single link at a time. For example, in stacking system 150 of
A framework for reliably communicating port information in a system of devices is provided. In one embodiment, each device in the system of devices can create a first record that includes port information pertaining to a plurality of ports of the device, where the plurality of ports are usable for communicatively coupling the device to other devices in the system of devices. The device can further receive, from the other devices in the system of devices, one or more second records including port information pertaining to the ports of the other devices, and can store the first record and the one or more second records in a data store maintained locally on the device. The device can then forward copies of the first record and the one or more second records out of each of the plurality of ports, thereby causing the copies of the first record and the one or more second records to be communicated to the other devices in the system of devices.
The following detailed description and accompanying drawings provide a better understanding of the nature and advantages of particular embodiments.
In the following description, for purposes of explanation, numerous examples and details are set forth in order to provide an understanding of various embodiments. It will be evident, however, to one skilled in the art that certain embodiments can be practiced without some of these details, or can be practiced with modifications or equivalents thereof.
1. Overview
The present disclosure describes a framework for reliably communicating port information in a system of devices, such as a stacking system comprising stackable switches. In one set of embodiments, each device in the system of devices can create a device record that includes port information regarding the ports of the device that are useable for connecting the device to other devices in the system. This port information can comprise, e.g., physical connection information (e.g., which neighbor port each port is connected to), port status information (e.g., whether each port is UP or DOWN), and more. The device can store the created device record in a data store (e.g., database) that is locally maintained on the device. The device can further forward the created device record out each of its ports to the other devices in the system of devices.
Upon receiving a device record from another device in the system of devices, each device can add the received device record to its local data store (if the latest version of that record does not already exist). In this manner, the device can keep copies of the device records of other system members, in addition to its own device record, in the local data store. Each device can also update its own device record in response to events that affect the port information included therein (e.g., port status changes, the addition or removal of ports, the receipt of a device record with neighbor port information, etc.).
Finally, each device in the system of devices can periodically aggregate and forward the device records in its local data store out of each of its ports, thereby communicating the latest versions of those device records and their included port information to the other devices in the system of devices.
With the framework described above, each device in the system of devices can have a complete and accurate view of the port connections and port statuses of the entire system. For instance, if there are M devices in the system of devices, each device will maintain (once the exchange of device records reaches a stable state) M device records in its local data store, each record comprising the latest port information for a different device in the system. Among other things, this system-wide port information can enable each device to more intelligently and more precisely detect port/link problems. For example, in certain embodiments, each device can analyze the device records in its local data store to detect and distinguish between: (1) a problem that causes a link to become unidirectional; (2) a problem that causes a link to become nonfunctional; and (3) a problem that causes one end port of a link to remain up while the other end port goes down. Depending on the nature of the detected problem, the system may report the problem to an administrator, or may take steps to automatically resolve the problem (by, e.g., disabling the failed ports or reloading the devices with the failed ports).
Further, since each device in the system forwards device records using every possible device-to-device port, the foregoing framework provides a more reliable and resilient communication mechanism than conventional Layer 2 unicast, multicast, or broadcast. Generally speaking, as long as there is at least one available path between any two devices in the system, each device will be able to exchange device records with every other device. This resiliency is particularly beneficial when attempting to detect port/link problems as noted above, because those port/link problems (assuming they do not break the system into partitions) will not prevent the devices from exchanging the port information needed to carry out the detection process.
In some embodiments, in addition to including port information, each device record can also include a general-purpose message field. As described in further detail below, the devices in the system can leverage this general-purpose message field to reliably communicate different types of information beyond port information (e.g., device actions, etc.) to each other. The devices can then analyze and/or act on this information for various purposes (e.g., logging, coordinating device reloads, etc.).
For clarity of explanation, in the sections that follow, several examples and embodiments are described in the context of stacking systems. However, it should be appreciated that the techniques described herein can apply to other types of networked systems where the reliable exchange of port information may be a desirable or useful feature. Accordingly, within the detailed description, references to “stacks” or “stacking systems” can be construed as encompassing generalized systems of devices, and references to “switches” or “stackable switches” can be construed as encompassing generalized devices within a system.
2. System Environment
In the example of
As noted in the Background section, one challenge with managing a system of devices such as stacking system 200 is that the ports interconnecting the constituent switches (i.e., stacking ports 204(1)-204(M)) can occasionally fail to send or receive packets, but can remain in an UP status. In these scenarios, the stackable switches that own the problematic ports cannot easily detect the failures because the ports appear to be operational according to their statuses, potentially leading to various conditions that can cause a network breakdown.
To address the foregoing and other similar issues, each stackable switch 202(1)-202(M) of stacking system 200 can include a novel device record manager 206(1)-206(M), a novel device record database 208(1)-208(M), and a novel port analysis component 210(1)-210(M). In one set of embodiments, these components can be implemented as software that is executed by, e.g., a management processor of each respective switch and stored in an associated memory (not shown). In other embodiments, one or more of these components can be implemented partially or entirely in hardware.
At a high level, each device record manager 206(1)-206(M) can execute flows for creating, updating, and propagating device records through stacking system 200. These device records, which are maintained in device record databases 208(1)-208(M), can include port information pertaining to the stacking ports of each individual switch 202(1)-202(M), such as stacking port connection information, stacking port status information, etc. The device records can also include other types of information that stackable switches 202(1)-202(M) may wish to communicate to each other, such as device actions and so on. The end result of these flows is that each stackable switch 202(1)-202(M) will have, in the form of the aggregated device records stored in device record databases 208(1)-208(M), a complete view of the stacking port connections and stacking port statuses throughout stacking system 200. Stackable switches 202(1)-202(M) can then leverage this system-wide port information in various ways. For example, in one set of embodiments, each port analysis component 210(1)-210(M) can analyze the devices records in its corresponding device record database 208(1)-208(M) to intelligently detect different types of stacking port/link problems. In further embodiments, each port analysis component 210(1)-210(M) can take steps to resolve certain types of stacking port/link problems, without human intervention.
Notably, as part of the device record propagation described above, device record managers 206(1)-206(M) can make use of every possible stacking link interconnecting stackable switches 202(1)-202(M) for communicating device records. For instance, in
The detailed operation of device record managers 206(1)-206(M) and port analysis components 210(1)-210(M) is presented in the sections that follow.
3. Creating, Updating, and Propagating Device Records
As discussed above, in various embodiments, the mechanism by which device record managers 206(1)-206(M) can communicate port information among stackable switches 202(1)-202(M) of stacking system 200 is via the exchange of device records.
With the structure of device record 300 in mind,
Starting with block 402, each device record manager 206(X) can create a device record for its host stackable switch 202(X). As part of this record creation process, device record manager 206(X) can set the device ID of the device record to an identifier of switch 202(X) (block 404), and can set the record and message record serial numbers to an initial value (e.g., 1) (block 406). Device record manager 206(X) can also add connection entries to the device record (one per stacking port of switch 202(X)) and can initialize the fields of each connection entry (block 408).
At block 508, device record manager 206(X) can set the neighbor port field of the current connection entry to a NULL or empty value (since the identity of the neighbor port is not yet known).
Finally, at block 510, device record manager 206(X) can set the port age and neighbor age fields to 0, thereby completing the initialization of the current connection entry. The current loop iteration can then end (block 512), and device record manager 206(X) can repeat blocks 504-510 as needed in order to initialize additional connection entries.
Referring back to
After the probe packet transmission at block 414, device record manager 206(X) can enter a loop (denoted by reference numeral 416) in which it can continuously (1) update the device record created at block 402, (2) learn/ingest device records received from other stackable switches in stacking system 200, and (3) forward the latest versions of the device records in local device record database 208(X) out of its stacking ports to the other stackable switches. For instance, at block 418, device record manager 206(X) can monitor for local events that affect the port information maintained in switch 202(X)'s device record. To the extent that a particular event requires a modification to one or more fields of the device record, device record manager 206(X) can process the event and can update the device record accordingly.
By way of example,
If the age time has reached the predefined threshold at block 604, device record manager 206(X) can enter a loop for each connection entry of switch 202(X)'s device record (block 606). Within the loop, device record manager 206(X) can first update the port age field of the connection entry with a new age value that reflects the amount of time since the last port status change for the entry's stacking port (block 608).
Device record manager 206(X) can then check whether the port status field of the connection entry is UP and the neighbor port field is not NULL (indicating that the stacking port is currently connected to a known neighbor) (block 610). If not, device record manager 206(X) can increment the record serial number for the device record and the current loop iteration can end (block 616).
On the other hand, if the port status is determined to be UP and the neighbor port field is determined to be not NULL at block 610, device record manager 206(X) can update the neighbor age field with a new age value that reflects the amount of time since a probe packet was last received on the stacking port from the neighbor port (block 612). Device record manager 206(X) can then proceed to increment the record serial number as mentioned above (block 614) and the current loop iteration can end (block 616).
Blocks 608-614 can be repeated as many times as needed to process all of the connection entries in switch 202(X)'s device record. Finally, at block 618, device record manager 618 can reset the age timer and return to block 602 to begin the next round of age field updates.
In addition to monitoring the age timer and updating the port age and/or neighbor age fields of switch 202(X)'s device record per flowchart 600 of
At block 702 of
If the event detected at block 702 corresponds to the addition or removal of a stacking port from switch 202(X)'s configuration, device record manager 206(X) can either add a new connection entry to the device record (for the newly added stacking port) or remove an existing connection entry (for the deleted stacking port) as appropriate (blocks 716 and 718). Device record manager 206(X) can then increment the record serial number as mentioned above (block 714) and traverse back to block 702 to detect additional events.
Returning now to
In response, device record manager 206(X) can find a connection entry in switch 202(X)'s device record whose stacking port field identifies S1 (block 804).
At block 806, device record manager 206(X) can populate the neighbor port field of the connection entry found at block 804 with the identity of the egress port from which the probe packet originated. As discussed previously, this egress port information may be included in the probe packet as a separate packet field. Device record manager 206(X) can also clear the neighbor age field of the connection entry and increment the record serial number (blocks 808 and 810).
Then, device record manager 206(X) can extract all of the device records included in the probe packet and enter a loop 812 for each device record. Within the loop, device record manager 206(X) can first check whether a device record for the switch to which the record pertains already exists in local device record database 208(X). If not, device record manager 206(X) can store a copy of the device record in database 208(X) and move on to the next device record (blocks 818 and 820).
Otherwise, device record manager 206(X) can compare the record serial number of the device record from the received probe packet with the record serial number of the existing device record in local device record database 208(X) (block 816). If the record serial number of the device record from the received probe packet is greater, device record manager 206(X) can conclude that this device record is more up-to-date than the existing device record and thus can overwrite the existing device record with the received version in database 208(X) (block 818).
On the other hand, if the record serial number of the existing device record in local device record database 208(X) is greater, device record manager 206(X) can determine that the received device record is out-of-date, and thus can proceed directly to the end of the loop iteration (block 820) without modifying the existing device record. In either case, once the loop end has been reached, device record manager 206(X) can traverse back to block 812 and repeat blocks 814-818 until all of the device records in the probe packet have been processed.
Returning now to
Generally speaking, the time to reach this stable condition will depend on the maximum hop count in system 200's topology and packet loss rate. However, it should be noted that it is not necessary for stacking system 200 to reach a stable condition before the device records stored in local device record databases 208(1)-208(M) can provide useful information to their respective switches. For example, in an extreme case, system 200 may never reach a stable condition if, e.g., the status of a particular stacking port flaps up and down every second. Even in this scenario, the device records/connection entries stored in each device record database 208(1)-208(M) will provide correct port connection information, and thus the individual switches can identify, with some analysis, which port is experiencing issues.
Further, it should be noted that, as part of block 422 of
Although not shown in
4. Detecting Port/Link Problems
As mentioned previously, once flowchart 400 has run long enough, each stackable switch 202(1)-202(M) will have, in the form of the aggregated device records stored in device record databases 208(1)-208(M), a complete view of the stacking port connections and stacking port statuses throughout stacking system 200. Stackable switches 202(1)-202(M) can then leverage this system-wide port information in various ways. For example, in one set of embodiments, port analysis components 210(1)-210(M) of stackable switches 202(1)-202(M) can use these device records to automatically detect port/link problems within stacking system 200. As used herein, the term “port/link problem” refers to a situation where one or more stacking ports of a stacking link are in an UP status, but cannot send and/or receive packets. Because the statuses of these problematic ports are UP, their host switches will (without the detection techniques described below) continue to use the problematic ports in the system's forwarding path, potentially leading to packet mis-forwarding, packet black holes, and other similar conditions.
Flowchart 900 assumes that flowchart 400 of
The stacking port and neighbor port states described above can be useful for avoiding “false positives” during the execution of flowchart 900 (i.e., detecting a port/link problem when no problem actually exists). In particular, when a port analysis component determines that a link is in a “transit” state (e.g., transit-up, transit-down, transit-aged-out), the component can skip any further problem detection processing for that link. Thus, this allows the port analysis component to account for scenarios where a given port may not have received any packets within a transit period (as defined by the first, second, third, and fourth thresholds above) due to issues other than a port failure (e.g., busy CPU, packet loss, etc.). Generally speaking, as the transit periods are increased, the likelihood of false positives will be reduced, but the time needed to detect port/link problems will be longer. The optimal lengths for the transit periods can be determined empirically on a per-deployment basis.
Starting with
At block 904, port analysis component 210(X) can check whether any port of CE1 is in a transit state (e.g., transit-up, transit-down, or transit-aged-out). This can comprise checking the stacking port, neighbor port, port status, port age, and neighbor age fields of CE1 and determining the states of the stacking port and the neighbor port in accordance with the definitions above. If either the stacking port or the neighbor port is in a transit state, port analysis component 210(X) can proceed directly to the end of the current loop iteration (block 914) and subsequently return to block 902 to process additional connection entries. As noted previously, this logic allows port analysis component 210(X) to avoid a false positive with respect to the connection entry due to, e.g., packet loss or a busy CPU.
On the other hand, if none of the ports of CE1 are in a transit state, port analysis component 210(X) can attempt to find another device record DR2 in local device record database 208(X) that has a connection entry CE2 with the neighbor port field identifying the stacking port of CE1. Device record DR2 corresponds to the stackable switch in system 200 that is directly connected to stackable switch 202(X) via the stacking port identified in CE1 (if such a neighbor exists).
If device record DR2 is found, flowchart 900 can proceed to
Otherwise, port analysis component 210(X) can move on to checking whether both stacking port states are “really-down” (block 922). If so, port analysis component 910(X) can determine that the link between the two ports is faulty/broken (block 924) and can proceed to the end of the current loop iteration at block 914 (thereby ending the processing for CE1). This situation may occur if, e.g., the cable connecting the two ports is faulty, or if the system administrator has not connected any cable between the two ports at all. The latter case is not a problem if it is intentional.
Otherwise, port analysis component 210(X) can move on to checking whether the neighbor port field of CE1 is NULL or the neighbor port state is aged-out, and whether the neighbor port state of CE2 is recently-refreshed (block 926). If so, port analysis component 210(X) can determine that there is a unidirectional link from the stacking port to the neighbor port of CE1 (block 928) and can proceed to the end of the current loop iteration at block 914 (thereby ending the processing for CE1).
Otherwise, port analysis component 210(X) can move on to checking whether the neighbor port state of CE1 is recently-refreshed and the neighbor port state of CE2 is aged-out (block 930). If so, port analysis component 910(X) can determine that there is a unidirectional link from the neighbor port to the stacking port of CE1 (block 928) and can proceed to the end of the current loop iteration at block 914 (thereby ending the processing for CE1).
Finally, if none of the foregoing conditions are met, port analysis component 210(X) can check whether the neighbor port states for both CE1 and CE2 are aged-out (block 932). If so, port analysis component 210(X) can determine that there is no communication on this link (block 936). This is typically not due to a faulty/broken/unconnected cable as in block 924; instead, this situation may be due to a chip or firmware problem. Port analysis component 210(X) can then proceed to the end of the current loop iteration at block 914 (thereby ending the processing for CE1).
Returning now to
On the other hand, if the neighbor port field is not NULL, port analysis component 210(X) can determine that there is a unidirectional link from the neighbor port to the stacking port of CE1 if the neighbor port state of CE1 is recently-refreshed and the stacking port state of CE1 is really-up (block 912). Finally, the current loop iteration can end (block 914) and port analysis component 210(X) can repeat loop 902 until all of the connection entries in DR1 have been processed.
With flowchart 900, each port analysis component 210(X) can correctly identify the three types of port/link problems described previously, as long as there is at least one path between any two stackable switches in stacking system 200 (so that every switch can know the port statuses of every other switch via the propagation of device records). If the port/link problem prevents communication between at least two stackable switches, then flowchart 900 may not be sufficient to accurately distinguish between the three types of problems because one switch may not have updated port status information for one or more of the other switches in the stacking system.
It should be appreciated that flowchart 900 of
Further, in terms of the interaction between the problem detection algorithm of
5. Resolving Port/Link Problems
Once port analysis component 210(X) for a given stackable switch 202(X) has detected a port/link problem per the algorithm of
Starting with block 1002, port analysis component 210(X) can determine whether stackable switch 202(X) can reach the other switches of stacking system 200, without using the problematic ports that were identified via the detection algorithm of
If stackable switch 202(X) cannot reach all of the other switches using non-problematic ports, port analysis component 210(X) can check whether the problematic port is part of a unidirectional link (block 1006). If so, port analysis component 210(X) can cause the switch that cannot receive packets on the link to reload itself (block 1008). This action assumes that the port problem is a software issue (e.g., a port firmware bug, etc.) that will disappear after the reload. This action may not remedy the situation if the port problem is caused by a hardware issue (e.g., a faulty cable or hardware chip, etc.).
If the link is not unidirectional, port analysis component 210(X) can then move on to checking whether the link is completely nonfunctional (block 1010). If so, port analysis component 210(X) can cause the switches at both ends of the link to reload themselves (block 1012). As noted with respect to block 1008, this action may clear the problem if it was caused by a software issue, but may have no effect if it was caused by a hardware issue. Flowchart 1000 can subsequently end. If the problem is still not resolved at this point, port analysis component 210(X) may, e.g., generate an error or log entry indicating that the problem could not be automatically corrected.
Although not shown in
As noted above, the reload solution assumes that the detected port/link problem is a software issue and thus can be resolved by reloading the software of the switch. In cases where the port/link problem is actually a hardware issue, certain enhancements to flowchart 1000 of
6. Exemplary Network Switch
As shown, network switch 1100 includes a management module 1102, a switch fabric module 1104, and a number of I/O modules 1106(1)-1106(N). Management module 1102 represents the control plane of network switch 1100 and thus includes one or more management CPUs 1108 for managing/controlling the operation of the device. Each management CPU 1108 can be a general purpose processor, such as a PowerPC, Intel, AMD, or ARM-based processor, that operates under the control of software stored in an associated memory (not shown).
Switch fabric module 1104 and I/O modules 1106(1)-1106(N) collectively represent the data, or forwarding, plane of network switch 1100. Switch fabric module 1104 is configured to interconnect the various other modules of network switch 1100. Each I/O module 1106(1)-1106(N) can include one or more input/output ports 1110(1)-1110(N) that are used by network switch 1100 to send and receive data packets. As noted with respect to
It should be appreciated that network switch 1100 is illustrative and not intended to limit embodiments of the present invention. Many other configurations having more or fewer components than switch 1100 are possible.
The above description illustrates various embodiments of the present invention along with examples of how aspects of the present invention may be implemented. The above examples and embodiments should not be deemed to be the only embodiments, and are presented to illustrate the flexibility and advantages of the present invention as defined by the following claims. For example, although certain embodiments have been described with respect to particular process flows and steps, it should be apparent to those skilled in the art that the scope of the present invention is not strictly limited to the described flows and steps. Steps described as sequential may be executed in parallel, order of steps may be varied, and steps may be modified, combined, added, or omitted. As another example, although certain embodiments have been described using a particular combination of hardware and software, it should be recognized that other combinations of hardware and software are possible, and that specific operations described as being implemented in software can also be implemented in hardware and vice versa.
The specification and drawings are, accordingly, to be regarded in an illustrative rather than restrictive sense. Other arrangements, embodiments, implementations and equivalents will be evident to those skilled in the art and may be employed without departing from the spirit and scope of the invention as set forth in the following claims.
The present application claims the benefit and priority under 35 U.S.C. 119(e) of U.S. Provisional Application No. 61/974,924, filed Apr. 3, 2014, entitled “A RESILIENT DESIGN FOR RECOVERING FROM COMMUNICATION PORT SENDING/RECEIVING PROBLEMS IN A STACKING SYSTEM.” The entire contents of this provisional application are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4625308 | Kim et al. | Nov 1986 | A |
5481073 | Singer et al. | Jan 1996 | A |
5651003 | Pearce et al. | Jul 1997 | A |
6111672 | Davis et al. | Aug 2000 | A |
6243756 | Whitmire et al. | Jun 2001 | B1 |
6366582 | Nishikado et al. | Apr 2002 | B1 |
6373840 | Chen | Apr 2002 | B1 |
6490276 | Salett et al. | Dec 2002 | B1 |
6496502 | Fite, Jr. et al. | Dec 2002 | B1 |
6516345 | Kracht | Feb 2003 | B1 |
6526345 | Ryoo | Feb 2003 | B2 |
6597658 | Simmons | Jul 2003 | B1 |
6725326 | Patra et al. | Apr 2004 | B1 |
6765877 | Foschiano et al. | Jul 2004 | B1 |
6807182 | Dolphin et al. | Oct 2004 | B1 |
6839342 | Parham et al. | Jan 2005 | B1 |
6839349 | Ambe et al. | Jan 2005 | B2 |
6850542 | Tzeng | Feb 2005 | B2 |
7093027 | Shabtay et al. | Aug 2006 | B1 |
7099315 | Ambe et al. | Aug 2006 | B2 |
7106736 | Kalkunte | Sep 2006 | B2 |
7136289 | Vasavda et al. | Nov 2006 | B2 |
7184441 | Kadambi et al. | Feb 2007 | B1 |
7206283 | Chang et al. | Apr 2007 | B2 |
7206309 | Pegrum et al. | Apr 2007 | B2 |
7274694 | Cheng et al. | Sep 2007 | B1 |
7313667 | Pullela et al. | Dec 2007 | B1 |
7327727 | Rich et al. | Feb 2008 | B2 |
7336622 | Fallis et al. | Feb 2008 | B1 |
7426179 | Harshavardhana et al. | Sep 2008 | B1 |
7480258 | Shuen et al. | Jan 2009 | B1 |
7496096 | Dong et al. | Feb 2009 | B1 |
7523227 | Yager et al. | Apr 2009 | B1 |
7565343 | Watanabe | Jul 2009 | B2 |
7602787 | Cheriton | Oct 2009 | B2 |
7697419 | Donthi | Apr 2010 | B1 |
7933282 | Gupta et al. | Apr 2011 | B1 |
8209457 | Engel et al. | Jun 2012 | B2 |
8307153 | Kishore | Nov 2012 | B2 |
8750144 | Zhou et al. | Jun 2014 | B1 |
8949574 | Slavin | Feb 2015 | B2 |
9032057 | Agarwal et al. | May 2015 | B2 |
9038151 | Chua et al. | May 2015 | B1 |
9148387 | Lin et al. | Sep 2015 | B2 |
9185049 | Agarwal et al. | Nov 2015 | B2 |
9269439 | Levy et al. | Feb 2016 | B1 |
9282058 | Lin et al. | Mar 2016 | B2 |
9313102 | Lin et al. | Apr 2016 | B2 |
9559897 | Lin et al. | Jan 2017 | B2 |
9577932 | Ravipati et al. | Feb 2017 | B2 |
20010042062 | Tenev et al. | Nov 2001 | A1 |
20020046271 | Huang | Apr 2002 | A1 |
20020101867 | O'Callaghan et al. | Aug 2002 | A1 |
20030005149 | Haas et al. | Jan 2003 | A1 |
20030169734 | Lu et al. | Sep 2003 | A1 |
20030174719 | Sampath et al. | Sep 2003 | A1 |
20030188065 | Golla et al. | Oct 2003 | A1 |
20050063354 | Garnett et al. | Mar 2005 | A1 |
20050141513 | Oh et al. | Jun 2005 | A1 |
20050198453 | Osaki | Sep 2005 | A1 |
20050243739 | Anderson et al. | Nov 2005 | A1 |
20050271044 | Hsu et al. | Dec 2005 | A1 |
20060013212 | Singh et al. | Jan 2006 | A1 |
20060023640 | Chang et al. | Feb 2006 | A1 |
20060072571 | Navada et al. | Apr 2006 | A1 |
20060077910 | Lundin et al. | Apr 2006 | A1 |
20060080498 | Shoham et al. | Apr 2006 | A1 |
20060092849 | Santoso et al. | May 2006 | A1 |
20060092853 | Santoso et al. | May 2006 | A1 |
20060176721 | Kim et al. | Aug 2006 | A1 |
20060187900 | Akbar | Aug 2006 | A1 |
20060253557 | Talayco et al. | Nov 2006 | A1 |
20060280125 | Ramanan | Dec 2006 | A1 |
20060294297 | Gupta | Dec 2006 | A1 |
20070081463 | Bohra et al. | Apr 2007 | A1 |
20070121673 | Hammer | May 2007 | A1 |
20070174537 | Kao et al. | Jul 2007 | A1 |
20080137530 | Fallis et al. | Jun 2008 | A1 |
20080192754 | Ku et al. | Aug 2008 | A1 |
20080259555 | Bechtolsheim et al. | Oct 2008 | A1 |
20080275975 | Pandey et al. | Nov 2008 | A1 |
20080281947 | Kumar | Nov 2008 | A1 |
20090125617 | Klessig et al. | May 2009 | A1 |
20090135715 | Bennah | May 2009 | A1 |
20090141641 | Akahane | Jun 2009 | A1 |
20100172365 | Baird et al. | Jul 2010 | A1 |
20100182933 | Hu et al. | Jul 2010 | A1 |
20100185893 | Wang et al. | Jul 2010 | A1 |
20100257283 | Agarwal | Oct 2010 | A1 |
20100284414 | Agarwal et al. | Nov 2010 | A1 |
20100293200 | Assarpour | Nov 2010 | A1 |
20100329111 | Wan et al. | Dec 2010 | A1 |
20110238923 | Hooker et al. | Sep 2011 | A1 |
20110268123 | Kopelman et al. | Nov 2011 | A1 |
20120020373 | Subramanian | Jan 2012 | A1 |
20120087232 | Hanabe | Apr 2012 | A1 |
20120155485 | Saha | Jun 2012 | A1 |
20120246400 | Bhadra et al. | Sep 2012 | A1 |
20130170495 | Suzuki et al. | Jul 2013 | A1 |
20130201984 | Wang | Aug 2013 | A1 |
20130215791 | Lin et al. | Aug 2013 | A1 |
20130232193 | Ali et al. | Sep 2013 | A1 |
20130262377 | Agarwal | Oct 2013 | A1 |
20140003228 | Shah et al. | Jan 2014 | A1 |
20140006706 | Wang | Jan 2014 | A1 |
20140071985 | Kompella et al. | Mar 2014 | A1 |
20140075108 | Dong et al. | Mar 2014 | A1 |
20140112190 | Chou et al. | Apr 2014 | A1 |
20140112192 | Chou et al. | Apr 2014 | A1 |
20140122791 | Fingerhut | May 2014 | A1 |
20140126354 | Hui et al. | May 2014 | A1 |
20140153573 | Ramesh et al. | Jun 2014 | A1 |
20140181275 | Lin et al. | Jun 2014 | A1 |
20140269402 | Vasseur et al. | Sep 2014 | A1 |
20140314082 | Korpinen | Oct 2014 | A1 |
20140334494 | Lin et al. | Nov 2014 | A1 |
20140341079 | Lin et al. | Nov 2014 | A1 |
20140341080 | Lin et al. | Nov 2014 | A1 |
20140376361 | Hui et al. | Dec 2014 | A1 |
20150016277 | Smith et al. | Jan 2015 | A1 |
20150036479 | Gopalarathnam | Feb 2015 | A1 |
20150055452 | Lee | Feb 2015 | A1 |
20150117263 | Agarwal et al. | Apr 2015 | A1 |
20150124826 | Edsall et al. | May 2015 | A1 |
20150229565 | Ravipati et al. | Aug 2015 | A1 |
20150281055 | Lin et al. | Oct 2015 | A1 |
20160028652 | Agarwal et al. | Jan 2016 | A1 |
20160173332 | Agarwal et al. | Jun 2016 | A1 |
20160173339 | Lin et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
2924927 | Sep 2015 | EP |
2015026950 | Feb 2015 | WO |
Entry |
---|
International Search Report and Written Opinion for International Appln. No. PCT/US2014/051903 dated Jan. 27, 2015, 16 pages. |
Final Office Action Dated Feb. 13, 2015; U.S. Appl. No. 13/850,118; (2120-04201) (14 p.). |
Amendment to Carrier Multiple Access with Collision Detection (CSMA/CD Access Method and Physical Layer Specifications—Aggregation of Multi[ple Link Segments; IEEE Std. 802.3ad; 2000; 183 pages. |
Appeal Brief Dated Jan. 18, 2013; U.S. Appl. No. 12/463,964 (2120-04200) (23p.). |
BROCADE: “FastIron Ethernet Switch”; Administration Guide; Supporting Fastlron Software Release 08.0.00; Apr. 30, 2013; 400 pages. |
BROCADE: “FastIron Ethernet Switch”; IP Multicast Configuration Guide; Supporting FastIron Software Release 08.0.00; Apr. 30, 2013; 212 pages. |
BROCADE: “FastIron Ethernet Switch”; Stacking Configuration Guide; Supporting Fastlron Software Release 08.0.00; Apr. 30, 2013; 170 pages. |
BROCADE: “FastIron Ethernet Switch”; Traffic Management Guide; Supporting Fastlron Software Release 08.0.00; Apr. 30, 2013; 76 pages. |
Cisco: “Cisco StackWise and StackWise Plus Technology”; technical white paper; C11-377239-01; Oct. 2010; Copyright 2010; 11 pages. |
Cisco: “Delivering High Availability in the Wiring Closet with Cisco Catalyst Switches”; technical white paper; C11-340384-01; Jan. 2007; Copyright 1992-2007; 8 pages. |
Configure, Verify, and Debug Link Aggregation Control Program (LACP); allied Telesyn; 2004; 10 pages. |
Dell: “Stacking Dell PowerConnect 7000 Series Switches”; A Dell Technical White Paper; Jul. 2011; 34 pages. |
International Search Report and Written Opinion for International Appln. No. PCT/US2013/076251 dated May 22, 2014, 11 pages. |
Examiner's Answer Dated May 7, 2013; U.S. Appl. No. 12/463,964 (2120-4200) (12 p.). |
Extreme Networks Technical Brief: “SummitStack Stacking Technology”; 1346—06; Dec. 2010; 8 pages. |
Final Office Action Dated Jan. 23, 2012; U.S. Appl. No. 12/463,964 (2120-04200) (11 p.). |
Fischer et al.: “A Scalable ATM Switching System Architecture”; IEEE Journal on Selected Areas in Communications, IEEE Service Center, Piscataway, US, vol. 9, No. 8, Oct. 1, 1991; pp. 1299-1307. |
U.S. Appl. No. 61/974,924, filed Apr. 3, 2014 by Lin et al. |
Juniper Networks datasheet entitled: “Juniper Networks EX 4200 Ethernet Switches with Virtual Chassis Technology”; Dated Aug. 2013 (2120-04300) (12 p.). |
U.S. Appl. No. 61/898,295, filed Oct. 31, 2013 by Agarwal. |
Link Aggregation According to IEEE Standard 802.3ad; SysKonnect GmbH; 2002; 22 pages. |
Link Aggregation; http://en.wikipedia.org/wiki/Link—aggregation; downloaded from Internet on Dec. 16, 2013; 9 pages. |
U.S. Appl. No. 61/971,429, filed Mar. 27, 2014 by Sinha et al. |
U.S. Appl. No. 61/938,805, filed Feb. 12, 2014 by Ravipati et al. |
Office Action dated Mar. 21, 2011; U.S. Appl. No. 12/463,964 (2120-04200) (10 P.). |
Partial International Search Report for PCT/US2014/051903 dated Nov. 18, 2014. |
Reply Brief Dated Jul. 8, 2013; U.S. Appl. No. 12/463,964 (2120-04200) (14 p.). |
Response to Office Action Dated Mar. 21, 2011; U.S. Appl. No. 12/463,964; Response filed Sep. 21, 2011 (2120-04200) (12 p.). |
Suckfuell: “Evolution of EWSD During the Eighties”, Institute of Electrical and Electronics Engineers; Global Telecommunications Conference; San Diego; Nov. 28-Dec. 1, 1983; [Global Telecommunications Conference], New York, IEEE, US, vol. 2, Nov. 1, 1983; pp. 577-581. |
U.S. Appl. No. 14/171,152, filed Feb. 3, 2014 by Lin et al. |
U.S. Appl. No. 14/207,146, filed Mar. 12, 2014 by Lin et al. |
U.S. Appl. No. 14/094,931, filed Dec. 3, 2013 by Lin et al. |
U.S. Appl. No. 14/268,507, filed May 2, 2014 by Agarwal. (Unpublished). |
U.S. Appl. No. 14/463,419, filed Aug. 19, 2014 by Lee. (Unpublished). |
U.S. Appl. No. 14/506,943, filed Oct. 6, 2014 by Lin et al. (Unpublished). |
U.S. Appl. No. 14/106,302, filed Dec. 13, 2013 by Lin et al. |
U.S. Appl. No. 14/530,193, filed Oct. 31, 2014 by Ravipati et al. (Unpublished). |
U.S. Appl. No. 61/745,396, filed Dec. 21, 2012 by Lin et al. |
U.S. Appl. No. 61/799,093, filed Mar. 15, 2013 by Lin et al. |
U.S. Appl. No. 61/822,216, filed May 10, 2013 by Lin et al. |
U.S. Appl. No. 61/825,449, filed May 20, 2013 by Lin et al. |
U.S. Appl. No. 61/825,451, filed May 20, 2013 by Lin et al. |
U.S. Appl. No. 61/868,982, filed Aug. 22, 2013 by Lee. |
Office Action Dated Jul. 16, 2015; U.S. Appl. No. 14/094,931; (41 pgs.) |
Extended European Search Report dated Jul. 30, 2015 for EP Appln. 15000834.0; 8 pages. |
Pei et al.: “Putting Routing Tables in Silicon”, IEEE Network, IEEE Service Center, New York, NY; vol. 6, No. 1, Jan. 1, 1992; pp. 42-50. |
Hsiao et al.: “A High-Throughput and High-Capacity IPv6 Routing Lookup System”, Computer Networks, Elsevier Science Publishers B.V., Amsterdam, NL, vol. 57, No. 3, Nov. 16, 2012, pp. 782-794. |
Notice of Allowance dated Aug. 3, 2015; U.S. Appl. No. 14/207,146 (38 pgs.). |
Notice of Allowance dated Sep. 17, 2015; U.S. Appl. No. 14/268,507 (15 pgs.). |
U.S. Appl. No. 14/876,639, filed Oct. 6, 2015 by Agarwal et al. |
Notice of Allowance dated Oct. 30, 2015; U.S. Appl. No. 13/850,118 (2120-04201) (12 pgs.). |
Response to Office Action Dated Jul. 16, 2015; U.S. Appl. No. 14/094,931; Response filed Nov. 12, 2015 (13 p.). |
Office Action Dated Nov. 20, 2015; U.S. Appl. No. 14/106,302; (14 pgs.). |
Notice of Allowance dated Dec. 14, 2015; U.S. Appl. No. 14/094,931 (25 pgs.). |
U.S. Appl. No. 14/869,743, filed Sep. 29, 2015 by Agarwal et al. |
U.S. Appl. No. 62/092,617, filed Dec. 16, 2014 by Agarwal et al. |
Office Action Dated Feb. 18, 2016; U.S. Appl. No. 14/463,419; (74 pgs.). |
Office Action Dated Feb. 23, 2016; U.S. Appl. No. 14/171,152; (61 pgs.). |
“Understanding and Configuring the Undirectional Link Detection Protocol Feature”; Cisco support communication; Jul. 9, 2007; Document ID No. 10591; 5 pages; http://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-protocol/10591-77.html. |
“DLDP Technology White Paper”; H3C products and solutions; 2008; 8 pages; http://www.h3c.com/portal/Products—Solutions/Technology/LAN/Technology—White—Paper/200812/623012—57—0.htm. |
M. Foschiano; Cisco Systems UniDirectional Link Detection (UDLD) Protocol; Memo; Apr. 2008; 13 pages; Cisco Systems. |
“Migration from Cisco UDLD to industry standard DLDP”; technical white paper; Feb. 2012; 12 pages; Hewlett-Packard Development Company. |
Rooney et al: “Associative Ternary Cache for IP Routing”, IEEE, pp. 409-416, 2004. |
“Starburst: Building Next-Generation Internet Devices”, Sharp et al., Bell Labs Technical Journal, Lucent Technologies, Inc., pp. 6-17, 2002. |
NonFinal Office Action Dated Jun. 23, 2016; U.S. Appl. No. 14/530,193; (73 pgs.). |
NonFinal Office Action Dated Jul. 13, 2016; U.S. Appl. No. 14/876,639; (69 pgs.). |
Final Office Action Dated Jun. 3, 2016; U.S. Appl. No. 14/106,302; (35 pgs.). |
Notice of Allowance Dated Jan. 6, 2017; U.S. Appl. No. 14/530,193; (18 pgs.). |
Notice of Allowance Dated Feb. 8, 2017; U.S. Appl. No. 14/876,639; (25 pgs.). |
Final Office Action Dated Jan. 26, 2017; U.S. Appl. No. 14/463,419; (57 pgs.). |
Notice of Allowance Dated Oct. 13, 2016; U.S. Appl. No. 14/106,302; (23 pgs.). |
Final Office Action Dated Aug. 24, 2016; U.S. Appl. No. 14/171,152; (39 pgs.). |
NonFinal Office Action Dated Nov. 9, 2016; U.S. Appl. No. 14/506,943; (18 pgs.). |
Number | Date | Country | |
---|---|---|---|
20150288567 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61974924 | Apr 2014 | US |