Near end of Exhaust upstroke, an Intake valve is closed, an Exhaust valve is open, Exhaust gases are driven out said exhaust valve,
Exhaust Top Dead Center, only said Exhaust valve is open and said Exhaust gases are present in the near areas of an Exhaust tract,
During Intake downstroke, Inlet and Exhaust valves are open, Fuel has been injected 1 thru said exhaust valve, Fuel could be injected through the intake, (Inlet valve Air+Fuel at mixture ratio of zero to richer than Stochiometric of its own starting gases or the future total mixture ratio of the whole cylinder)+(Exhaust valve Exhaust Regurgitation+Fuel at mixture ratio of zero to richer than Stochiometric of its own starting gases or the future total mixture ratio of the whole cylinder)=Control and Optimization of length of time, temperature, and pressure of future burning,
During Intake downstroke, Inlet and Exhaust valves are closed. An Increase in Expansion Ratio begins by ending further Inhalation at a cylinder volume less than the full usable cylinder volume which will be used during the following combustion downstroke.
Bottom Dead Center, Intake downstroke stroke changes to upward Compression stroke.
Near end of Exhaust upstroke, an Inlet valve opens and an Exhaust valve is open, Exhaust gases are driven into Intake and Exhaust tracts, (In a super charged engine the exhaust valve could be closed to force Exhaust gases against the supercharger into the Intake tract, or to control the exhaust gases driven into the Intake tract)
Exhaust Top Dead Center, valve overlap condition, both valves open and said Exhaust gases are present in the near areas of the Intake and Exhaust tracts,
During Intake downstroke, Inlet and Exhaust valves open. Fuel has been injected 1 thru said Exhaust valve, Fuel could be injected through the said Intake valve, ((Inlet valve Exhaust Regurgitation+Fuel at mixture ratio of zero to richer than Stochiometric of its own starting gases or the future total mixture ratio of the whole cylinder)+(Intake Air+Fuel at mixture ratio of zero to richer than Stochiometric of its own starting gases or the future total mixture ratio of the whole cylinder))+(Exhaust valve Exhaust Regurgitation+Fuel at mixture ratio of zero to richer than Stochiometric of its own starting gases or the future total mixture ratio of the whole cylinder)=Control and Optimization of length of time, temperature, and pressure of future burning,
During Intake downstroke, said Inlet and Exhaust valves are closed, An Increase in Expansion Ratio begins by ending further Inhalation at a cylinder volume less than the full usable cylinder volume which will be used during the following combustion downstroke,
Bottom Dead Center, Intake downstroke stroke changes to upward Compression stroke.
Near end of Exhaust upstroke, an Intake valve is closed, an Exhaust valve is open, Exhaust gases are driven thru said Exhaust valve,
Exhaust Top Dead Center, only the Exhaust valve is open and said Exhaust gases are present in the near areas of an Exhaust tract,
During Intake downstroke, Only said Exhaust valves are open, Fuel has been injected 1 thru said Exhaust valve, (Exhaust valve Exhaust Regurgitation+Fuel at mixture ratio of zero to richer than Stochiometric of its own starting gases or the future total mixture ratio of the whole cylinder)+
During Intake downstroke, Only said Inlet valves are open. Fuel could be injected through the said Intake valve, (Intake Air+Fuel at mixture ratio of zero to richer than Stochiometric of its own starting gases or the future total mixture ratio of the whole cylinder)=Control and Optimization of length of time, temperature, and pressure of future burning,
During Intake downstroke, Inlet and Exhaust valves are closed, An Increase in Expansion Ratio begins by ending further Inhalation at a cylinder volume less than the full usable cylinder volume which will be used during the following combustion downstroke.
Near end of Exhaust upstroke, an Intake valve is closed, an Exhaust valve is open, Exhaust gases are driven out exhaust valve,
Exhaust Top Dead Center, only said Exhaust valve is open and Exhaust gases are present in the near areas of an Exhaust tract,
During Intake downstroke, Only said Exhaust valves are open. Fuel has been injected thru said Exhaust valve, (Exhaust valve Exhaust Regurgitation+Fuel at mixture ratio of zero to richer than Stochiometric of its own starting gases or the future total mixture ratio of the whole cylinder)+
During Intake downstroke, only Inlet valves are open, Fuel could be injected through the Intake, (Intake Air+Fuel at mixture ratio of zero to richer than Stochiometric of its own starting gases or the future total mixture ratio of the whole cylinder)=Control and Optimization of length of time, temperature, and pressure of future burning,
During the Compression upstroke the intake valve is open to allow some of the cylinder gases to be sent out of the cylinder back into the intake tract, An Increase in Expansion Ratio occurs by reducing the Inhalation cylinder volume to less than the full usable cylinder volume which will be used during the following combustion downstroke.
In one embodiment a piston in an internal combustion engine is pushed down to the bottom of the cylinder which causes the opening of exhaust ports. The pressure in the exhaust piping is positive 7 (
Pressure in the Exhaust tract is an indirect indication of the direction of flow with in the exhaust tract, positive is flow outward from the cylinder and negative pressure into the cylinder which can be cross verified by intake pressure, crankshaft or camshaft position, cylinder pressure. In one embodiment pressure sensors in the exhaust tract 5 (
Another embodiment of this invention utilizes variations in the fuel delivered from the intake and the exhaust ports to achieve variation in fuel to air ratios that allow ignition while also allowing complete burning without high combustion temperatures which lead to nitrogen oxide formation.
Another embodiment of this invention utilizes different fuels in the Intake versus the exhaust to better achieve the results described in the paragraph above.
As velocity decreases over distance more rapidly as droplets form and become smaller, a solid stream therefore maintains the maximum velocity against turbulence and opposite gas flow and therefore is able to oppose and traverse the exhaust gas flow. The impact of the solid stream on the poppet valve produces different liquid sheet angles and the break-up lengths at various angles and locations of impact on different shapes of valves.
Restated, Solid stream nozzles provide the highest impact per unit area. The large free passage design through the typically round solid stream nozzle orifice reduces clogging. In one embodiment a solid stream non-atomized spray directed against the exhaust valve achieves fuel heating and atomization from the deflection impact against the valve and the fuel charge flow against the flow of exhaust gases.
More than one injector can be used to create even thermal conditions in the valve metal which would reduce internal stresses within the metal because of differences in thermal expansion and contraction.
The location of highest heat in the valve are presented in patent U.S. Pat. No. 4,073,474. Heat in the poppet valve periphery that contacts the valve seat is conducted away from the poppet valve. The hot center of the valve disk or head expands the metal against the cooler less thermally expended valve head periphery in contact with the valve seat, resulting in hoop stress and cracks within the valve periphery that contacts the valve seat within the intake tract. In one embodiment of this invention cooling from fuel and or water spray would be best directed upon this hot center of the valve head. Described in alternate language, the solid spray impacts between the beginning of the poppet valve stem and the beginning of the part of the valve periphery which makes contact with the valve seat in the cylinder head.
Fortunately the exhaust valve is typically placed in the cylinder head with a short exit path to the exhaust header, so it maybe possible to perform conversions of existing engines by installing injectors in the exhaust headers. Smaller injectors know as pico injectors are available. Smaller single cylinder engines or engines with separated cylinders allow more direct access to the exhaust valve from many directions and thus are better candidates for inexpensive conversion.
Small two stroke engines present a simpler conversion.
Copy of Paragraph 3 of the Provisional Patent:
This conception of injecting fuel into the combustion chamber from the exhaust side of the engine is unexpected because conventional expectations do not see flow going this direction. Conventional expectations are also that the injection into this area would cause a back fire or wasted fuel. In some cases fuel is injected into the exhaust port, but it is designed to combust there and flow out the exhaust pipe to provide heating and preparation of the mixture for the catalytic converter. In this invention the fuel is designed to go into the combustion chamber and be burned there for propulsion.
Copy of Paragraph 4 of the Provisional Patent:
The hot surfaces of the exhaust tract and ports and exhaust valves that would normally be considered a structural melting problem are used to heat and make gaseous (volatilize) the liquid fuel which results in better combustion. The fuel spray also serves to cool the problematically hot exhaust valve. Heavier fuels can used because of the hot volatilization. The cooling of the exhaust ports and valves reduces the potential for uncontrolled burning or detonation caused by the hot surfaces and thus suppresses the very reason that this invention would be considered impossible to implement.
Copy of Paragraph 8 of the Provisional Patent:
Another embodiment of this invention utilizes variations in the fuel delivered from the intake and the exhaust ports to achieve variation in fuel to air ratios that allow ignition while also allowing complete burning without high combustion temperatures which lead to nitrogen oxide formation.
Copy of Paragraph 9 of the Provisional Patent:
Another embodiment of this invention utilizes different fuels in the intake versus the exhaust to better achieve the results described in the paragraph above.
Paragraph 10 of the Provisional Patent:
Another embodiment of this invention utilizes water or its vapors or constituent parts of water in the exhaust port injector to cool the cylinder charge and the components of the cylinder itself to achieve the results described in the above.
Definitions
Inlet=Intake
Valve=valves
Poppet Valve=shaped like a tulip, or shaped like the bottom of a stemware wine glass.
Intake pressure=Airmass Sensor=a sensing of engine load with predicts engine breathing efficiency to balance it with versus fuel supplied.
Exhaust=Exhaust Gases.
Backwards Injection=Exhaust valve fuel injection
In most embodiments of piston engines, Inherent Residual Exhaust gases exist, inherent to incomplete scavenging of the leftover unpumped Top Dead Center combustion space, wave action, Some Internal EGR is inherent to almost all engines. Supercharging across the valve overlap can avoid inherent residual loss of fuel to the exhaust tract.
In most embodiments of piston engines: Combustion reburning of exhaust gases by same engine=Exhaust Gas Recirculation=EGR, in most cases the exhaust is piped externally from the exhaust to the intake.
In most embodiments of piston engines: Internal Exhaust Gas Recirculation=Residual Exhaust Gases left in the cylinder between cycles.
In some embodiments of piston engines: Internal Exhaust Gas Recirculation=Exhaust Gas Regurgitation where the Exhaust gases are expelled from the cylinder and then re-inhaled between cycles.
Engines may or may not have=Cooled exhaust gas recirculation
Stratified Charge=different fuel and gas properties within the combustion chamber.
Stratified Charge=more than one gas fuel mixture burned in the same space=rich and Lean Burning=Lean, Stochiometric, Rich, EGR=Exhaust, Intake, Direct Injections=Steps in consecutive combustion=longer burn time=barriers to Fast Burning.
Prelgnition=Auto ignition=Knock which may lead to:
Fast Burning=Explosion=Detonation instead of deflagration.
Increase in Expansion Ratio: An Increase in Expansion Ratio can occur by reducing the Intake cylinder volume to less than the full usable cylinder volume which will be used during the following combustion downstroke.
Direct Injection is another source of fuel that enters the engine without going thru the intake and exhaust system. Direct Injection could be added to the embodiments in this disclosure.
In embodiments primarily of four stroke engines the inventions Exhaust valve fuel injection enables having mixture control more independent of the intake air and Intake valve timing without the need for direct injection.
Kits made up of ECU and injection systems and exhaust headers may be packaged for application in manufacturing engines and conversion of existing engines.
Exhaust valve fuel injection improves on the ability of Exhaust Gas Recirculation to occur internally, inherently using the already existing engine intake and exhaust valves and pistons without an additional external separate circuit and mechanisms.
Exhaust valve fuel injection improves on the ability to make the expansion ratio of the engine greater than the piston and cylinders compression ratio as calculated by piston sweep and cylinder volumes alone. In the vernacular it is having the engine doing less, so the engine has more time to extract more per unit of fuel, an increase in efficiency commonly credited to Atkinson, the Atkinson cycle. The engine puts out less power but remains the same weight but it is simple to make as it uses the same number and type of parts as ordinary engines.
Exhaust valve fuel injection improves on the ability to combine increases in the expansion ratio over the calculated compression ratio with improvements in internal Inherent Exhaust Gas Recirculation combined with improvements in mixture control more independent of the intake air and intake valve timing.
If valve timing is varied during engine operation all of the embodiments can be optimized for conditions and can be accomplished without the pumping losses of a variable intake restrictor throttle.
Exhaust valve fuel injection enables one to abandon the use of restriction throttles and external exhaust gas recirculation systems. One may or may not get rid of intake injection and direct injection systems. The potential utility of variable valve timing increased. The variable valves allow throttling the engine by use of more internal residual exhaust and fuel supplied from the exhaust valve and tiny amounts of air and fuel from the intake valve. The different stratified cylinder charge from the intake and exhaust valve create a longer duration lower peak pressure burning of a stratified charge mixture of air and exhaust recirculated gases.
Drawing figures illustrate other sequences of 4 stroke engine events, for example the order
Additional modifications and improvements of the present invention may also be apparent to those of ordinary skill in the art. Thus, the particular combination of parts described and illustrated herein is intended to represent only one embodiment of the present invention, and is not intended to serve as limitations of alternative devices within the spirit and scope of the invention.
This application is a CIP of Ser. No. 12/758,873 filed 2010 Apr. 13 by the present Inventor, now U.S. Pat. No. 8,104,450 B2, issued on 31 Jan. 2012 which is incorporated by reference. This Application claims the benefit of PPA Ser. No. 61/168,625 filed 2009 Apr. 13 by the present Inventor, which is incorporated by reference. This application claims the benefit of PCT Ser. No. PCT/US10/30957 filed 2010 Apr. 14 by the present Inventor, which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1812289 | Friedl | Jun 1931 | A |
1873119 | Griswold | Aug 1932 | A |
1952881 | Minter | Mar 1934 | A |
1985528 | Thaheld | Dec 1934 | A |
2656826 | Galuska | Oct 1953 | A |
4050420 | Cataldo | Sep 1977 | A |
4073474 | Hashimoto et al. | Feb 1978 | A |
4142493 | Schira | Mar 1979 | A |
4440124 | Eckert | Apr 1984 | A |
5022353 | Kamamura | Jun 1991 | A |
5197428 | Hornby | Mar 1993 | A |
5205246 | McWhorter | Apr 1993 | A |
5421301 | Fueling | Jun 1995 | A |
5645029 | Ohsuga | Jul 1997 | A |
5758309 | Satoh | May 1998 | A |
5957106 | Maloney et al. | Sep 1999 | A |
6009862 | Wanat | Jan 2000 | A |
6314935 | Tanaka et al. | Nov 2001 | B2 |
6336320 | Tanaka et al. | Jan 2002 | B1 |
6953024 | Linna | Oct 2005 | B2 |
6968831 | Kim et al. | Nov 2005 | B2 |
7467614 | Stewart | Dec 2008 | B2 |
8051830 | Taylor | Nov 2011 | B2 |
8104450 | Gentile | Jan 2012 | B2 |
8561581 | Taylor | Oct 2013 | B2 |
20020046728 | Tanaka et al. | Apr 2002 | A1 |
20020134364 | Miura | Sep 2002 | A1 |
20050045145 | Hiraya | Mar 2005 | A1 |
20070119414 | Leone | May 2007 | A1 |
20070144470 | Murase et al. | Jun 2007 | A1 |
20080060619 | Allston | Mar 2008 | A1 |
20090056319 | Warner et al. | Mar 2009 | A1 |
20090084094 | Goss et al. | Apr 2009 | A1 |
20110088653 | Gentile | Apr 2011 | A1 |
20110247584 | Gentile | Oct 2011 | A1 |
20120216780 | Gentile | Aug 2012 | A1 |
20120222651 | Gentile | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
PCTUS2010005422 | Oct 2010 | WO |
PCTUS2010030957 | Oct 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20110247584 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
61168625 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12758873 | Apr 2010 | US |
Child | 12903286 | US |