Frangible RFID tag and method of producing same

Information

  • Patent Grant
  • 9626620
  • Patent Number
    9,626,620
  • Date Filed
    Wednesday, June 4, 2014
    10 years ago
  • Date Issued
    Tuesday, April 18, 2017
    7 years ago
Abstract
A frangible RFID tag includes a substrate having at least one weakened area, an RFID chip and an antenna. The RFID chip and the antenna are located on the substrate and the antenna is electrically connected to the RFID chip. The RFID tag also includes a plurality of adhesive areas applied to the underside of the substrate. The adhesive areas allow the RFID tag to be secured to an object. The adhesive areas may be spaced from one another to form at least one gap between the adhesive areas. The gap(s) may be located under the at least one weakened area.
Description
TECHNICAL FIELD

The present invention relates to radio-frequency identification tags, and more particularly to tamper-evident and tamper-resistant radio-frequency tags that may be secured to an object.


BACKGROUND ART

Radio frequency identification (RFID) tags are commonly used to monitor and track a variety of goods. In particular, RFID tags may be secured to and/or formed directly within (e.g., molded within) an object or a storage container. These RFID tags are then programmed with information relating to the object and/or the substance contained within the storage container. The RFID tags may then be scanned during storage and/or transport to obtain the product details.


For valuable products/objects, some individuals may have an incentive to tamper with and/or switch the RFID tag with an RFID tag from another object/container. For example, in the context of blood products, if one bottle of blood product is marked as HIV+ (and therefore is unusable), and another container of acceptable blood product breaks, an individual may be tempted to switch the RFID tag of the broken bottle of blood product with the RFID tag on the bottle marked as HIV+. As one would expect, this would create a significant health risk to a patient receiving the HIV+ blood product.


SUMMARY OF THE EMBODIMENTS

In a first embodiment of the invention, there is provided a frangible RFID tag having a substrate with at least one weakened area, and an RFID chip and antenna located on the substrate. The antenna may be electrically connected to the RFID chip. The RFID tag may also include a plurality of adhesive areas applied to an underside of the substrate and configured to allow the RFID tag to be secured to an object. The plurality of adhesive areas may be spaced from one another to form at least one gap between the plurality of adhesive areas. The at least one gap may be located under the at least one weakened area.


Additionally, the frangible RFID tag may also include a first release liner, an adhesive layer located above the substrate, and a top layer secured to the substrate via the adhesive layer. The first release liner may be located below the plurality of adhesive areas and may be configured to be removed from the plurality of adhesive areas prior to securing the RFID tag to the object. The top layer may cover the antenna and RFID chip, may be opaque, and/or may be a thin polymer layer. The top layer may protect the RFID chip from dust and moisture.


In some embodiments, the plurality of adhesive areas may be areas of high bond adhesive, and the weakened areas may be cuts formed within the substrate. For example, the weakened areas may be die-cuts. The antenna may include a loop, and at least one of the weakened areas may be within the loop and/or extend below the antenna. The weakened areas may be configured to cause destruction of the RFID tag (e.g., tearing of the antenna) upon removal of the RFID tag from the object.


In accordance with further embodiments, a blood component storage container may include a body defining an interior volume for storing a blood component, and a frangible RFID tag secured to a surface of the storage container. The RFID tag may include a substrate having at least one weakened area, an RFID chip located on the substrate, an antenna located on the substrate and electrically connected to the RFID chip, and a plurality of adhesive areas (e.g., areas of high bond adhesive). The plurality of adhesive areas may be applied to the underside of the substrate and may be configured to allow the RFID tag to be secured to the blood component storage container. The adhesive areas may be spaced from one another to form at least one gap between the adhesive areas. The gap(s) may be located under the weakened area(s).


The frangible RFID tag may also include a first release liner that is located below the plurality of adhesive areas. The first release liner may be removed from the adhesive areas prior to securing the RFID tag to the blood storage container. The tag may also include an adhesive layer located above the substrate, and a top layer secured to the substrate via the second adhesive layer. The top layer may cover the antenna and RFID chip, and may be opaque. Additionally or alternatively, the top layer may be a thin polymer layer and may protect the RFID chip from dust and moisture.


The weakened areas may be cuts (e.g., die-cuts) formed within the substrate, and may extend below the antenna. The antenna may include a loop, and one of the weakened areas may be within the loop. Destruction of the RFID tag may include tearing of the antenna.


In accordance with additional embodiments, a method of producing a frangible RFIG tag includes (1) providing a device layer having a substrate with an antenna and an RFID chip located on the substrate, (2) forming at least one weakened area within the substrate, and (3) applying a plurality of adhesive areas (e.g., areas of high bond adhesive) to an underside of the substrate. The plurality of adhesive areas may be configured to allow the RFID tag to be secured to an object and may be spaced from one another to form at least one gap between the adhesive areas. The gap(s) may be located under the weakened area(s).


In some embodiments, the method may also include (1) applying a first release liner to the plurality of adhesive areas, and (2) applying a top layer to a top surface of the device layer. The first release liner may be configured to be removed from the plurality of adhesive areas prior to securing the RFID tag to the object. The top layer may cover the antenna and RFID chip, and may include an adhesive layer that secures the top layer to the device layer. The top layer may be opaque and/or a thin polymer layer.


In further embodiments, forming the weakened area(s) within the substrate may include cutting and/or die-cutting the substrate. The antenna may include a loop and one of the weakened areas may be located within the loop. Additionally or alternatively, the weakened areas may extend below the antenna. The weakened areas may be configured to cause destruction of the RFID tag (e.g., tearing of the antenna) upon removal of the RFID tag from the object.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of embodiments will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:



FIG. 1 schematically shows an RFID tag in accordance with various embodiments of the present invention.



FIG. 2 is a schematic cross-sectional side view of an RFID tag in accordance with various embodiments of the present invention.



FIG. 3A is a schematic view of the RFID tag shown in FIG. 1 in accordance with exemplary embodiments of the present invention.



FIG. 3B is a schematic view of the RFID tag shown in FIG. 1 in accordance with alternative embodiments of the present invention.



FIG. 4 is an exemplary underside view of the RFID tag shown in FIG. 1 in accordance with various embodiments of the present invention.



FIG. 5 schematically shows the relative thicknesses of the various layers of the RFID tag shown in FIG. 1 in accordance with illustrative embodiments of the present invention.



FIG. 6 is a schematic cross-sectional side view of the RFID tag shown in FIG. 1 during tampering and/or attempted removal from an object, in accordance with various embodiments of the present invention.



FIG. 7 schematically shows an RFID tag without the top layer and secured to an object in accordance with illustrative embodiments of the present invention.



FIG. 8 schematically shows the RFID tag in FIG. 7 secured to an object with the top layer secured to the RFID tag in accordance with illustrative embodiments of the present invention.



FIGS. 9A and 9B schematically show the RFID tag of FIGS. 7 and 8 being destroyed during attempted removal from the object, in accordance with illustrative embodiments of the present invention.



FIGS. 10A-10E schematically show various alternative configurations of an RFID tag in accordance with additional embodiments of the present invention.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

In illustrative embodiments, a radio-frequency identification (RFID) tag may have a substrate with weakened areas that act as tear initiation sites when a tensile load is applied to the RFID tag. In this manner, various embodiments of the present invention exhibit tamper-proof and/or tamper-evident characteristics upon attempted removal of the RFID tag from an object to which it is secured. Furthermore, various embodiments of the present invention also prevent an individual from removing an RFID tag from one object and placing it on another object or otherwise switching the RFID tags of multiple objects.



FIG. 1 schematically shows an RFID tag 100 in accordance with some embodiments of the present invention. As discussed in greater detail below, the RFID tag 100 may consist of a number of layers, including an adhesive layer that allows the RFID tag 100 to be secured to an object 110. In this manner, the RFID tag 100 may be used to track and monitor any number of objects once secured to the object.


As mentioned above and as shown in FIG. 2, the RFID tag 100 may consist of a number of layers. For example, the RFID tag 100 may include a main, device layer 120 having a substrate 125 upon which the RFID chip 130 and antenna 140 (e.g., a copper trace antenna) may be located. Although any number of materials may be used for the substrate 125, in some embodiments, the substrate may be a polyethylene terephthalate (PETG) film. In order to facilitate the destruction of the RFID tag 100 during attempted removal from the object 110, the substrate 125 can have one or more weakened areas 150 that act as tear initiation points during removal.


The weakened areas 150 may be cuts, perforations, or similar structures within the substrate 125 that weaken the substrate 125 in the area of the cut/perforation. In this manner, when a tensile force is applied to the RFID tag 100 (e.g., during removal from the object), the tensile load will cause the substrate 125 to tear at the weakened area(s) 150. As discussed in greater detail below, this tearing, in turn, may propagate across the antenna 140 and/or RFID chip 130, thereby destroying the RFID tag 100.


In order to ensure destruction of the RFID tag 100 during removal, it is preferable to locate the weakened areas 150 in areas that will cause the tear to propagate across the antenna 140 and/or the RFID chip 130. For example, as best shown in FIGS. 3A and 3B, the weakened areas 150 may be located within/between the various sections of the antenna 140. Additionally, one of the weakened areas 150 may be formed within the main loop 142 of the antenna 140 (e.g., the rectangular area of the antenna 140 extending out from and partially encircling the RFID chip 130). It is also important to note that the weakened areas 150 can extend below the antenna 140 (e.g., such that the portion of the substrate 125 directly below the antenna is weakened) or the weakened areas 150 can stop just prior to the antenna 140 and continue on the other side of the antenna 140 (e.g., such that the portion of the substrate 125 directly below the antenna 140 is not weakened/cut but the portion of the substrate 125 on either side of the antenna 140 is weakened/cut).


The cuts/perforations may be formed in/introduced into the substrate 125 in a number of ways. For example, the cuts/perforations may be stamped into the substrate 125 using a die cut process and/or they may be made using a laser cutting, photo-etching, water-jet cutting, or a more traditional cutting process using a sharp edge. Additionally or alternatively, depending upon the material used for the substrate 125, the cuts/perforations may be molded directly into the substrate 125 when the substrate 125 is formed. It is also important to note that the weakened areas 150 (e.g., the cuts/perforations) may also include an arrow head to enhance the tear initiation properties of the weakened area 150. Furthermore, the cuts need not extend through the entire thickness of the substrate 125. For example, the cuts may only partially extend through (e.g., 70-95% through) the thickness of the substrate 125.


In order to protect the RFID chip 130 and antenna 140 from dust, moisture, and other contamination that may negatively impact the performance of the RFID tag 100, the RFID tag 100 may also include a top layer 160 that is secured to the device layer 120 via a layer of adhesive 170. The top layer 160 may be any number of polymers, for example, polypropylene (e.g., a polypropylene film), and, in some embodiments, may be opaque so that the RFID chip 130, the antenna 140 and/or the weakened areas 150 are not visible through the top layer 160. It is also important to note that the material (and the thickness of that material) chosen for the top layer 160 should not be strong enough to support the tensile load during attempted removal of the RFID tag 100 and prevent the underlying substrate 125 from tearing.


It is also important to note that the top layer 160 can provide control over the electromagnetic UHF performance characteristics of the tag 100. For example, the antenna 140, the top layer 160 and the substrate 125 of the RFID tag 100 essentially form a capacitor. Furthermore, the capacitance of the RFID tag 100 impacts the timing of the resistor-capacitor (RC) circuit that, in turn, is a characteristic of the UHF operation of the RFID tag 100 (e.g., the natural frequency of operation of the RFID tag 100). The top layer 160 helps prevent the build-up of condensation (liquid or frost) on the antenna 140. This build-up of condensation can cause the capacitance to shift and negatively impact the performance of the RFIG tag 100 (e.g., the build-up of condensation can decrease the distance at which the RFID tag 100 can be read). Therefore, by controlling the properties of the top layer 140 (e.g., an insulating layer in contact with the antenna 140), some embodiments of the present invention are able to prevent/limit condensation build-up, provide a repeatable capacitance and RC circuit, and improve the performance of the RFID tag 100.


As mentioned above, the RFID tag 100 can be secured to an object 110. To that end, the RFID tag 100 can also include a second layer of adhesive 180 on the underside 127 of the substrate 125. This second layer of adhesive 180 may be used to secure the RFID tag 100 to the object 110. As shown in FIG. 4, the RFID tag 100 may include a release liner 185 that covers and protects the adhesive layer 180 prior to the tag 100 being secured to an object 110. When the tag 100 is to be secured to an object 110, the user may simply remove the release liner 185 to expose the adhesive layer 180 and stick the RFID tag 100 to the object 110.


In some embodiments, the second adhesive layer 180 may include a stronger adhesive than that of the first adhesive layer 170 used to secure the top layer 160 to the substrate 125. For example, the first adhesive layer 170 may be a layer of standard glue (e.g., Fasson® S333 adhesive by Avery-Dennison), and the second adhesive layer 180 may be a layer of high bond adhesive, for example, Very High Bond Adhesive (VHB™) from 3M™. By utilizing a high bond adhesive to secure the RFID tag 100 to the object 110, some embodiments require a strong force to remove the RFID tag 100 from the object 110. As discussed in greater detail below, this, in turn, helps to ensure destruction of the tag 100 upon removal.


As shown in FIGS. 2-4, in some embodiments, the second adhesive layer 180 may be discontinuous such that adhesive is only located in certain areas (adhesive areas 182) of the underside 127 of the substrate 125, and there are spaces/gaps 184 between the adhesive areas 182. For example, in some embodiments, the adhesive may only be present in areas in which the weakened areas 150 are not present. In other words, the adhesive may be located below the non-weakened areas, leaving the spaces/gaps 184 below the weakened areas 150. As discussed in greater detail below, in this configuration, the high bond adhesive areas 182 do not act to strengthen the weakened areas 150, and the spaces/gaps 184 concentrate the tensile force required to remove the label (e.g., the force required to overcome the strength of the adhesive areas securing the RFID tag 100 to the object 110) on the weakened areas 150.


Although FIG. 3A shows all of the weakened areas 150 located within the spaces/gaps 184 in the adhesive layer 180, due to the tolerances and variations that occur when applying the adhesive layer 180, it may be difficult to achieve this configuration for every tag. To that end, some of the weakened areas 150 may be staggered to ensure that at least one of the weakened areas 150 is located within a space/gap 184. For example, as shown in FIG. 3B, the weakened areas 190A/B/C near the loop 142 of the antenna 140 may be staggered such that some of the weakened areas 190A are located closer to the center line of the RFID tag 100 and other weakened areas 190B/C are located slightly more outward from the center line. This staggering ensures that at least one of the weakened areas (e.g., weakened areas 190B/C) near the antenna loop 142 is located within a space/gap 184 in the adhesive layer 180, and accommodates for the manufacturing tolerances for adhesive placement (e.g., the adhesive areas 180) and cutting of the weakened areas 150.


Although the types and thicknesses of the materials used in the RFID tag 100 can vary depending upon the application (e.g., the type and material of the object to which the RFID tag 100 will be secured, the ambient temperature and conditions at which the object will be stored, etc.), in some embodiments, the thickness of the second adhesive layer 170 may be greater than the thicknesses of the other layers of the RFID tag 100 (see FIG. 5). For example, the top layer 160 can be approximately 50 microns (e.g., 40-60 microns) thick, the first adhesive layer 170 may be approximately 20 microns (15-25 microns) thick, the inlay die (e.g., the RFID chip 130) may be approximately 150 microns (125-175 microns) thick, the inlay copper (e.g., the antenna 140) may be approximately 18 microns (14-22 microns) thick, the substrate 125 may be approximately 50 microns (40-50 microns) thick, and the second adhesive layer 180 may be approximately 640 microns (600-700 microns) thick.


As mentioned above and as schematically shown in FIG. 6, the weakened areas 150 (e.g., in conjunction with the configuration of the second adhesive layer 180) ensure that the RFID tag 100 is destroyed if an individual attempts to remove the tag 100 from the object. For example, as an individual begins to tamper with the RFID tag 100 and begins to pull the tag 100, the first adhesive area 182A will begin fail and separate from the surface of the object 110. Once this first adhesive area 182A has completely separated from the object 110, the tensile load from pulling the tag 100 will be concentrated on the portion of the substrate between the first adhesive area 182A and the second adhesive area 182B. Furthermore, because the weakened areas 150 reduce the tensile load required to tear the substrate 125 and the load required to separate the adjacent adhesive area 182B is greater than the load that the weakened area 150 can support, the applied tensile load will tear the substrate 125 at the weakened area 150.


It is also important to note that, like the weakened areas 150 in the substrate 125, the antenna 140, first adhesive layer 170 and the top layer 160 cannot support the tensile load required to separate the adjacent adhesive area 182B from the object 110. Therefore, the tear will propagate through the antenna 140 (and any similar conductive or semi-conductive material), the first adhesive layer 170 and the top layer 160. This, in turn, will sever the electrical connection and render the RFID tag 100 inoperable.



FIGS. 7-8, 9A and 9B show an RFID tag 100 being secured to an object (e.g., a plasma storage bottle 200), and subsequently someone attempting to remove the RFID tag 100 from the bottle 200. As shown in FIG. 7, in some embodiments, the device layer 120 (e.g., the substrate 125, antenna 140, and RFID chip 130) may be secured to the bottle 200 via the second adhesive layer 180 (e.g., the layer of VHB adhesive), without the top layer 160 and the first adhesive layer 170. As discussed above, the substrate 125 may have a number of weakened areas 150 (e.g., cuts, perforations, etc.), and the second adhesive layer 180 may have a number of adhesive areas 182 with spaces/gaps 184 (e.g., areas without adhesive) between the adhesive areas 182. These spaces/gaps 184 may be located under the weakened areas 150 in the substrate 125.


Once the device layer 120 is secured to the bottle 200, the user may then remove a release layer from the underside of the first adhesive layer 170 and secure the top layer 160 to the substrate 125 via the first adhesive layer 170 (FIG. 8). As mentioned above, the top layer 160 may be opaque so that the weakened areas 150 are not visible to someone attempting to remove the RFID tag 100 from the bottle 200. It is also important to note that, although FIGS. 7 and 8 show the top layer 160 being secured to the substrate 125 after the device layer 120 is attached to the bottle, the top layer 160 may be part of the construct and may be secured to the device layer 120 prior to the device layer 120 being secured to the bottle 200 (e.g., during manufacturing of the RFID tag 100).



FIGS. 9A and 9B show an individual attempting to remove the RFID tag 100 from the bottle 200. In particular, as the individual applies sufficient force to overcome the strength of the second adhesive layer 180 (e.g., the VHB adhesive layer), a portion of the RFID tag 100 will begin to lift off of the bottle 200. However, as the individual continues to pull on the RFID tag 100 and a portion of the second adhesive layer 180 (e.g., the first adhesive area 182) has fully detached from the bottle 200, the force applied to the tag 100 will be transferred to the substrate 125 which is still secured to the bottle 200 via the rest of the second adhesive layer 180 (e.g., the other adhesive areas 182B-E). Furthermore, because the force required to detach the remaining adhesive areas 182 (e.g., areas 182B-E) from the bottle 200 is greater than the force required to tear the substrate 125 (particularly at the weakened areas 150), the RFID tag 100 will begin to tear (FIG. 9A). As the individual continues to pull the tag 100, the tear will continue to propagate through the layers of the tag 100 (e.g., the substrate 125, antenna 140, first adhesive layer 170, top layer 160, and perhaps the RFID chip 130), destroying the RFID tag 100 (FIG. 9B). The top layer 160 may be opaque to prevent the individual from observing the impending failure of the substrate 125 and adjusting their tampering techniques to prevent it.


Although the figures discussed above show an RFID tag 100 having a generally semi-circular shape, it is important to note that other embodiments of the present invention may have a different shape and configuration. For example, as shown in FIGS. 10A-10E, the RFID tag 100 may have a square (FIG. 10A) or rectangular shape (FIGS. 10B-10E). Additionally, it should be noted that these shapes are merely examples and the RFID tag can be any shape (e.g., circular, triangular, etc.).


Furthermore, the configuration and layout of the weakened areas 150 and the adhesive areas 182 may be dependent upon then design of the antenna 140. For example, as shown in FIG. 10A, the antenna 140 can have several leafs 210 that extend outwardly from a central ring 215. In such embodiments, the weakened areas 140 may be located between the leafs 210 and extend between the central ring 215 and the edge of the RFID tag 100. The weakened areas may also have an arrow head 152 or similar structure to enhance the tear initiation properties of the weakened area 150. Additionally, the adhesive areas 182 may be located on the underside of the substrate 125 beneath each of the leafs 210 and within the interior of the ring 215. It is important to note that FIGS. 10A-10E do not show the adhesive areas 182 on half of the RFID tag 100 so that the antenna 140 is visible.


Alternatively, if the antenna 140 is rectangular in shape with an open interior (FIG. 10B), the weakened areas may be within the interior of the rectangular antenna 140, and can be a number of angled cuts 220 connected by a horizontal cut 222. In such embodiments, there may be a number of narrow adhesive areas 224 between each of the angled cuts 220 and a large adhesive area 226 to the left and/or right of the angled cuts 222 and below the horizontal cut 224.


As shown in FIGS. 10C to 10E, in some embodiments, the antenna 140 can have a wave like shape 230. In such embodiments, the weakened areas 150 may be located between each of the individual “waves” of the antenna 150, and the adhesive areas 182 may be located beneath the “waves.” Additionally, as shown in FIG. 10D, there may be an x-shaped weakened area 240 (e.g., an x-shaped cut) within the main loop 142 of the antenna 140. Furthermore, the adhesive areas 182 may include triangular shaped areas 242 that extend between the arms of the x-shaped weakened area 240. Additionally or alternatively, the RFID tag may have one or more weakened areas extending along the length of the antenna (e.g., weakened areas 250), one or more weakened areas extending within the antenna (e.g., weakened area 252) and one or more weakened areas 254 connecting weakened areas 250 and 252.


It is important to note that, although the above described embodiments utilize an adhesive (e.g., a very high bond adhesive) to secure the RFID tag 100 to the container 110, other embodiments can utilize other mechanical and/or chemical bonding techniques to secure the RFID tag 100 to the container 110. For example, some embodiments can solvent bond, ultrasonically weld, or laser weld the RFID tag 100 to the container (or the top layer 160 to the substrate). In such embodiments, the RFID tag 100 may only be welded to the container 110 in certain areas (e.g., in a manner similar to how the second adhesive layer is applied only in certain areas) to create un-welded areas located beneath the weakened areas 150 and ensure that the tensile load required to remove the RFID tag 100 from the container is greater than the load that the weakened areas 150 can handle (e.g., so that the substrate 125 tears during removal).


The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in any appended claims.

Claims
  • 1. A frangible radio frequency identification (RFID) tag comprising: a substrate having at least one weakened area;an RFID chip located on the substrate;an antenna located on the substrate and electrically connected to the RFID chip;a plurality of adhesive areas applied to an underside of the substrate and configured to allow the RFID tag to be secured to an object, the plurality of adhesive areas spaced from one another, thereby forming at least one gap between the plurality of adhesive areas, the at least one gap being located under the at least one weakened area; anda top layer located on and covering the substrate, RFID chip and antenna, the top layer being a solid layer of material and having a tensile strength below the tensile strength required to remove the RFID tag from the object such that the top layer is configured to tear upon an attempted removal of the RFID tag from the object, wherein the top layer is unperforated or uncut.
  • 2. A frangible RFID tag according to claim 1, further comprising: a first release liner located below the plurality of adhesive areas and configured to be removed from the plurality of adhesive areas prior to securing the RFID tag to the object.
  • 3. A frangible RFID tag according to claim 1, further comprising: an adhesive layer located above the substrate, the top layer secured to the substrate via the adhesive layer.
  • 4. A frangible RFID tag according to claim 1, wherein the top layer is opaque.
  • 5. A frangible RFID tag according to claim 1, wherein the top layer is a thin polymer layer.
  • 6. A frangible RFID tag according to claim 1, wherein the top layer protects the RFID chip from dust and moisture.
  • 7. A frangible RFID tag according to claim 1, wherein the plurality of adhesive areas are areas of high bond adhesive.
  • 8. A frangible RFID tag according to claim 1, wherein the weakened areas are cuts formed within the substrate.
  • 9. A frangible RFID tag according to claim 8, wherein the cuts are die-cuts.
  • 10. A frangible RFID tag according to claim 1, wherein the weakened areas extend below the antenna.
  • 11. A frangible RFID tag according to claim 1, wherein the antenna includes a loop, one of the at least one weakened area being within the loop.
  • 12. A frangible RFID tag according to claim 1, wherein the weakened areas are configured to cause destruction of the RFID tag upon removal of the RFID tag from the object.
  • 13. A frangible RFID tag according to claim 12, wherein destruction of the RFID tag includes tearing of the antenna.
  • 14. A frangible RFID tag according to claim 1, wherein the top layer is uniform.
  • 15. A blood component storage container comprising: a body defining an interior volume for storing a blood component; anda frangible radio frequency identification (RFID) tag secured to a surface of the storage container, the RFID tag comprising: a substrate having at least one weakened area;an RFID chip located on the substrate;an antenna located on the substrate and electrically connected to the RFID chip,a plurality of adhesive areas applied to an underside of the substrate and configured to allow the RFID tag to be secured to the blood component storage container, the plurality of adhesive areas spaced from one another, thereby forming at least one gap between the plurality of adhesive areas, the at least one gap being located under the at least one weakened area, anda top layer located on and covering the substrate, RFID chip and antenna, the top layer being a solid layer of material and having a tensile strength below the tensile strength required to remove the RFID tag from the object such that the top layer is configured to tear upon an attempted removal of the RFID tag from the object, wherein the top layer is unperforated or uncut.
  • 16. A blood component storage container according to claim 15, wherein the frangible RFID tag further includes: a first release liner located below the plurality of adhesive areas and configured to be removed from the plurality of adhesive areas prior to securing the RFID tag to the blood storage container.
  • 17. A blood component storage container according to claim 15, wherein the frangible RFID tag further includes: an adhesive layer located above the substrate, the top layer secured to the substate via the adhesive layer.
  • 18. A blood component storage container according to claim 15, wherein the top layer is opaque.
  • 19. A blood component storage container according to claim 15, wherein the top layer is a thin polymer layer.
  • 20. A blood component storage container according to claim 15, wherein the top layer protects the RFID chip from dust and moisture.
  • 21. A blood component storage container according to claim 15, wherein the plurality of adhesive areas are areas of high bond adhesive.
  • 22. A blood component storage container according to claim 15, wherein the weakened areas are cuts formed within the substrate.
  • 23. A blood component storage container according to claim 22, wherein the cuts are die-cuts.
  • 24. A blood component storage container according to claim 15, wherein the weakened areas extend below the antenna.
  • 25. A blood component storage container according to claim 15, wherein the antenna includes a loop, one of the at least one weakened area being within the loop.
  • 26. A blood component storage container according to claim 15, wherein the weakened areas are configured to cause destruction of the RFID tag upon removal of the RFID tag from the blood component storage container.
  • 27. A blood component storage container according to claim 26, wherein destruction of the RFID tag includes tearing of the antenna.
  • 28. A method of producing a frangible radio frequency identification (RFID) tag comprising: providing a device layer having a substrate and an antenna and an RFID chip located on the substrate;forming at least one weakened area within the substrate;applying a plurality of adhesive areas to an underside of the substrate, the plurality of adhesive areas configured to allow the RFID tag to be secured to an object and being spaced from one another, thereby forming at least one gap between the plurality of adhesive areas, the at least one gap being located under the at least one weakened area; andapplying a top layer to a top surface of the device layer, the top layer covering the device layer, antenna and RFID chip, the top layer being a solid layer of material and having a tensile strength below the tensile strength required to remove the RFID tag from the object such that the top layer is configured to tear upon an attempted removal of the RFID tag from the object, wherein the top layer is unperforated or uncut.
  • 29. A method according to claim 28, further comprising: applying a first release liner to the plurality of adhesive areas, the first release liner configured to be removed from the plurality of adhesive areas prior to securing the RFID tag to an object.
  • 30. A method according to claim 28, wherein the top layer includes an adhesive layer, the adhesive layer securing the top layer to the device layer.
  • 31. A method according to claim 28, wherein the top layer is opaque.
  • 32. A method according to claim 28, wherein the top layer is a thin polymer layer.
  • 33. A method according to claim 28, wherein the plurality of adhesive areas are areas of high bond adhesive.
  • 34. A method according to claim 28, wherein forming the at least one weakened area within the substrate includes cutting the substrate.
  • 35. A method according to claim 28, wherein forming the at least one weakened area within the substrate includes die-cutting the substrate.
  • 36. A method according to claim 28, wherein the weakened areas extend below the antenna.
  • 37. A method according to claim 28, wherein the antenna includes a loop, one of the at least one weakened area being within the loop.
  • 38. A method according to claim 28, wherein the at least one weakened area is configured to cause destruction of the RFID tag upon removal of the RFID tag from the object.
  • 39. A method according to claim 38, wherein destruction of the RFID tag includes tearing of the antenna.
  • 40. A frangible radio frequency identification (RFID) tag comprising: a substrate having at least one weakened area;an RFID chip located on the substrate;an antenna located on the substrate and electrically connected to the RFID chip;a plurality of securement areas located on an underside of the substrate and configured to allow the RFID tag to be secured to an object, the plurality of securement areas spaced from one another, thereby forming at least one gap between the plurality of securement areas, the at least one gap being located under the at least one weakened area; anda top layer located on and covering the substrate, RFID chip and antenna, the top layer being a solid layer of material and having a tensile strength below the tensile strength required to remove the RFID tag from the object such that the top layer is configured to tear upon an attempted removal of the RFID tag from the object, wherein the top layer is unperforated or uncut.
  • 41. A frangible RFID tag according to claim 40, wherein the plurality of securement areas are configured to be chemically bonded to the surface to the object.
  • 42. A frangible RFID tag according to claim 41, wherein the at least one gap is an un-bonded area between the bonded areas.
  • 43. A frangible RFID tag according to claim 40, wherein the plurality of securement areas are configured to be thermally bonded to the surface to the object.
  • 44. A frangible RFID tag according to claim 43, wherein the at least one gap is an un-bonded area between the bonded areas.
PRIORITY

This patent application claims priority from U.S. patent application No. 61/831,262, filed Jun. 5, 2013, entitled, “Frangible RFID Tag,” and naming Christopher S. McDowell as inventor, the disclosure of which is incorporated herein, in its entirety, by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2014/040879 6/4/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2014/197573 12/11/2014 WO A
US Referenced Citations (131)
Number Name Date Kind
5444223 Blama Aug 1995 A
5777561 Chieu et al. Jul 1998 A
5874214 Nova et al. Feb 1999 A
5883582 Bowers et al. Mar 1999 A
5898370 Reymond Apr 1999 A
6045652 Tuttle et al. Apr 2000 A
6147604 Wiklof Nov 2000 A
6281795 Smith et al. Aug 2001 B1
6441741 Yoakum Aug 2002 B1
6478229 Epstein Nov 2002 B1
6483434 UmiKer Nov 2002 B1
6520544 Mitchell et al. Feb 2003 B1
6592043 Britton Jul 2003 B1
6778089 Yoakum Aug 2004 B2
6794000 Adams Sep 2004 B2
6940408 Ferguson et al. Sep 2005 B2
6951596 Green et al. Oct 2005 B2
7061831 De La Huerga Jun 2006 B2
7070053 Abrams et al. Jul 2006 B1
7091864 Veitch et al. Aug 2006 B2
7102522 Kuhns Sep 2006 B2
7116240 Hyde Oct 2006 B2
7210635 Amstutz et al. May 2007 B2
7212127 Jacober et al. May 2007 B2
7215251 Hyde May 2007 B2
7224280 Ferguson et al. May 2007 B2
7271726 Hollon Sep 2007 B2
7275682 Excoffier et al. Oct 2007 B2
7350703 Ambartsoumian Apr 2008 B2
7361251 Green et al. Apr 2008 B2
7368032 Green et al. May 2008 B2
7388506 Abbott Jun 2008 B2
7394383 Hager et al. Jul 2008 B2
7477150 Renzetti et al. Jan 2009 B2
7479887 Meyer Jan 2009 B2
7479888 Jacober et al. Jan 2009 B2
7490766 Auchinleck Feb 2009 B2
7490767 Auchinleck Feb 2009 B2
7501947 Youn Mar 2009 B2
7528727 Morrow May 2009 B2
7538678 Jung et al. May 2009 B2
7541931 Freed et al. Jun 2009 B1
7586417 Chisholm Sep 2009 B2
7608457 Hunsley Oct 2009 B2
7609166 Forster et al. Oct 2009 B2
7637733 O'Connell et al. Dec 2009 B2
7649463 Tuttle Jan 2010 B2
7705734 Martinelli Apr 2010 B2
7713232 Uber, III et al. May 2010 B2
7755484 Cullen et al. Jul 2010 B2
7755488 Dvorsky Jul 2010 B2
7772981 Lambert et al. Aug 2010 B1
7777628 Tilson, Jr. Aug 2010 B2
7782213 Ohashi Aug 2010 B2
7794141 Perry et al. Sep 2010 B2
7804405 Norman et al. Sep 2010 B2
7829741 Fukuhara et al. Nov 2010 B2
7850893 Chisholm et al. Dec 2010 B2
7859416 Tuttle Dec 2010 B2
7875227 Chisholm Jan 2011 B2
7892471 Burke et al. Feb 2011 B2
7922961 Chisholm et al. Apr 2011 B2
7973664 Lambert et al. Jul 2011 B1
7978079 Geissler et al. Jul 2011 B2
8009047 Kanda et al. Aug 2011 B2
8035518 Kolton et al. Oct 2011 B2
8049627 Addante Nov 2011 B1
8063741 Hioki et al. Nov 2011 B2
8068028 Phaneuf Nov 2011 B2
8072333 Ferguson et al. Dec 2011 B2
8089359 Lopez et al. Jan 2012 B2
8094027 Yang Jan 2012 B2
8097199 Abbott et al. Jan 2012 B2
8098162 Abbott et al. Jan 2012 B2
8100585 Burke et al. Jan 2012 B2
8105487 Fulkerson et al. Jan 2012 B2
8113007 Zenobi et al. Feb 2012 B2
8115636 Forster Feb 2012 B2
8120484 Chisholm Feb 2012 B2
8120485 Yang Feb 2012 B2
8136735 Arai et al. Mar 2012 B2
8161910 Coiro, Sr. et al. Apr 2012 B2
8164457 Dunlap et al. Apr 2012 B2
8173057 Parker et al. May 2012 B2
8183052 Reed et al. May 2012 B2
8212226 Chisholm Jul 2012 B2
8212676 Cullen et al. Jul 2012 B2
8215518 Hyde et al. Jul 2012 B2
8215835 Hyde et al. Jul 2012 B2
8231024 Sanfilippo et al. Jul 2012 B2
8242907 Butler et al. Aug 2012 B2
8242908 Moore et al. Aug 2012 B2
8242911 Moore et al. Aug 2012 B2
8246773 Green et al. Aug 2012 B2
8248238 Butler et al. Aug 2012 B2
8248239 Butler et al. Aug 2012 B2
8253567 Butler et al. Aug 2012 B2
8257636 Oconnell et al. Sep 2012 B2
8267308 Devergne et al. Sep 2012 B2
8267325 Phaneuf Sep 2012 B2
8269630 Butler et al. Sep 2012 B2
8269670 Sprowl et al. Sep 2012 B2
8279065 Butler et al. Oct 2012 B2
8284055 Butler et al. Oct 2012 B2
8292173 Yturralde et al. Oct 2012 B2
8292594 Tracey et al. Oct 2012 B2
8294579 Butler et al. Oct 2012 B2
8313594 Muirhead Nov 2012 B2
8317099 Perkins et al. Nov 2012 B2
8318499 Fritchie et al. Nov 2012 B2
8325047 Marur et al. Dec 2012 B2
8330602 Ohashi et al. Dec 2012 B2
8427316 Bielas Apr 2013 B2
8432286 Kolton et al. Apr 2013 B2
8466793 Kolton et al. Jun 2013 B2
8758321 Stacey et al. Jun 2014 B2
20020135481 Conwell Sep 2002 A1
20050019943 Chaoui et al. Jan 2005 A1
20070139202 Austin Jun 2007 A1
20080036677 Matsushita Feb 2008 A1
20080117058 Oberle May 2008 A1
20080213135 Burke et al. Sep 2008 A1
20080309497 Bryant Dec 2008 A1
20090303044 Furuichi Dec 2009 A1
20100007501 Yang et al. Jan 2010 A1
20100102967 Lee et al. Apr 2010 A1
20100181382 Speich Jul 2010 A1
20100253524 Kolton et al. Oct 2010 A1
20110031178 Burke et al. Feb 2011 A1
20110281346 Halpern Nov 2011 A1
20120217307 Martin et al. Aug 2012 A1
Foreign Referenced Citations (6)
Number Date Country
EP 2050580 Apr 2009 DE
1 286 775 Jul 2006 EP
2 050 580 Apr 2009 EP
1 946 250 Jul 2010 EP
2009129291 Jun 2009 JP
2010128516 Jun 2010 JP
Non-Patent Literature Citations (5)
Entry
JP 2009129291 English equivalent translation, European Patent Office website, retrieved May 15, 2016, http://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=en—EP&FT=D&date=20090611&CC=JP&NR=2009129291A&KC=A.
JP 2010128516 English equivalent translation, European Patent Office website, retrieved May 15, 2016, http://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=en—EP&FT=D&date=20100610&CC=JP&NR=2010128516A&KC=A.
EP 2050580 English equivalent translation, European Patent Office website, retrieved May 15, 2016, http://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=2050580A2&KC=A2&FT=D&ND=3&date=20090422&DB=EPODOC&locale=en—EP.
Blaine R. Copenheaver, Authorized officer, International Search Report—Application No. PCT/US2014/040879, mailed Nov. 4, 2014, together with the Written Opinion of the International Searching Authority, 10 pages.
Philippe Bécamel, Authorized officer The International Bureau of WIPO, International Preliminary Report on Patentability—Application No. PCT/US2014/040879, mailed Dec. 8, 2015, 9 pages.
Related Publications (1)
Number Date Country
20160101019 A1 Apr 2016 US
Provisional Applications (1)
Number Date Country
61831262 Jun 2013 US