All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference in their entirety as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference in its entirety.
The present invention relates to fire safety devices, and more particularly to thermally actuated sprinklers commonly used in commercial and residential buildings.
Large numbers of thermally-actuated fire sprinklers are installed in structures every year. These sprinklers, generally installed in the structure's ceiling, are connected to a pressurized water supply and are intended to release the water into the room when the temperature in the room indicates that a fire or conflagration is taking place.
Multiple techniques have been used to actuate prior art fire sprinkler heads. Some prior art sprinkler valves bond two components together with alloys that melt at low temperatures. When heated above the melting temperature of the eutectic alloy, the bond between the two components is released, and a control valve is permitted to open. This type of actuator is subject to failure as the solder ages and crystallizes, thereby weakening the bond.
A second type of prior art sprinkler valve uses a sealed glass tube nearly filled with a liquid that boils at a low temperature. As ambient temperature increases, the liquid boils, thereby raising the pressure inside the tube. At a high enough temperature the tube ruptures, permitting the sprinkler valve to open. Premature failure may occur, however, if the sprinkler head is subjected to mechanical shock and the tube is cracked.
Yet other prior art sprinkler valves incorporate shape memory components that change shape when a transition temperature is reached to actuate the sprinkler valve. Some such thermally actuated valves are described in U.S. Pat. No. 4,176,719; U.S. Pat. No. 4,549,717; U.S. Pat. No. 4,596,483; U.S. Pat. No. 4,706,758; U.S. Pat. No. 4,848,388; U.S. Pat. No. 4,896,728; U.S. Pat. No. 5,117,916; U.S. Pat. No. 5,494,113; U.S. Pat. No. 5,622,225; U.S. Pat. No. 5,924,492; U.S. Pat. No. 6,073,700; U.S. Pat. No. 6,840,329; and U.S. Pat. No. 6,843,465. However, these devices do not typically control the transition temperature of the shape memory alloy, and the valve structures may therefore be less reliable and overly complex.
False triggering of sprinkler heads can cause damage that is expensive to repair and contributes to the cost of fire insurance. Thermally-actuated fire safety devices must meet strict codes. Described herein are thermally-activated, frangible sprinkler valves including a shape-memory element that may meet these codes and address many of the problems identified above.
Described herein are thermally-activated valves and methods or making and using them. The thermally-activated valves described herein are particularly useful as part of a sprinkler head, though they may be used as part of any appropriate thermally-activated valve.
In general, these thermally-activated sprinkler valve assemblies include: a temperature-sensitive actuator having a frangible bolt coupled to a shape-memory element, and a fluid passageway with a valved outlet. The temperature-sensitive actuator activates the sprinkler valve when the temperature of the shape-memory element reaches or exceeds the pre-determined temperature.
For example, described herein are thermally-activated sprinkler valve assemblies including a fluid passageway having an outlet (configured to connect to a source of pressurized fluid), a valve over the outlet, where the valve is configured to releasably oppose the force of the pressurized fluid, and a temperature-sensitive actuator coupled to the valve. The temperature-sensitive actuator includes a frangible bolt and a shape-memory element capable of elongating at a pre-determined stress and temperature, wherein the frangible bolt applies compressive force to the shape-memory element. The temperature-sensitive actuator is configured to actuate the valve by breaking the frangible bolt when the temperature of the shape-memory element reaches or exceeds the pre-determined temperature.
Any of the valve assemblies described herein may include a linkage that connects to the valve. For example, the temperature-sensitive actuator may be coupled to the valve through a linkage that is configured to oppose the force of pressurized fluid and thereby maintain the valve closed. The temperature-sensitive actuator may be positioned in parallel with the linkage.
Any appropriate linkage may be used. In general, a linkage links the actuator with the valve, and can be removed or displaced by the activation of the actuator. For example, a linkage may be a linkage bracket, a strut, or the like. In one variation, the linkage is a linkage bracket formed from two generally “T-shaped” brackets. The two linkages may connect to each other and to the valve along one axis (the top of the “T” shape); the actuator may be connected off-axis, between the bases of the “T” shape.
The temperature-sensitive actuator may be configured so that force from the pressurized fluid is not substantially transmitted to the shape-memory element. Transferring force from the fluid pressure to the shape-memory element may affect the strain profile of the shape-memory element, and alter the actuation temperature.
The plateau stress of the shape-memory element may be matched to the ultimate tensile strength of the frangible bolt. For example, the ultimate tensile strength of the frangible bolt (at which the bolt will break) may be approximately equal to the plateau stress of the shape-memory element. Matching the plateau stress and the ultimate tensile strength in this way may help insure that the actuator acts in a predictable fashion at a predetermined temperature.
The frangible bolt may be coupled or secured to the shape memory device by a nut or other securing means. For example, the bolt may be an elongate bolt that passes through a cylindrical shape-memory element. The bolt may be secured against either end of the shape-memory element with a flange and/or nut, placing compressive stress on the shape-memory element.
A valve assembly may also include a frame portion extending from the fluid passageway. For example, a valve assembly may include one or more arms that extend from the fluid passageway. The frame portion may provide support for other valve assembly components, such as the linkage.
The frangible bolt may be modified by including one or more notches or the like. The frangible bolt may be notched to set or determine the ultimate tensile strength of the bolt. A notch may be an annular notch or a side-notch (e.g., a notch on only one or more sides of the bolt). The notch is typically a small region (compared to the overall length of the bolt) that has a narrower diameter. A frangible bolt is typically an elongate shape, and may be cylindrical (e.g., columnar). Other elongate shapes may also be used. Commercially available bolts may also be used. For example, a titanium bolt (e.g., a Ti6Al4V bolt). Other bolts may also be used, including steel (stainless steel) or the like. The bolt may be threaded. For example, the bolt may be threaded at one or both ends, or along the entire length). The bolt may have a head (e.g., a flange) or may be used with washers and one or more nuts.
The shape-memory element may be made of any appropriate shape memory alloy. Shape-memory alloys capable of elongating up to 7%, 8% or 9% of their length are particularly useful in these actuators. In particular, the shape-memory element may be a single-crystal CuAlNi alloy or a single-crystal CuAlMn alloy. Shape-memory alloys capable of elongating greater than 7% (such as single-crystal SMAs) typically have a stress plateau that is longer than other (non single-crystal SMAs). This elongated stress plateau means that the actuator has a higher tolerance for breaking the frangible bolt and thereby actuating. In turn, this higher tolerance translates into a higher tolerance for the shape, type, orientation and compressive pressure applied by the frangible bolt component of the actuator.
The shape-memory element may be a tempered single-crystal shape memory alloy. Tempering (e.g., heat treating to precipitate Al from the single-crystal shape memory alloy) may be used to set the stress profile, including the temperature at which the actuator will actuate.
The shape-memory element may be any appropriate shape for coupling to the frangible bolt so that it can rupture (break) the bolt when actuation occurs. For example, the shape-memory element may be a cylinder at least partially surrounding the frangible bolt. The cylinder may have any appropriate cross-section (e.g., circular, elliptical, square, etc.). The shape-memory element may be a strut or partial tube (e.g., a half-cylinder, etc.).
Also described herein are thermally-activated sprinkler valve assemblies including a fluid passageway having a valved outlet and configured to connect to a source of pressurized fluid, a linkage coupled to the valved outlet and configured to oppose the force of pressurized fluid and thereby maintain the valve closed, and a temperature-sensitive actuator coupled to the linkage, wherein the temperature-sensitive actuator includes a frangible bolt, and a shape-memory element capable of elongating as much as eight percent at a pre-determined stress and temperature. The frangible bolt applies compressive force to the shape-memory element. Any of the features described above may also be included as part of this sprinkler valve assembly.
Also described herein are thermally-activated sprinkler valve assemblies including a fluid passageway having a valved outlet and configured to connect to a source of pressurized fluid, a linkage bracket coupled to the valved outlet and configured to oppose the force of pressurized fluid and thereby maintain the valve closed, and a temperature-sensitive actuator coupled to the linkage bracket. The temperature-sensitive actuator includes a frangible bolt and a shape-memory element capable of elongating as much as eight percent at a pre-determined stress and temperature, wherein a length of the frangible bolt applies compressive force to the shape-memory element, an further wherein the plateau stress of the shape-memory element is approximately the same as the ultimate tensile strength of the bolt.
Also described herein are methods of making a thermally-activated sprinkler valve assembly including the steps of: tuning a shape-memory element comprising single-crystal shape memory alloy to exert a pre-determined force at a pre-determined temperature; forming a temperature-sensitive actuator by coupling a frangible bolt to the shape-memory element so that the shape-memory element is compressed; and coupling the actuator to a linkage, wherein the linkage is configured to couple with the valve of a fluid passageway having a valved outlet to oppose fluid pressure and maintain the valve closed.
The step of tuning may include tempering the shape-memory alloy by a heat treatment process that causes controlled partial precipitation of Al.
The method may also include the step of coupling the linkage to the valve of the fluid passageway. For example, the step of coupling the actuator to the linkage may comprise coupling the actuator between two brackets forming the linkage.
The method may also include the step of matching the plateau stress of the shape-memory element to the ultimate tensile strength of the bolt.
The method may also include the step of connecting the fluid passageway to a fluid source. This step may also be used as part of a method for installing a frangible, temperature-sensitive shape memory actuator for a sprinkler valve.
Described herein are thermally-activated sprinkler valve assemblies. These thermally-activated sprinkler valve assemblies may be configured to meet any appropriate performance specifications, particularly those agreed upon by standard-setting bodies such as Underwriter Laboratories (UL). For example, the thermally-activated sprinkler valve assemblies described herein may meet the UL Standards for Safety for Automatic Sprinklers for Fire Protection Service, US 199 (10th edition, Apr. 8, 1997, revised Dec. 8, 2003). In particular, the thermally-activated sprinkler valves described herein may outperform currently available frangible glass, eutectic, and other shape-memory based sprinkler valves because they may be made particularly vibration-insensitive, stable, and predictable.
In general, the thermally-activated sprinkler valve assemblies described herein include a fluid passageway having an outlet that is valved (over the outlet), and a temperature-sensitive actuator that can be activated to open the valve and allow fluid to flow from the sprinkler. The temperature-sensitive actuator typically includes a frangible bolt and a shape-memory element that is coupled to the bolt. Actuation occurs when the shape-memory element expands at a predetermined temperature to break the bolt.
The fluid passageway of the sprinkler may include a threaded tubular conduit portion which is adapted to be connected to a conduit network of a fire protection system. The conduit includes a fluid passage having an inlet for attachment to a pressurized fluid source, such as a pressurized water source, and an outlet. The fluid passageway may also be connected to a frame portion or body region, preferably made from a metal such as brass, stainless steel, or other durable, non-corroding conventional sprinkler frame material. For example, the frame may extend from the fluid passageway region distally and may have one or more arms. A deflector plate assembly for dispersing water when the sprinkler is active may also be attached. The fluid passageway is valved, and may include a valve plug. The valve communicates with a temperature-sensitive actuator that can be activated to open the otherwise closed valve. In some variations the temperature-sensitive actuator communicates with the valve through a linkage element, also referred to as a linkage, which is configured to oppose the force applied by the water pressure until activation. In these variations, activation of the sprinkler occurs when the actuator displaces the linkage, releasing the valve to open. In some variations, the frangible bolt acts as the linkage element.
The temperature-sensitive actuator (or just actuator) includes a frangible bolt and a shape-memory element that are coupled together so that expansion of the shape-memory element may result in breaking of the frangible bolt. The frangible bolt may also apply a compression stress on the shape-memory element.
A shape-memory element may be made of a single-crystal shape-memory alloy (SMA) that has a very large recoverable strain. For example, the recoverable strain may be more than nine percent. This shape-memory element is compressed and held under load by the frangible bolt. As described in more detail below, the frangible bolt may be notched or otherwise prepared to fracture at a preset stress and strain.
Single crystal shape memory alloys, in addition to having uniquely large recoverable strain, have a plateau in their stress-strain relationship that increases with increasing temperature in a highly predictable manner, as illustrated in
Thus, a high-tolerance actuator may be made by matching the point on the stress/strain curve from the frangible bolt (the ultimate tensile strength) with the plateau stress of the shape-memory element. Matching these characteristics of the frangible bolt and the shape memory element allows selection of the precise temperature of actuation, which may be specified. Such precise actuators may therefore be manufactured at low cost, because this ‘tuning’ can be done only once per lot of material.
In assembling the valve, the actuator including the shape-memory element and the frangible bolt may be connected to the valve opposing the fluid pressure so that the force of the fluid pressure is not substantially communicated to the shape-memory element. For example, the SMA element and bolt may be offset from the force of the fluid pressure so that the fluid pressure force is not directly applied to either the bolt or the shape-memory element. This means that the bolt may be pre-loaded to its optimum tension (for the shape-memory element) independent of the force applied by the pressurized liquid. Since the force applied to the shape-memory element is not dependent on the (potentially variable) fluid pressure, the fluid pressure force will not alter the activation temperature for the actuator.
In general, the stress plateau in a CuAlNi (or CuAlMn) single crystal is related to the austenite finish temperature, Af, of the material. The stress plateau is determined by the difference between Af and the actuation temperature multiplied by a constant (approximately 2.2 Mpa per ° C.). For example, see
Slight variations in composition, even of the order of 0.1 percent, can result in a significant variation of Af, as shown in
At elevated temperatures, Al gradually precipitates as nanocrystals.
The shape-memory element provides the mechanical energy necessary to actuate the actuators described herein, and actuation occurs by breaking the frangible bolt and releasing the valve. For example, a shape-memory element may be a cylinder of single-crystal, hyperelastic CuAlNi having a transition temperature above room temperature with a stress plateau at about 200 Mpa. Other examples of shape-memory elements that may be used are provided herein, and generally the properties of the shape-memory element are matched to the properties of the bolt. In this first example, the shape-memory element is a cylinder with a cross-section that applies a force of 40 kg at the stress plateau to a bolt that fractures at 40 kg elongation force when elongated more than 3% of its length. The frangible bolt may be secured by a nut that pre-loads the bolt to a tensile 35 kg force (and thus applies an opposing compressive force to the shape memory element). The bolt applies this compressive force to the shape memory element. For example the shape-memory element may be compressed approximately 9 percent of its length while the SMA is in its martensitic state.
The temperature-sensitive actuator 305 includes a frangible bolt 309, the bottom of which is visible in
In this example, it is significant that the force due to fluid pressure is transferred to the linkage and not to the frangible bolt because the actuator, consisting of the shape-memory element and frangible bolt, can be tuned to actuate at a predetermined temperature (and force) independent of the force exerted by the fluid force. If this were not so, the actual force seen by the frangible bolt may depend on the sum of the (variable) fluid force and the (constant) pre-load force, and the result would be undesirable variation of the actuation temperature.
Any appropriate frangible bolt may be used. In general, a frangible bolt is an elongate member. The frangible bolt may be a cylindrical bolt (as shown in
A frangible bolt may also be notched. In
The bolt may be made of any appropriate material, particularly metals including alloys. For example, the bolt may be a titanium bolt, such as a Ti6Al4V bolt, a steel (e.g., stainless steel) bolt, or the like.
Different configurations of shape-memory elements may be used. For example, a cylindrical shape-memory element may have a non-circular cross-section (e.g., an elliptical, cross-section, a square cross-section, etc.). The shape-memory element may be configured as a strut that is not hollow and which fastens to the bolt in two or more places. The shape-memory element may be a partial tube (e.g. a c-shaped tube).
The shape-memory element may be made of a single-crystal shape memory alloy, such as a single-crystal CuAlNi alloy or a single-crystal CuAlMn alloy. In particular, the shape-memory element may be made of a shape-memory material capable of elongating up to 7%, 8% or 9% of their length, referred to as “hyperelastic” shape memory alloys. The exact composition (percent composition) of the shape-memory alloy may be modified or pre-determined to help match the stress plateau characteristics of the shape-memory element with the stress profile (e.g., ultimate tensile strength) of the frangible bolt.
By matching the peak strength of the frangible bolt to the stress plateau of the shape-memory element, assured separation of the bolt is achieved in a narrow temperature range as the shape-memory element elongates much more than necessary to cause the frangible bolt to fracture.
Thus, the temperature-sensitive actuator may include a frangible bolt whose peak strength is matched to the stress plateau of the shape-memory element. For example, the temperature sensitive actuator may be made by first selecting a desired actuation temperature At.
For example, the actuation temperature, At, may be selected from within the range of about −200 to +200° C. An optimum stress plateau level (Sp) may then be chosen. For example, Sp may be between 50 and 600 Mpa. The relationship between the stress plateau level and the activation temperature may be described by the formula:
Sp=2.3(At−Af)
Where Af is the austenite finish temperature of the shape-memory element, as described above. By choosing a cross-sectional area Xc of the shape-memory element that applies force to the frangible bolt, the force exerted by the shape-memory element Fa can then be determined from the relationship:
Fa=Sp*Xc
The ultimate strength of the frangible bolt (e.g., a notched frangible bolt) may then be matched to equal this force (Fa) and the elongation to failure=Ef, using a suitable margin of safety to determine the length of the shape-memory element La such that, at the appropriate percent elongation (e.g., 5%, 6%, 7%, 8%, 9% elongation), the actuator will break the bolt while maintaining the margin of safety. These calculations should also take into account the compliance of other elements in the joint.
Based on this determination, the ingot composition that will produce single crystal material with Af can be chosen in order to make the shape-memory actuator. For example, if the shape-memory actuator is a cylinder, then a cylinder with a cross-section Xc, length La, and an opening large enough to accommodate the bolt may be fabricated.
The shape-memory element can then be compressed. For example, a press can be used to compress the actuator to its 9 percent limit, and to maintain this shortened length by keeping the actuator well below Af.
To complete assembly of the temperature-sensitive actuator, the bolt, shape-memory element, and any other elements in the joint, such as a nut, can then be assembled. The nut can be tightened so that there is no slack in the joint. Finally, the remainder of the sprinkler valve body can be installed, including the linkage.
Any appropriate linkage may be used to connect the actuator to the sprinkler. In particular, it may be preferable to use a linkage that opposes the force of fluid (e.g., water pressure) when the device is connected to a source of fluid pressure and the valve is closed. In particular, it may be preferable to use linkages that do not transfer a substantial portion (if any) of the fluid pressure to the shape-memory element when the actuator is installed with the other components of the sprinkler.
A linkage may connect or couple with the valve that opposes the fluid pressure from a source of pressurized fluid that is connected to the fluid passageway of the device. For example, the linkage may abut or contact a portion of a valve (e.g., a valve plug), to prevent the fluid pressure from opening the valve. The linkage may also be connected or coupled to the body of the fluid passageway (or another portion of the sprinkler body that is connected to the body of the fluid passageway). In the example shown in
A two-piece linkage, such as that shown in
The linkage may be configured so that the activation of the temperature-sensitive actuator causes a predictable release. For example,
The upper bracket linkage shown in
A thermally-activated sprinkler valve assembly as illustrated may be made by any appropriate method, as mentioned above. In general, this method of making a thermally-activated sprinkler valve may include first tuning a shape-memory element to exert a pre-determined force at a pre-determined temperature. In some variations, tuning involves selecting the activation temperature (At), and setting the austenite finish temperature (Af) based on that temperature. This may be accomplished in part by tempering. For example, a shape-memory element comprising single-crystal shape memory alloy can be tempered by heat treating and controlling the partial precipitation of Al from the single-crystal material. Tweaking the concentration of Al will adjust the Af.
Tuning may include matching the plateau stress of the shape-memory element to the ultimate tensile stress (the breaking point) of the frangible bolt. Stress profile may be examined periodically to determine the plateau stress (as shown in
The temperature-sensitive actuator may then be formed by coupling the frangible bolt to the shape-memory element so that the shape-memory element is compressed by the frangible bolt. Finally, the actuator may be attached to the rest of the thermally-activated sprinkler by coupling the actuator to a linkage, wherein the linkage is configured to couple with the valve of a fluid passageway having a valved outlet to oppose fluid pressure and maintain the valve closed.
The assembled sprinkler may then be attached to a fluid source.
Temperature-sensitive actuators were made by cutting shape-memory elements with an abrasive wheel from Cu-14.0Al-4.5Ni tubing (OD=0.235″, ID=0.115″). No subsequent machining was performed. The shape-memory elements were approximately 0.451″ to 0.478″ long. The shape-memory elements were compressed and constrained with the brass 4-40 button headed notched screws and brass nuts. Notch size was 0.070″+−0.001″. Assemblies were individually tested by immersion in hot water, the temperature of which was monitored with alkaline thermometer. The average actuation temperature was 49.375° C. (standard deviation of 1.96).
In another example, cylinders of shape-memory material were machined from 0.25″ diameter Cu-14.0Al-4.5Ni (OD=0.23″; ID=0.11″; L=0.483″). Machined cylinders were compressed to L=0.450″ and constrained with brass 4-40 button headed notched screws and brass nuts. Notch size is 0.070″+−0.001″. On average, the devices actuated between 45-46° C. Afterwards, the cylinders were quenched from 950 C into salt water, compressed and constrained again, and actuated at an average temperature of 46.2° C. (standard deviation of 2.20). These shape-memory cylinders were compressed using frangible bolts made of 4-40 SS, having a notch of 0.070″. These actuated at approximately 62° C. (screw strength—2550N).
In yet another example, shape-memory elements were machined from 0.25 “diameter Cu-13.9Al-4.5Ni rod (OD=0.23”; ID=0.11″; L=0.49″). These cylinders were quenched from 950° C. into salt water, compressed and constrained. In this example, lowering the Al content by 0.1% resulted in increase of actuation temperature by ˜15 C.
Although the devices described herein are configured as sprinkler valves, other configurations may also be used with the temperature-sensitive actuators described. For example, a temperature-sensitive actuator may be used as part of a release valve for pressurized fluids including gasses. While the methods and devices have been described in some detail here by way of illustration and example, such illustration and example is for purposes of clarity of understanding only. It will be readily apparent to those of ordinary skill in the art in light of the teachings herein that certain changes and modifications may be made thereto without departing from the spirit and scope of the invention.
This application claims the benefit under 35 U.S.C. §119 of U.S. Provisional Patent Application No. 60/897,708 (titled “SHAPE MEMORY ALLOY FIRE SPRINKLER VALVE ACTUATOR”), filed Jan. 25, 2007, which is incorporated by reference as if fully set forth herein.
This invention was made with Government support under Contract No. W31P4Q-05-C-0158 awarded by DARPA. The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
368425 | Ross et al. | Aug 1887 | A |
538593 | Naylor, Jr. | Apr 1895 | A |
1560335 | Czochralski | Nov 1925 | A |
1904828 | Green | Apr 1933 | A |
1913035 | Loepsinger | Jun 1933 | A |
1926925 | Wescott | Sep 1933 | A |
2060593 | Schaurte et al. | Nov 1936 | A |
2371614 | Graves | Mar 1945 | A |
2586556 | Mullikin | Feb 1952 | A |
2608996 | Forman | Sep 1952 | A |
2610300 | Walton et al. | Sep 1952 | A |
2647017 | Coulliette | Jul 1953 | A |
2793036 | Hansburg | May 1957 | A |
2911504 | Cohn | Nov 1959 | A |
3229956 | White | Jan 1966 | A |
3351463 | Rozner et al. | Nov 1967 | A |
3357432 | Sparks | Dec 1967 | A |
3400906 | Stocklin | Sep 1968 | A |
3408890 | Bochman, Jr. | Nov 1968 | A |
3435823 | Edwards | Apr 1969 | A |
3445086 | Quinn | May 1969 | A |
3454286 | Anderson et al. | Jul 1969 | A |
3546996 | Grijalva et al. | Dec 1970 | A |
3559641 | Lay | Feb 1971 | A |
3561537 | Dix et al. | Feb 1971 | A |
3613732 | Willson et al. | Oct 1971 | A |
3620212 | Fannon, Jr. et al. | Nov 1971 | A |
3659625 | Coiner et al. | May 1972 | A |
3668131 | Banush et al. | Jun 1972 | A |
3725835 | Hopkins et al. | Apr 1973 | A |
3789838 | Fournier et al. | Feb 1974 | A |
3849756 | Hickling | Nov 1974 | A |
3888975 | Ramwell | Jun 1975 | A |
3913572 | Wheeler | Oct 1975 | A |
3918443 | Vennard et al. | Nov 1975 | A |
3974844 | Pimentel | Aug 1976 | A |
3991898 | Hanson et al. | Nov 1976 | A |
4055955 | Johnson | Nov 1977 | A |
4063831 | Meuret | Dec 1977 | A |
4072159 | Kurosawa | Feb 1978 | A |
4096993 | Behr | Jun 1978 | A |
4145764 | Kuzuki et al. | Mar 1979 | A |
4151064 | Kuehnle | Apr 1979 | A |
4176719 | Bray | Dec 1979 | A |
4177327 | Mathews | Dec 1979 | A |
4195773 | Ogden | Apr 1980 | A |
4243963 | Jameel et al. | Jan 1981 | A |
4265684 | Boll | May 1981 | A |
4279190 | Hummel | Jul 1981 | A |
4279790 | Nakajima | Jul 1981 | A |
4340049 | Munsch | Jul 1982 | A |
4434855 | Given, Jr. | Mar 1984 | A |
4485545 | Caverly | Dec 1984 | A |
4501058 | Schutzler | Feb 1985 | A |
4524343 | Morgan et al. | Jun 1985 | A |
4549717 | Dewaegheneire | Oct 1985 | A |
4551974 | Yaeger et al. | Nov 1985 | A |
4553393 | Ruoff | Nov 1985 | A |
4553602 | Pieczykolan | Nov 1985 | A |
4558715 | Walton et al. | Dec 1985 | A |
4567549 | Lemme | Jan 1986 | A |
4585209 | Aine et al. | Apr 1986 | A |
4589179 | Hulting, Jr. | May 1986 | A |
4596483 | Gabriel | Jun 1986 | A |
4619284 | Delarue et al. | Oct 1986 | A |
4654191 | Krieg | Mar 1987 | A |
4684913 | Yaeger | Aug 1987 | A |
4706758 | Johnson | Nov 1987 | A |
4753465 | Dalby | Jun 1988 | A |
4821997 | Zdeblick | Apr 1989 | A |
4823607 | Howe et al. | Apr 1989 | A |
4824073 | Zdeblick | Apr 1989 | A |
4848388 | Waldbusser | Jul 1989 | A |
4854797 | Gourd | Aug 1989 | A |
4864824 | Gabriel et al. | Sep 1989 | A |
4893655 | Anderson | Jan 1990 | A |
4896728 | Wolff et al. | Jan 1990 | A |
4943032 | Zdeblick | Jul 1990 | A |
5044947 | Sachdeva et al. | Sep 1991 | A |
5060888 | Vezain et al. | Oct 1991 | A |
5061137 | Gourd | Oct 1991 | A |
5061914 | Busch et al. | Oct 1991 | A |
5069419 | Jerman | Dec 1991 | A |
5072288 | MacDonald et al. | Dec 1991 | A |
5102276 | Gourd | Apr 1992 | A |
5114504 | AbuJudom, II et al. | May 1992 | A |
5116252 | Hartman | May 1992 | A |
5117916 | Ohta et al. | Jun 1992 | A |
5119555 | Johnson | Jun 1992 | A |
5129753 | Wesley et al. | Jul 1992 | A |
5131843 | Hilgers et al. | Jul 1992 | A |
5160233 | McKinnis | Nov 1992 | A |
5190546 | Jervis | Mar 1993 | A |
5192147 | McCloskey | Mar 1993 | A |
5211371 | Coffee | May 1993 | A |
5218998 | Bakken et al. | Jun 1993 | A |
5245738 | Johnson | Sep 1993 | A |
5309717 | Minch | May 1994 | A |
5312152 | Woebkenberg, Jr. et al. | May 1994 | A |
5312247 | Sachdeva et al. | May 1994 | A |
5325880 | Johnson et al. | Jul 1994 | A |
5344117 | Trah et al. | Sep 1994 | A |
5364046 | Dobbs et al. | Nov 1994 | A |
5395238 | Andreiko et al. | Mar 1995 | A |
5447432 | Andreiko et al. | Sep 1995 | A |
5456600 | Andreiko et al. | Oct 1995 | A |
5474448 | Andreiko et al. | Dec 1995 | A |
5474563 | Myler et al. | Dec 1995 | A |
5494113 | Polan | Feb 1996 | A |
5502982 | Venetucci | Apr 1996 | A |
5543349 | Kurtz et al. | Aug 1996 | A |
5605543 | Swanson | Feb 1997 | A |
5619177 | Johnson et al. | Apr 1997 | A |
5622225 | Sundholm | Apr 1997 | A |
5640217 | Hautcoeur et al. | Jun 1997 | A |
5641364 | Golberg et al. | Jun 1997 | A |
5645423 | Collins, Jr. | Jul 1997 | A |
5658515 | Lee et al. | Aug 1997 | A |
5676356 | Ekonen et al. | Oct 1997 | A |
5683245 | Sachdeva et al. | Nov 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5714690 | Burns et al. | Feb 1998 | A |
5722989 | Fitch et al. | Mar 1998 | A |
5771742 | Bokaie et al. | Jun 1998 | A |
5772378 | Keto-Tokoi | Jun 1998 | A |
5772864 | Moller et al. | Jun 1998 | A |
5796152 | Carr et al. | Aug 1998 | A |
5819749 | Lee et al. | Oct 1998 | A |
5825275 | Wuttig et al. | Oct 1998 | A |
5837394 | Schumm, Jr. | Nov 1998 | A |
5840199 | Warren | Nov 1998 | A |
5850837 | Shiroyama et al. | Dec 1998 | A |
5867302 | Fleming | Feb 1999 | A |
5903099 | Johnson et al. | May 1999 | A |
5916178 | Noone et al. | Jun 1999 | A |
5924492 | Kikuchi et al. | Jul 1999 | A |
5930651 | Terasawa | Jul 1999 | A |
5960812 | Johnson | Oct 1999 | A |
6013854 | Moriuchi | Jan 2000 | A |
6042374 | Farzin-Nia et al. | Mar 2000 | A |
6042553 | Solar et al. | Mar 2000 | A |
6072617 | Henck | Jun 2000 | A |
6073700 | Tsuji et al. | Jun 2000 | A |
6075239 | Aksyuk et al. | Jun 2000 | A |
6080160 | Chen | Jun 2000 | A |
6084849 | Durig et al. | Jul 2000 | A |
6096175 | Roth | Aug 2000 | A |
6101164 | Kado et al. | Aug 2000 | A |
6107004 | Donadio, III | Aug 2000 | A |
6110204 | Lazarov et al. | Aug 2000 | A |
6123153 | Finnegan | Sep 2000 | A |
6124523 | Banas et al. | Sep 2000 | A |
6126371 | McCloskey | Oct 2000 | A |
6129153 | Joung | Oct 2000 | A |
6139143 | Brune et al. | Oct 2000 | A |
6169269 | Maynard | Jan 2001 | B1 |
6195478 | Fouquet | Feb 2001 | B1 |
6203715 | Kim et al. | Mar 2001 | B1 |
6224626 | Steinke | May 2001 | B1 |
6229640 | Zhang | May 2001 | B1 |
6247493 | Henderson | Jun 2001 | B1 |
6277133 | Kanesaka | Aug 2001 | B1 |
6284067 | Schwartz et al. | Sep 2001 | B1 |
6352494 | McAlonan | Mar 2002 | B2 |
6358380 | Mann et al. | Mar 2002 | B1 |
6379383 | Palmaz et al. | Apr 2002 | B1 |
6386507 | Dhuler et al. | May 2002 | B2 |
6406605 | Moles | Jun 2002 | B1 |
6407478 | Wood et al. | Jun 2002 | B1 |
6410360 | Steenberge | Jun 2002 | B1 |
6447478 | Maynard | Sep 2002 | B1 |
6451668 | Neumeier et al. | Sep 2002 | B1 |
6454913 | Rasmussen et al. | Sep 2002 | B1 |
6470108 | Johnson | Oct 2002 | B1 |
6475261 | Matsumoto et al. | Nov 2002 | B1 |
6524322 | Berreklouw | Feb 2003 | B1 |
6533905 | Johnson et al. | Mar 2003 | B2 |
6537310 | Palmaz et al. | Mar 2003 | B1 |
6582985 | Cabuz et al. | Jun 2003 | B2 |
6592724 | Rasmussen et al. | Jul 2003 | B1 |
6596102 | Homma | Jul 2003 | B2 |
6605111 | Bose et al. | Aug 2003 | B2 |
6614570 | Johnson et al. | Sep 2003 | B2 |
6620634 | Johnson et al. | Sep 2003 | B2 |
6624730 | Johnson et al. | Sep 2003 | B2 |
6669794 | Bellouard et al. | Dec 2003 | B1 |
6669795 | Johnson et al. | Dec 2003 | B2 |
6672502 | Paul et al. | Jan 2004 | B1 |
6688828 | Post | Feb 2004 | B1 |
6729599 | Johnson | May 2004 | B2 |
6742761 | Johnson et al. | Jun 2004 | B2 |
6746890 | Gupta et al. | Jun 2004 | B2 |
6771445 | Hamann et al. | Aug 2004 | B1 |
6790298 | Johnson et al. | Sep 2004 | B2 |
6805898 | Wu et al. | Oct 2004 | B1 |
6811910 | Tsai et al. | Nov 2004 | B2 |
6840329 | Kikuchi et al. | Jan 2005 | B2 |
6843465 | Scott | Jan 2005 | B1 |
6849085 | Marton | Feb 2005 | B2 |
6852132 | Houser et al. | Feb 2005 | B1 |
6908275 | Nelson et al. | Jun 2005 | B2 |
6918545 | Franson et al. | Jul 2005 | B2 |
6920966 | Buchele et al. | Jul 2005 | B2 |
6955187 | Johnson | Oct 2005 | B1 |
7022173 | Cummings et al. | Apr 2006 | B2 |
7040323 | Menchaca et al. | May 2006 | B1 |
7044596 | Park | May 2006 | B2 |
7073504 | Callister et al. | Jul 2006 | B2 |
7084726 | Gupta et al. | Aug 2006 | B2 |
7201367 | Wietharn | Apr 2007 | B2 |
7524914 | Mather et al. | Apr 2009 | B2 |
7632361 | Johnson et al. | Dec 2009 | B2 |
7736687 | Sims et al. | Jun 2010 | B2 |
7793911 | Fontana et al. | Sep 2010 | B2 |
20010023010 | Yamada et al. | Sep 2001 | A1 |
20020018325 | Nakatani et al. | Feb 2002 | A1 |
20020062154 | Ayers | May 2002 | A1 |
20020106614 | Prince et al. | Aug 2002 | A1 |
20020192617 | Phan et al. | Dec 2002 | A1 |
20030002994 | Johnson et al. | Jan 2003 | A1 |
20030078465 | Pai et al. | Apr 2003 | A1 |
20030170130 | Johnson | Sep 2003 | A1 |
20040083006 | Ellingsen | Apr 2004 | A1 |
20040200551 | Brhel et al. | Oct 2004 | A1 |
20040221614 | Holemans et al. | Nov 2004 | A1 |
20040243219 | Fischer et al. | Dec 2004 | A1 |
20040249399 | Cinquin et al. | Dec 2004 | A1 |
20050113933 | Carter et al. | May 2005 | A1 |
20060118210 | Johnson | Jun 2006 | A1 |
20060204738 | Dubrow et al. | Sep 2006 | A1 |
20060213522 | Menchaca et al. | Sep 2006 | A1 |
20060232374 | Johnson | Oct 2006 | A1 |
20060240953 | Shahinpoor | Oct 2006 | A1 |
20070137740 | Johnson et al. | Jun 2007 | A1 |
20070173787 | Huang et al. | Jul 2007 | A1 |
20070207321 | Abe et al. | Sep 2007 | A1 |
20070246233 | Johnson | Oct 2007 | A1 |
20090035859 | Johnson | Feb 2009 | A1 |
20090183986 | Johnson et al. | Jul 2009 | A1 |
20100129766 | Hilgers | May 2010 | A1 |
20100190127 | Ghantiwala et al. | Jul 2010 | A1 |
20110253525 | Johnson | Oct 2011 | A1 |
20110313513 | Johnson | Dec 2011 | A1 |
20120048432 | Johnson | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
0053596 | Jun 1982 | EP |
0310439 | Apr 1989 | EP |
1122526 | Aug 2001 | EP |
1238600 | Sep 2002 | EP |
2187951 | Sep 1987 | GB |
48071713 | Sep 1973 | JP |
57161031 | Oct 1982 | JP |
58088200 | May 1983 | JP |
59179771 | Oct 1984 | JP |
07090624 | Apr 1995 | JP |
10173306 | Jun 1998 | JP |
2000185999 | Jul 2000 | JP |
1434314 | Oct 1988 | SU |
WO9853362 | Nov 1998 | WO |
WO9916387 | Apr 1999 | WO |
WO 9962432 | Dec 1999 | WO |
WO0004204 | Jan 2000 | WO |
WO03052150 | Jun 2003 | WO |
WO2005108635 | Nov 2005 | WO |
WO2006019943 | Feb 2006 | WO |
Entry |
---|
US 5,772,989, 03/1998, Fitch et al. (withdrawn) |
Johnson, David et al.; U.S. Appl. No. 10/972,745 entitled “Non-explosive releasable coupling device,” filed Oct. 25, 2004. |
Xiaogdang, Ma; U.S. Appl. No. 10/972,759 entitled “Magnetic data storage system,” filed Oct. 25, 2004. |
Johnson, David et al.; U.S. Appl. No. 11/006,501 entitled “Anastomosis device and method,” filed Dec. 6, 2004. |
Johnson, David et al.; U.S. Appl. No. 11/041,185 entitled “Single crystal shape memory alloy devices and methods,” filed Jan. 24, 2005. |
Johnson, David; U.S. Appl. No. 11/415,885 entitled “Eyeglass frame,” filed May 2, 2006. |
Johnson, David; U.S. Appl. No. 11/420,157 entitled “Shape memory allow thin film, method of fabrication, and articles of manufacture,” filed May 24, 2006. |
Johnson, David; U.S. Appl. No. 11/526,138 entitled “Constant load bolt,” filed Sep. 22, 2006. |
Johnson, David; U.S. Appl. No. 11/859,697 entitled “Constant load fastener,” filed Sep. 21, 2007. |
Johnson, David et al.; U.S. Appl. No. 11/948,852 entitled “Method of alloying reactive elemental components,” filed Nov. 30, 2007. |
Johnson, David et al.; U.S. Appl. No. 11/949,663 entitled “Hyperelastic shape setting devices and fabrication methods,” filed Dec. 3, 2007. |
I. E.Viahhi; Robototechnic Constructions Based on CU—AL—NI Single Crystal Actuators; Proceedings of Second International Conference on Shape Memory and Superelastic Technologies; 1997; United States. |
Pauling, Linus, College Chemistry, second edition, W.H. Freeman and Company, San Francisco, 1955, pp. 81-91. |
Buchaillot L. et al., “Thin film of titanium/nickel shape memory alloy for multi-degree of freedom microactuators”, Seisan Kenkyu, vol. 51, No. 8, 1999, pp. 22-23. |
Johnson A. D. et al., “Application of shape memory alloys: advantages, disadvantages, and limitations”, Micromachining and Microfabrication Process Technology VII, Oct. 22-24, 2001, San Francisco, CA, USA, vol. 4557, 2001, pp. 341-351. |
Takabayashi et al., “Reversible shape memory alloy film fabricated by RF sputtering”, Materials and Manufacturing Processes, vol. 13, No. 2, 1998, pp. 275-286. |
Martynov, V., “TiNi thin films for microactuators and microdevices: sputter deposition and processing techniques”, Thermec' 2003, Internat'l Conf. on Processing and Manufacturing of Advanced Materials, Jul. 7-11, 2003, Leganes, Madrid, Spain, Materials Science Forum, Jul. 7, 2003 vol. 426-432; pp. 3475-3480. |
Johnson, Alfred David; U.S. Appl. No. 12/325,722 entitled “Biocompatible copper-based single-crystal shape memory alloys,” filed Dec. 1, 2008. |
Antonov et al.; New advances and developments in the Stepnakov method for the growth of shaped crystals; Crystallography Reports; vol. 47; Suppl. 1; 2002; pp. S43-S52. |
Brice et al.; Crystal Growth; Ullmann's Encyclopedia of Industrial Chemistry; 2007; Wiley-VCH Verlag GmBH; pp. 1, 29-42, 50. |
ElastametTM brochure from New Discovery Metals; 2007. |
ElastametTM website screen capture, accessed Jul. 23, 2008. |
Fu et al.; The growth characteristics with a shape memory effect; J. Phys.: Condens. Matter; vol. 4; 1992; pp. 8303-8310. |
Morgan; Medical shape memory alloy applications—the market and its products; Materials Science and engineering A 378; 2004; pp. 16-23. |
Qingfu et al.; Stabilisation of martensite during training of Cu—Al—Ni single crystals; Journal de Physique IV; Collloqu C2; Supplement to the Journa de Physique III; vol. 5; Feb. 1995; pp. 181-186. |
Recarte et al.; Influence of Al and Ni concentration on the martensitic transformation in Cu—Al—Ni shape-memory alloys; Metallurgical and MaterialsTransactions A; vol. 33A; Aug. 2002; pp. 2581-2591. |
Sittner et al.; Stress induced martensitic transformations in tension/torsion of CuAlNi single crystal tube; Scripta Materialia; vol. 48; 2003; pp. 1153-1159. |
Sutuo et al.; Development of medical guide wire of Cu—Al—Mn-base superelastic alloy with functionally graded characteristics; Mater Res Part B: Appl Biomater; vol. 69B; 2004; pp. 64-69. |
Wang et al.; Temperature memory effect in CuAlNi single crystalline and CuZnAl polycrystalline shape memory alloys; Thermochimica Acta; vol. 448; 2006; pp. 69-72. |
Yahia et al.; Bioperformance of shape memory alloy single crystals; Bio-Medical Materials and Engineering; vol. 16; 2006; pp. 101-118. |
Zhang et al.; Nanoscale pseudoelasticity of single-crystal Cu—Al—Ni shape-memory alooy induced by cyclic nanoindentation; J Mater Sci; vol. 41; 2006; pp. 5021-5024. |
Zhang et al.; The variant selection criteria in single-crystal CuAlNi shape memory alloys; Smart Mater. Struct.; vol. 9; 2000; pp. 571-581. |
Zhdanov et al.; Thermal stresses in tubes, produced from a melt by the Stepanov method, during their colling; Journal of Engineering Physics and Thermophysics; vol. 68; No. 1; 1995; pp. 80-89. |
Dario et al.; Shape memory alloy microactuators for minimal invasive surgery; Proceedings of SMST-94 Conference; pp. 427-433; Pacific Grove CA; 1994. |
Johnson, A. D.; Vacuum-deposited TiNi shape memory film: Characterization and applications in microdevices; J. Micromech. Microeng.; vol. 1; pp. 34-41; 1991. |
Krulevitch et al.; Thin film shape memory alloy microactuators; J. Micromech. Microeng.; vol. 5; No. 4; 26 pgs.; 1996. |
Schetky, L.M.; Shape-memory alloys; Scientific American, pp. 74-82; 1979. |
Johnson et al.; U.S. Appl. No. 12/503,614 entitled “Sprinkler valve with active actuation,” filed Jul. 15, 2009. |
Christian et al.; The application of shape memory actuators in anthropomorphic upper limb prostheses; Artif. Organs; vol. 27; No. 5; pp. 473-477; 2003. |
Gill et al.; Three-Dimensional Thin-Film Shape Memory Alloy Microactuator With Two-Way Effect; Journal of Microelectromechanical Sys.; vol. 11; No. 1; Feb. 2002; pp. 68-77. |
Johnson, A. David; U.S. Appl. No. 12/952,002 entitled “Hyperelastic shape setting devices and fabrication methods,” filed Nov. 22, 2010. |
Creuziger et al.; Initial transformation around a notch tip in CuA1Ni: experiment and modeling; Acta Materialia; vol. 56; pp. 518-526; 2008. |
http://www.algor.com/news—pub/tech—reports/2005/rubber&foam/default.asp. |
Johnson, Alfred David; U.S. Appl. No. 13/601,749 entitled “Fire Sprinkler Valve Actuator,” filed Aug. 31, 2012. |
Number | Date | Country | |
---|---|---|---|
20090095493 A1 | Apr 2009 | US | |
20100025050 A2 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
60897708 | Jan 2007 | US |