Fredericamycin derivatives

Abstract
The invention relates to novel fredericamycin derivatives, to drugs containing said derivatives or the salts thereof, and to the use of the fredericamycin derivatives for treating diseases, especially cancer diseases.
Description

The invention relates to novel fredericamycin derivatives, to drugs containing said derivatives or the salts thereof, and to the use of the fredericamycin derivatives for treating diseases, particularly cancer diseases.


Fredericamycin has been isolated 1981 from Streptomyces griseus, and demonstrates anti- cancer activity.


Fredericamycin and several fredericamycin derivatives are known.


In Heterocycles 37 (1994) 1893-1912, J. Am. Chem. Soc. 116 (1994) 9921-9926, J. Am. Chem. Soc. 116 (1994) 11275-11286, J. Am. Chem. Soc. 117 (1995) 11839-11849, JP 2000-072752, and in J. Am. Chem. Soc. 123 (2001), various total syntheses of fredericamycin A have been described, some being enantio-selective.


In U.S. Pat. No. 4,673,768, alkali salts of the fredericamycin A are described. In U.S. Pat. No. 4,584,377, fredericamycin derivatives are described, particularly derivatives acylated in ring E and F. In U.S. Pat. No. 5,166,208, fredericamycin derivatives are described as well, particularly derivatives carrying thio and amino substituents in ring F. The derivatives are generated semi- synthetically or fully synthetically.


Surprisingly it was found that fredericamycin derivatives, especially those derivatized in ring A, represent potent drugs. Also, a possibility was found to introduce such residues in ring A semi-synthetically, with which the water solubility and/or the biological effect, the spectrum of action in comparison with fredericamycin, can be significantly increased. Furthermore, an alternative method was found to make fredericamycin and its derivatives water-soluble by generating cyclodextrin inclusion compounds.


The invention relates to novel fredericamycin derivatives with the general Formula Ia or Ib:
embedded image

wherein in each,

  • R1 means H, C1-C6 alkyl, cycloalkyl, C1-C4 alkylcycloalkyl,
  • R2 means H, C1-C14 alkyl, C2-C14 alkenyl, aryl, C1-C4 alkylaryl, heteroaryl, C1-C4 alkyl heteroaryl, C2-C4 alkenylheteroaryl, cycloalkyl, C1-C4 alkylcycloalkyl, heterocycloalkyl, C1-C4 alkylheterocycloalkyl, CmH2m+o−p−pYp (with m=1 to 6, for o=1, p=1 to 2 m+o; for m=2 to 6, o=−1, p=1 to 2 m+o; for m=4 to 6, o=−2, p=1 to 2 m+o; Y=independently selected from the group consisting of halogen, OH, OR21, NH2, NHR21, NR21R22, SH, SR21), (CH2)rCH2NHCOR21, (CH2)rCH2OCOR21, (CH2)rCH2NHCSR21, (CH2)rCH2S(O)nR21, with n=0, 1, 2, (CH2)rCH2SCOR21, (CH2)rCH2OSO2—R21, (CH2)rCHO, (CH2)rCH═NOH, (CH2)rCH(OH)R21, —(CH2)rCH═NOR21, (CH2)rCH═NOCOR21, (CH2)rCH═NOCH2CONR21R22, (CH2)rCH═NOCH(CH3)CONR21R22, —(CH2)rCH═NOC(CH3)2CONR21R22, (CH2)rCH═N—NHCO—R23, (CH2)rCH═N—NHC(O)NH—R23, (CH2)rCH═N—NHC(S)NH—R23, (CH2)rCH═N—NHC(NH)NH—R23, (CH2)rCH═N—NHC(NH)—R23, (CH2)rCH═N—NHCO—CH2NHCOR21, (CH2)rCH═N—O—CH2NHCOR21, (CH2)rCH═N—NHCS—R23, (CH2)rCH═CR24R25 (trans or cis), (CH2)rCOOH, (CH2)rCOOR21, (CH2)rCONR21R22, —(CH2)rCH═NR21, (CH2)rCH═N—NR21R22,
    embedded image

    and the (CH2)r-chain elongated residue (CH2)rCH═N—N—(C3NX′R211R212R213R214) (with X′=NR215, O, S, and R211, R212, R213, R214, R215 being independently H or C1-C6 alkyl), —(CH2)rCH═N—NHSO2 aryl, —(CH2)rCH═N—NHSO2 heteroaryl, with r=0, 1, 2, 3, 4, 5, preferably 0,
  • R21, R22 are independently H, C1-C14 alkyl, C1-C14 alkanoyl, C1-C6 alkylhydroxy, C1-C6 alkoxy, C1-C6 alkylamino, C1-C6 alkylamino-C1-C6 alkyl, C1-C6 alkylamino-di-C1-C6 alkyl, cycloalkyl, C1-C4 alkylcycloalkyl, heterocycloalkyl, C1-C4 alkylheterocycloalkyl, aryl, aryloyl, C1-C4 alkylaryl, heteroaryl, heteroaryloyl, C1-C4 alkylheteroaryl, cycloalkanoyl, C1- C4 alkanoylcycloalkyl, heterocycloalkanoyl, C1-C4 alkanoylheterocycloalkyl, C1-C4 alkanoylaryl, C1-C4 alkanoylheteroaryl, mono- and di-sugar residues linked through a C atom which would carry an OH residue in the sugar, wherein the sugars are independently selected from the group consisting of glucuronic acid and its stereo isomers at all optical atoms, aldopentoses, aldohexoses, including their desoxy compounds (as e.g. glucose, desoxyglucose, ribose, desoxyribose), or R21 and R22, together with the N, form a ring with 4, 5, 6, 7, or 8 members, which may optionally contain still another heteroatom selected from the group N, O, S,
  • R23 independently of R21, has the same meanings as R21, or CH2-pyridinium salts, CH2-tri-C1-C6 alkylammonium salts, CONH2, CSNH2, CN, CH2CN,
  • R24 independently of R21, has the same meanings as R21, or H, CN, COCH3, COOH, COOR21, CONR21R22, NH2, NHCOR21,
  • R25 independently of R21, has the same meanings as R21, or H, CN, COCH3, COOH, COOR21, CONR21R22, NH2, NHCOR21,
  • R24, R25 together with the N, form a ring with 4, 5, 6, 7, or 8 members, which may optionally contain still another heteroatom selected from the group N, O, S,
  • R3 means H, F, Cl, Br, I, OH, OR31, NO2, NH2, NHR31, NR31R32, NHCHO, NHCOR31, NHCOCF3, CH3-mhalm (with hal=Cl, F, particularly F, and m=1, 2, 3), OCOR31,
  • R31, R32 are independently C1-C6 alkyl, or R31 and R32, together with the N, form a ring with 4, 5, 6, 7, or 8 members, which may optionally contain still another heteroatom selected from the group N, O, S,
  • R5 means H, C1-C20 alkyl, cycloalkyl, C2-C20 alkenyl, C2-C10 alkinyl, C1-C4 alkyl cycloalkyl, heterocycloalkyl, C1-C4 alkyl heterocycloalkyl, aryl, C1-C4 alkylaryl, heteroaryl, C1-C4 alkylheteroaryl, CmH2m+o−pYp (with m=1 to 6, for o=1, p=1 to 2 m+o; for m=2 to 6, o=−1, p=1 to 2 m+o; for m=4 to 6, o=−2, p=1 to 2 m+o; Y=independently selected from the group consisting of halogen, OH, OR51, NH2, NHR51, NR51R52, SH, SR21), (CH2)sCH2NHCOR51, (CH2),CH2NHCSR51, (CH2),CH2S(O)nR51, with n=0, 1, 2, (CH2)sCH2SCOR51, (CH2),CH2OCOR51, (CH2)sCH2OSO2—R51, (CH2)sCH(OH)R51, (CH2),COOH, (CH2),COOR51, (CH2),CONR51R52, with s=0, 1, 2, 3, 4, 5, preferably 0, mono- and di-sugar residues linked through a C atom which would carry an OH residue in the sugar, wherein the sugars are independently selected from the group consisting of glucuronic acid and its stereo isomers at all optical atoms, aldopentoses, aldohexoses, including their desoxy compounds (as e.g. glucose, desoxyglucose, ribose, desoxyribose), with the mono- sugar residues such as aldopentoses, aldohexoses, including their desoxy compounds (as e.g. glucose, desoxyglucose, ribose, desoxyribose) being preferred, with R51, R52 which are capable of independently adopting the meaning of R21, R22,
  • R4, R6, R7 independently mean H, C1-C6 alkyl, CO—R41,
  • R41 independently from R21, has the same meanings as R21,
  • X means O, S, NH, N—R8, wherein R8 independently from R5 may adopt the same meaning as R5, or R5 and R8, together with the N, form a ring with 4, 5, 6, 7, or 8 members, which may optionally contain still another heteroatom selected from the group N, O, S,
  • or X—R5 may together be H,
  • Y means O, S, NR9, wherein R9 may be H or C1-C6 alkyl,


    as well their stereoisomers, tautomers, and their physiologically tolerable salts or inclusion compounds, wherein the residues for Formula Ia may not concomitantly adopt the following meaning, except in case of cyclodextrin inclusion compounds: R1: H, C1-C6 alkyl, R2: C1-C6 alkyl, C2-C6 alkenyl, R3: H, R4 and R6 identical, and independently H, C1-C6 alkyl, CO—R41, with R41 being C1-C6 alkyl, aryl, and R7 being H, C1-C6 alkyl, Y: 0, and for Formula Ib: R1: H, R2: pentyl, 1-pentenyl, 3-pentenyl, 1,3-pentdienyl, R3: H, R4 and R6 being H, and X—R5 being methoxy, Y: O. Preferably, the substituents do not concomitantly adopt the following meaning: R1, R3: H, R2: H, alkyl, hydroxyalkyl, particularly monohydroxyalkyl, alkoxyalkyl, CF3, (CH2)rCOOH, CHO, CONH2, (CH2)rCH2NHCO alkyl, (CH2)rCH2OCO alkyl, (CH2)rCH2NHCS alkyl, CH═NOH, CH═NO alkyl, aryl, alkylaryl, alkylheteroaryl, alkenyl, hydroxyalkenyl, particularly monohydroxyalkenyl, R4, R6, R7: H, alkyl, X—R5: H, R5: H, alkyl, aryl.


Preferred are compounds of Formula IIa or IIb
embedded image

wherein the meaning of the residues R1-R41, X is as described above, their tautomers and their physiologically tolerable salts or inclusion compounds, wherein the residues for Formula Ia may not concomitantly adopt the following meaning, except in the case of cyclodextrin inclusion compounds: R1: H, C1-C6 alkyl, R2: C1-C6 alkyl, C2-C6 alkenyl, R3: H, R4 and R6 identical, and independently H, C1-C6 alkyl, CO—R41, with R41 being C1-C6 alkyl, aryl, and R7 being H, C1-C6 alkyl, Y: O, and for Formula Ib: R1: H, R2: pentyl, 1-pentenyl, 3-pentenyl, 1,3-pentdienyl, R3: H, R4 and R6 being H, and X—R5 being methoxy, Y: O.


The invention further relates to compounds of Formula Ia, Ib, IIa or IIb, in which the residues R, except for R2, have the above described meanings, and the water solubility of R2 is at least two times higher, preferably at least five timer higher, more preferred at least ten times higher, especially preferred at least fifty time higher, particularly one hundred times higher, or even five hundred times higher than of R2 being CH═CH—CH═CH—CH3, when all other residues are maintained. The increase in the water solubility is achieved e.g. by introduction of groups which can form additional hydrogen bonds, and/or are polar, and/or are ionic. A key intermediate are compounds with an aldehyde function in R2.


For R2 preferred is also the group of the residues CmH2m+o−pYp (with m=1 to 6, for o=1, p=1 to 2 m+o; for m=2 to 6, o=−1, p=1 to 2 m+o; for m=4 to 6, o=−2, p=1 to 2 m+o; Y=independently selected from the group of halogen, OH, OR21, NH2, NHR21, NR21R22, SH, SR21), (CH2)rCH2NHCOR21, (CH2)rCH2OCOR21, (CH2)rCH2NHCSR21, (CH2)rCH2S(O)nR21, with n=0, 1, 2, (CH2)rCH2SCOR21, (CH2)rCH2OSO2—R21, (CH2)rCH(OH)R21, (CH2)rCOOH, (CH2)rCOOR21, (CH2)rCONR21R22. Still particularly preferred is the group of the aldehyde-derived residues (CH2)rCHO, (CH2)rCH═NOH, —(CH2)rCH═NOR21, (CH2)rCH═NOCOR21, (CH2)rCH═NOCH2CONR21R22, (CH2)rCH═N—NHCO—R23, (CH2)rCH═N—NHC(O)NH—R23, (CH2)rCH═N—NHC(S)NH—R23, (CH2)rCH═N—NHC(NH)NH—R23, (CH2)rCH═N—NHC(NH)—R23, (CH2)rCH═N—NHCO—CH2NHCOR21, (CH2)rCH═N—O—CH2NHCOR21, (CH2)rCH═N—NHCS—R23, (CH2)rCH═CR24R25 (trans or cis), (CH2)rCH═NR21, (CH2)rCH═N—NR21R22,
embedded image

and the (CH2)r-chain elongated residue (CH2)rCH═N—N—(C3NX′R211R212R213R214) (with X′=NR215, O, S, and R211, R212, R213, R214, R215 being independently H or C1-C6 alkyl), —(CH2)rCH═N—NHSO2 aryl, (CH2)rCH═N—NHSO2 heteroaryl, (CH2)rCH═CH heteroaryl, with r=0, 1, 2, 3, 4, 5, preferably 0.


From the aldehydes and thereof derived compounds, such are preferred in which at least R1 or r3 are not H, if R4 to R7 are H or alkyl.


Preferred residues in R2 are further heteroaryl, cycloaryl, C1-C4 alkylcycloalkyl, heterocycloalkyl, C1-C4 alkyl heterocycloalkyl, CmH2m+o−pYp (with m=1 to 6, for o=1, p=1 to 2 m+o; for m=2 to 6, o=−1, p=1 to 2 m+o; for m=4 to 6, o=−2, p=1 to 2 m+o; Y=independently selected from the group of halogen, OH, OR21, NH2, NHR21, NR21R22, SH, SR21), CH2NHCOR21, CH2NHCSR21, CH2S(O)nR21, with n=0, 1, 2, CH2SCOR21, CH2OSO2—R21, CH(OH)R21, CH═NOCOR21, —CH═NOCH2CONR21R22, —CH═NOCH(CH3)—CONR21R22, CH═NOC(CH3)2CONR11R22, CH═N—NHCO—R23, —CH═N—NHCO—CH2NHCOR21, CH═N—O—CH2NHCOR21, —CH═N—NHCS—R23, CH═CR24R25 (trans or cis), CONR21R22, —CH═NR21, —CH═N—NR21R22,
embedded image

(with X′=NR215, O, S, and R211, R212, R213, R214, R215 being independently H or C1-C6 alkyl), CH═N—NHSO2 aryl, H═N—NHSO2 heteroaryl.


Furthermore, compounds as described above are preferred, in which R3 means F, Cl, Br, I, OH, OR31, NO2, NH2, NHR31, NR31R32, NHCHO, NHCOR31, NHCOCF3, CH3-mhalm (with hal=Cl, F, particularly F, and m=1, 2, 3), OCOR31, with the above described meanings for R31, R32.


Also preferred are compounds as described above, in which X means N or S, especially when R3 is H or halogen, and/or R2 is alkenyl, particularly butadienyl or 1,3-pentdienyl.


Also preferred are compounds as described above, in which X—R5 is OH, and particularly their salts, and preferred in compounds of Formula Ia or Ia, since this acidic OH group may easily be deprotonized, which increases the water solubility and/or the biological efficacy. Furthermore preferred are still compounds as described above, wherein the residues R preferably independently adopt one or more of the following meanings:

  • R1 means H, C1-C5 alkyl, cycloalkyl, especially H,
  • R2 means C1-C5 alkyl, C1-C4 alkylaryl, C2-C5 alkenyl, heteroaryl, C1-C4 alkylheteroaryl, C2-C4 alkenylheteraryl, CHF2, CF3, polyol side chain, particularly CHOH—CHOH—CHOH—CHOH—CH3, CHOH—CHOH—CH═CH—CH3, CH═CH—CHOH—CHOH—CH3, CH2Y (Y═F, Cl, Br, I), CH2NH2, CH2NR21R22, CH2NHCOR23, CH2NHCSR23, CH2SH; CH2S(O)nR21, with n=0, 1, 2, CH2SCOR21, particularly CH2OH, CH2OR21, CH2OSO2—R21, particularly CHO, CH(OR21)2, CH(SR21)2, CN, CH═NOH, CH═NOR21, CH═NOCOR21, CH═N—NHCO—R32, CH═CR24, R25 (trans or cis), particularly COOH (particularly their physiologically tolerable salts), COOR21, CONR21R22, —CH═NR21, —CH═N—NR21R22,
    embedded image

    (with X′=NR215, O, S, and R211, R212, R213, R214, R215 being independently H or C1-C6 alkyl), —CH═N—NHSO2 aryl, —CH═N—NHSO2 heteroaryl, CH═N—NHCO—R23,
  • R21, R22 independently mean C1-C6 alkyl, cycloalkyl, aryl, C1-C4 alkylaryl, heteroaryl, C1-C4 alkylheteroaryl,
  • R23 independently of R21, has the same meanings as R21, or CH2-pyridinium salts, CH2-tri-C1-C6 alkylammonium salts,
  • R24 independently of R21, has the same meanings as R21, or H, CN, COCH3, COOH, COOR21, CONR21R22, NH2, NHCOR21,
  • R25 independently of R21, has the same meanings as R21, or H, CN, COCH3, COOH, COOR21, CONR21R22, NH2, NHCOR21,
  • R24, R25 together mean C4-C8 cycloalkyl,
  • R3 means F, Cl, Br, I, NO2, NH2, NHCOR31,
  • R31 independently means C1-C6 alkyl,
  • R5 means H, C1-C6 alkyl, particularly C1-C3 alkyl, C3-C8 cycloalkyl, C3-C8 cycloalkenyl, C1-C6 alkenyl, C1-C6 alkinyls, C1-C4 alkylcycloalkyl, heterocycloalkyl, C1-C4 alkylheterocycloalkyl, aryl, C1-C4 alkylaryl, heteroaryl, C1-C4 alkylheteroaryl, CmH2m+o−pYp (with m=1 to 6, for o=1, p=1 to 2 m+o; for m=2 to 6, o=−1, p=1 to 2 m+o; for m=4 to 6, o=−2, p=1 to 2 m+o; Y=independently selected from the group consisting of halogen, OH, OR21, NH2, NHR21, NR21R22, SH, SR21), particularly preferred is hydroxyalkyl with one or more OH groups,
  • R4, R6, R7 independently means H, C1-C5 alkyl, CO—R41,
  • R41 independently from R21, has the same meanings as R21,
  • X means O, S, NH, N—R8,
  • Y means O, S, NH,


    as well their stereoisomers, tautomers, and their physiologically tolerable salts or inclusion compounds, wherein the residues for Formula Ia may not concomitantly adopt the following meaning, except in case of cyclodextrin inclusion compounds: R1: H, C1-C6 alkyl, R2: C1-C6 alkyl, C2-C6 alkenyl, R3: H, R4 and R6 are identical, and independently are H, C1-C6 alkyl, CO—R41, with R41 being C1-C6 alkyl, aryl, and R7 being H, C1-C6 alkyl, and for Formula Ib: R1: H, R2: pentyl, 1-pentenyl, 3-pentenyl, 1,3-pentdienyl, R3: H, R4 and R6 being H, and X—R5 being methoxy.
  • O, S, particularly O, are preferred for Y.
  • O, NH, N—R8 are preferred for X.
  • H, methyl, ethyl, propyl, particularly methyl, are preferred for R5.
  • H, methyl, ethyl, propyl, particularly methyl, are preferred for R8.
  • OCH3, NH2, N(CH3)2 are preferred for XR5.


For R2 also preferred is the residue —CHOHCHOHCHOHCHOHCH3.


Furthermore, the following residues are preferred for R2: —CHCH-2-methyl-4-thiazyl, particularly
embedded image

wherein R particularly is alkyl or NHCO alkyl, CH═NOR21, with R21 being methyl, ethyl, n-propyl, isopropyl, n-butyl, n-hexyl, benzyl, halogen benzyl, particularly fluorobenzyl and chlorobenzyl, —CH2CH2 morpholinyl.


Especially preferred are the compounds, the stereo isomers, tautomers, and physiologically tolerable salts or inclusion compounds of which, selected from the group consisting of the compounds of the examples and the compounds, demonstrate combinations of the various substituents of the examples.


Particularly preferred for R3 is H, F, Cl, Br, J, particularly F, Cl, Br, J.


Particularly preferred for R2 is C1-C8 alkyl, C2-C8 alkenyl, CH═NOR1, with R21 being C1-C8 alkyl, C1-C8 alkenyl, aryl or heteroaryl, C1-C2 alkylaryl, particularly benzyl, C1-C2 alkylheteroaryl, wherein aryl or heteroaryl in particular have only one ring system which may be substituted once or twice with a substituent such as halogen, methyl, CF3, OH, OMe.


Particularly preferred are derivatives of fredericamycin A in which only the above indicated, particularly preferred meanings of R2 and/or R3 are realized.


The invention furthermore relates to drugs containing the above compounds of Formula I or II together with the usual carriers and adjuvants.


Also preferred are the above mentioned drugs in combination with other agents for cancer treatment.


These compounds according to the invention are used for preparation of drugs for treatment of cancers, particularly such that may be treated by inhibition of the topoisomerases I and/or II. Cancers that can be treated with the substances according to the invention are e.g. leukemia, lung cancer, melanomas, uterus tumors, prostate tumors and colon tumors.


Also, fredericamycin A and its derivatives act against an unknown target in the cell cycle leading to apoptosis in tumor cells. Furthermore, the compounds according to the invention, and compounds which have concomitantly adopted the following meanings in Formula Ia: R1: H, C1-C6 alkyl, R2: C1-C6 alkyl, C2-C6 alkenyl, R3: H, R4 and R6 identically and independently H, C1-C6 alkyl, CO—R41, with R41 being C1-C6 alkyl, aryl, and R7 being H, C1-C6 alkyl, and in Formula Ib: R1: H, R2: pentyl, 1-pentenyl, 3-pentenyl, 1,3-pentdienyl, R3: H, R4 and R6 being H and X—R5 being methoxy, are used for preparation of drugs for treatment of neurodermitis, parasites and for immunosuppression.


The invention also relates to a method for preparation of fredericamycin derivatives in which R2 as intermediate is —CHOHCHOHCHOHCHOHCH3. These compounds are preferably transformed into aldehydes for further derivatization.


In the description and the claims, the substituents are described by the following definitions:


The term “alkyl” by itself or as part of another substituent means a linear or branched alkyl chain radical of the respectively indicated length, in which optionally a CH2 group may be substituted by a carbonyl function. Thus, C1-4 alkyl may be methyl, ethyl, 1-propyl, 2-propyl, 2-methyl-2-propyl, 2-methyl-1-propyl, 1-butyl, 2-butyl, C1-6 alkyl, e.g. C1-4 alkyl, pentyl, 1-pentyl, 2-pentyl, 3-pentyl, 1-hexyl, 2-hexyl, 3-hexyl, 4-methyl-1-pentyl, or 3,3-dimethylbutyl.


The term “C1-C6 alkylhydroxy” by itself or as part of another substituent means a linear or branched alkyl chain radical of the respectively indicated length which may be saturated or unsaturated, and which carries an OH group, e.g. hydroxymethyl, hydroxymethyl, 1-hydroxypropyl, 2-hydroxypropyl.


The term “alkenyl” by itself or as part of another substituent means a linear or branched alkyl chain radical with one or more C═C double bonds of the respectively indicated length, several double bonds being preferably conjugated. Thus, C2-6 alkenyl may for example be ethenyl, 1-propenyl, 2-propenyl, 2-methyl-2-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, 1,3-butdienyl, 2,4-butdienyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 1,3-pentdienyl, 2,4-pentdienyl, 1,4-pentdienyl, 1-hexenyl, 2-hexenyl, 1,3-hediexyl, 4-methyl-1-pentenyl, or 3,3-dimethylbutenyl.


The term “alkinyl” by itself or as part of another substituent means a linear or branched alkyl chain radical with one or more C—C triple bonds of the respectively indicated length. Thus, C2- 6 alkinyl may for example be ethinyl, 1-propinyl, 2-propinyl, 2-methyl-2-propinyl, 2-methyl-1-propinyl, 1-butinyl, 2-butinyl, 1,3-butdiinyl, 2,4-butdiinyl, 1-pentinyl, 2-pentinyl, 3-pentinyl, 1-hexinyl, 2-hexinyl, 4-methyl-1-pentinyl, or 3,3-dimethylbutinyl.


The term “halogen” stands for fluorine, chlorine, bromine, iodine, preferably bromine and chlorine.


The term “NR21R22” preferably stands for a dialkylamino group, wherein the two alkyl groups together with the N can form a ring with 5 or 6 members with optionally one more heteroatom N or O.


The term “cycloalkyl” by itself or as part of another Substituent comprises unsaturated (mono or poly, preferably mono) or saturated, cyclic carbohydrate groups with 3 to 10 C atoms, preferably 3 to 8 C atoms, such as e.g. cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohex-2-enyl, cyclohex-3-enyl, cyclohex-2,4-dienyl, 4-methylcyclohexyl, 3-methylcyclohexyl, cycloheptyl or cyclooctyl. Saturated cycloalkyls are preferred. The cycloalkyls may be substituted with up to 3 substituents, preferably with up to 1 substituent, wherein the substituents independently can have the meaning C1-C6 alkyl, OH, NO2, CN, CF3, OR11, SH, SR11, C1-C6 alkylhydroxy, C1-C6 alkyl-OR11, COOH, COOR11, NH2, NHR11, NR11R12, halogen, aryl, C1-C4 alkylaryl, heteroaryl, C1-C4 heteroalkylaryl, wherein the residues R11 und R12 independently can mean C1-C10 alkyl, cycloalkyl, C1-C4 alkylcycloalkyl.


The term “heterocycloalkyl” by itself or as part of another substituent includes cycloalkyl groups, wherein up to two CH2 groups may be substituted by oxygen, sulfur or nitrogen atoms, and one or two other CH2 groups may be substituted by one or two carbonyl function(s), carbothionyl function(s), or a carbonyl function and a carbothionyl function, for example pyrrolidine, piperidine, morpholine or
embedded image


The heterocycloalkyls may be substituted as with the cycloalkyls.


The term “aryl” by itself or as part of another substituent includes aromatic ring systems with up to 3 rings, in which at least 1 ring system is aromatic, and those with up to 3 substituents, preferably up to 1 substituent, wherein the substituents independently can have the meaning C1-C6 alkyl, OH, NO2, CN, CF3, OR11, SH, SR11, C1-C6 alkylhydroxy, C1-C6 alkyl-OR11, COOH, COOR11, NH2, NHR11, NR11R12, halogen, wherein the residues R11 und R12 independently can mean C1-C10 alkyl, cycloalkyl, C1-C4 alkylcycloalkyl, or R11 and R12, together with the N, form a ring with 4, 5, 6, 7 or 8 members optionally containing still another heteroatom selected from the group N, O, S.


Apart from phenyl and 1-naphthyl and 2-naphthyl, preferred aryls are:
embedded image


The term “heteroaryl” by itself or as part of another substituent includes aromatic ring systems with up to 3 rings and with up to 3 identical or different heteroatoms N, S, O, in which at least 1 ring system is aromatic, and those with up to 3 substituents, preferably up to 1 substituent, wherein the substituents independently can have the meaning C1-C6 alkyl, OH, NO2, CN, CF3, OR11, SH, SR11, C1-C6 alkylhydroxy, C1-C6 alkyl-OR11, COOH, COOR11, NH2, NHCOR11, NHR11, NR11R12, halogen, or phenyl, wherein the residues R11 und R12 independently can have the above indicated meanings.


Preferred heteroaryls are:
embedded image


The term “ring system” generally refers to rings with 3, 4, 5, 6, 7, 8, 9, or 10 members. Preferred are rings with 5 and 6 members. Furthermore, ring systems with one or 2 annealed rings are preferred.


The compounds of Formula I may be present as such, or, if they contain acidic or basic groups, in the form of their salts with physiologically tolerable bases or acids. Examples for such acids are: hydrochloric acid, citric acid, trifluoracetic acid, tartaric acid, lactic acid, phosphoric acid, methane sulfonic acid, acetic acid, formic acid, maleic acid, fumaric acid, succinic acid, hydroxysuccinic acid, sulfuric acid, glutaric acid, aspartic acid, pyruvic acid, benzoic acid, glucuronic acid, oxalic acid, ascorbic acid, and acetylglycine. Examples for bases are alkali ions, preferably Na, K, particularly preferred the tri-potassium and tri-sodium salts, alkaline earth ions, preferably C, Mg, ammonium ions.


The compounds according to the invention may be administered orally in the usual way. The application may also be i.v., i.m., with vapors, or sprays through the nasopharynx.


The dosage depends on age, condition and weight of the patient as well as on the type of application. Usually, the daily dose of the active ingredient per person is between 0.1 μg/kg and 1 g/kg orally. This dosage may be given as 2 to 4 split dosages, or once per day as a slow release form.


The novel compounds may be used in the usual solid or liquid pharmaceutical application forms, e.g. as tablets, film tablets, capsules, powder, granules, coated tablets, solutions, or sprays. These are produced in the usual way. The agents can be processed with the usual pharmaceutical adjuvants such as tablet binders, fillers, preservatives, disintegrants, flow regulators, plasticizers, wetting agents, dispersants, emulsifiers, solvents, retardation agents, antioxidants, and/or propellants (see H. Sucker et al.: Pharmazeutische Technologie, Thieme- Verlag, Stuttgart, 1978). Usually, the so obtained application forms contain the active ingredient in amounts of 0.1 to 99 percent per weight.


Experimental Part


Fredericamycin A can be prepared by fermentation or fully synthetically according to the known methods. The reduced forms of the Formulas Ib and IIb can be obtained from the appropriate compounds of Formulas Ia and Ia using mild reducing agents.


Preparation of the Substances


For synthesis of water soluble fredericamycin derivatives, fredericamycin (1) was first hydroxylized with osmium(IV)oxide at the diene side chain. The resulting compound (2) shows significantly higher water solubility compared to the original compound fredericamycin (1). In order to further increase the water solubility, (2) was transformed into the tri-potassium salt (3) (see diagram 1).
embedded image


The fredericamycin tetrol (2) serves, among others, as an important intermediate for the synthesis of other fredericamycin derivatives with increased solubility and/or better action profile. By iodate cleavage with sodium periodate or carrier-bound periodate, the tetrol side chain may be degraded with very high yields to fredericamycin aldehyde (4) (see diagram 2).
embedded image


The fredericamycin aldehyde (4) can be reacted with acylhydrazones, hydroxylamine, and O-alkylhydroxylamine to the appropriate hydrazone (see diagram 3), or oxime and oximether (see diagram 4). The reaction can be performed at room temperature in solvents such as DMF or pyridine, and is finished after a few minutes to hours.


Synthesis of Hydrazones
embedded image

TABLE 1Example/compoundRm/eλmax(nm)5/118embedded image601.3504.06/119embedded image635.2486.0




embedded image















R
Compound
Example














embedded image


111
18







embedded image


105
19







embedded image


113
20









Synthesis of Oximether
embedded image

TABLE 2Example/compoundRm/eλmax(nm)7/122—H516.1500.08/120—CH3531.2500.09/121embedded image607.2504.010/123embedded image678.1504.021/116embedded image630.1504.0


Analogously, the compounds 100-242 can be generated according to the instructions below (table 3). The hereby used hydrazines, hydrazones and hydroxylamines are available commercially, or have been produced according to instructions known from the literature.
embedded image

TABLE 3Formula for table 3:embedded imageCalculatedActualExample/CompoundR1R2massmassUVmaxYield100embedded imageembedded image592.1230593.1050095C5H5N2H101embedded imageembedded image661,1056662,1150095C5H3F3N3H102embedded imageembedded image620,1179621,1149295C6H5N2OH103embedded imageembedded image620,1179621,1150095C6H5N2OH104embedded imageembedded image567,1026568,1150080C2H2N3H105 (19)embedded imageembedded image583,1339584,1049295C3H6N3H106embedded imageembedded image609,1019610,0949295C5H4NO2H107embedded imageembedded image634,1335635,1349295C7H7N2OH108embedded imageembedded image574,0794558,0549295NHCSNH2H109embedded imageembedded image625,0791626,0849295C5H4NOSH110embedded imageembedded image672,1492673,1549295C10H9N2OH111embedded imageembedded image598,1699599,1449295C5H11N2H112embedded imageembedded image586,0971587,1049295C2H3N2O2H113 (20)embedded imageembedded image631,0,55632,0550095C3H2NOS2H114embedded imageembedded image582,1022583,1349295C3H3N2OH115embedded imageembedded image634,1335635,1649270C7H7N2OH116embedded imageembedded image629,1645630,1449285C6H12NO2H117embedded imageembedded image557,1182558,1150095CH4N3H118embedded imageembedded image600,1492601,1649285C4H9N2OH119embedded imageembedded image635,1414635,1349585C7H8N2OH120 (8)embedded imageembedded image530,0961531,1249290OMeH121 (9)embedded imageembedded image606,1274607,1649295OCH2PhH122embedded imageembedded image516,0804517,1148295OHH123 (10)embedded imageembedded image678,1332679,1450095C6H11O6H124embedded imageembedded image634,1335635,1549295C7H7N2O125embedded imageembedded image558,1022559,1249295NHCONH2H126embedded imageembedded image640,1805614,1349295C7H13N2OH127embedded imageembedded image640,0884641,1049295C7H6ClOH128embedded imageembedded image640,0900641,1049295C5H5N2OSH129embedded imageembedded image623,1288624,1350090C5H6N3OH130embedded imageembedded image614,1284615,1349295C4H7N2O2H131embedded imageembedded image655,1914656,1949250C7H14N3OH132embedded imageembedded image642,1597643,1749260C6H11N2O2H133embedded imageembedded image586,1335587,1549270C3H7N2OH134embedded imageembedded image628,1805629,1749270C6H13N2OH135embedded imageembedded image587,1539588,1449290C4H10NOH136embedded imageembedded image752,1885753,1949285C13H18ClN2OH137embedded imageembedded image601,1696602,1949270C5H12NOH138embedded imageembedded image626,0840627,0750095C5H5N2Cl139embedded imageembedded image695,0666696,0650095C5H3F3N3Cl140embedded imageembedded image654,0789655,0750095C6H5N2OCl141embedded imageembedded image654,0789655,0750095C6H5N2OCl142embedded imageembedded image601,0636602,0650090C2H2N3Cl143embedded imageembedded image617,0949618,0850095C3H6N3Cl144embedded imageembedded image643,0629644,0550095C5H4NO2Cl145embedded imageembedded image668,0946669,0750095C7H7N2OCl146embedded imageembedded image608,0404609,0750095NHCSNH2Cl147embedded imageembedded image659,0401660,0750095C5H4NOSCl148embedded imageembedded image706,1102707,1650095C10H9N2OCl149embedded imageembedded image632,1309633,1650095C5H11N2Cl150embedded imageembedded image620,0582621,0950095C2H3N2O2Cl151embedded imageembedded image664,9965645,3150095C3H2NOS2Cl152embedded imageembedded image616,0633617,1050095C3H3N2OCl153embedded imageembedded image668,0946669,1350095C7H7N2OCl154embedded imageembedded image663,1255664,1650095C6H12NO2Cl155embedded imageembedded image591,0792592,1150095156embedded imageembedded image634,1102635,1450095C4H9N2OCl157embedded imageembedded image669,1024669,1250095C7H8N2OCl158embedded imageembedded image564,0571565,0950095OMeCl159embedded imageembedded image640,0884641,1250095OCH2PhCl160embedded imageembedded image550,0415551,0650095OHCl161embedded imageembedded image712,0943713,1050095C6H11O6Cl162embedded imageembedded image668,0946669,0950095C7H7N2OCl163embedded imageembedded image592,0633593,0750090NHCONH2Cl164embedded imageembedded image674,1415675,1150095C7H13N2OCl165embedded imageembedded image674,0494675,0350090C7H6ClOCl166embedded imageembedded image674,0510675,0250095C5H5N2OSCl167embedded imageembedded image657,0898658,0650095C5H6N3OCl168embedded imageembedded image648,0895649,0750095C4H7N2O2Cl169embedded imageembedded image689,1524690,1550060C7H14N3OCl170embedded imageembedded image676,1208677,1350060C6H11N2O2Cl171embedded imageembedded image620,0946621,1150070C3H7N2OCl172embedded imageembedded image662,1415663,1250070C6H13N2OCl173embedded imageembedded image621,1150622,1050060C4H10NOCl174embedded imageembedded image786,1495787,1650090C13H18ClN2OCl175embedded imageembedded image635,1306636,1050075C5H12NOCl176embedded imageembedded image670,0334670,9950095C5H5N2Br177embedded imageembedded image739,0161739,9950095178embedded imageembedded image698,0284699,0050090C6H5N2OBr179embedded imageembedded image698,0284699,0050090C6H5N2OBr180embedded imageembedded image645,0130645,9949270C2H2N3Br181embedded imageembedded image661,0443662,0149295C3H6N3Br182embedded imageembedded image687,0124688,9949295C5H4NO2Br183embedded imageembedded image712,0440713,0350095C7H7N2OBr184embedded imageembedded image651,9899653,0450095NHCSNH2Br185embedded imageembedded image702,9895704,0249295C5H4NOSBr186embedded imageembedded image750,0597751,1050095C10H9N2OBr187embedded imageembedded image676,0804677,1049295C5H11N2Br188embedded imageembedded image664,0076665,0550095C2H3N2O2Br189embedded imageembedded image708,9460709,9949295C3H2NOS2Br190embedded imageembedded image660,0127661,0549295C3H3N2OBr191embedded imageembedded image712,0440713,0849270C7H7N2OBr192embedded imageembedded image707,0750708,0650095C6H12NO2Br193embedded imageembedded image635,0287636,0250095CH4N3Br194embedded imageembedded image678,0597679,0650095C4H9N2OBr195embedded imageembedded image713,0518713,0350095C7H8N2OBr196embedded imageembedded image608,0066609,0349295OMeBr197embedded imageembedded image684,0379685,0549295OCH2PhBr198embedded imageembedded image593,9909595,0149295OHBr199embedded imageembedded image756,0437757,0050090C6H11O6Br200embedded imageembedded image712,0440713,0050090C7H7N2OBr201embedded imageembedded image636,0127637,0049290NHCONH2Br202embedded imageembedded image718,0910719,0050090C7H13N2OBr203embedded imageembedded image717,9989718,0049295C7H6ClOBr204embedded imageembedded image718,0004718,9749295C5H5N2OSBr205embedded imageembedded image701,0392702,0150095C5H6N3OBr206embedded imageembedded image692,0389693,0349295C4H7N2O2Br207embedded imageembedded image733,1018734,1050090C7H14N3OBr208embedded imageembedded image720,0702721,1050095C6H11N2O2Br209embedded imageembedded image664,0440665,0850095C3H7N2OBr210embedded imageembedded image706,0910707,0950090C6H13N2OBr211embedded imageembedded image665,0644666,0850095C4H10NOBr212embedded imageembedded image830,0989831,1150095C13H18ClN2OBr213embedded imageembedded image679,0801680,0949295C5H12NOBr214embedded imageembedded image558,1274559,2150099Oi—PrH215embedded imageembedded image600,1743601,3050099O-n-hexH216embedded imageembedded image624,1180625,2850099C7H6FOH217embedded imageembedded image640,0884641,2750099C7H6ClOH218embedded imageembedded image624,1180625,3150099C7H6FOH219embedded imageembedded image592,0884593,2850080Oi—PrCl220embedded imageembedded image634,1354635,3650090O-n-hexCl221embedded imageembedded image658,0790659,3250085C7H6FOCl222embedded imageembedded image674,0494675,3150080C7H6ClOCl223embedded imageembedded image658,0790659,3450080C7H6FOCl224embedded imageembedded image636,0379639,3049290Oi—PrBr225embedded imageembedded image678,0848679,3749295O-n-hexBr226embedded imageembedded image702,0284703,3449295C7H6FOBr227embedded imageembedded image717,9989719,3449295C7H6ClOBr228embedded imageembedded image702,0284705,3549295C7H6FOBr229embedded imageembedded image684,0200685,3050099Oi—PrI230embedded imageembedded image726,0669727,4150099O-n-hexI231embedded imageembedded image750,0105751,3850099C7H6FOI232embedded imageembedded image765,9810767,3650099C7H6ClOI233embedded imageembedded image750,0105751,3850099C7H6FOI234embedded imageembedded image732,0200733,3850099OCH2PhI235embedded imageembedded image755,0571756,3350099C6H12NO2I236embedded imageembedded image655,9887657,3249295OMeI237embedded imageembedded image765,9810767,3849299C7H6ClOI238embedded imageembedded image878,0810879,4550099C13H18ClN2OI239embedded imageembedded image641,9730643,3149299OHI240embedded imageembedded image781,0840782,3950099C7H14N3OI241embedded imageembedded image768,0523769,3850099C6H11N2O2I242embedded imageembedded image711.9897713.3750099C2H3N2O2I


Reduction and Oxidation of Fredericamycin Aldehyde (4)


Fredericamycin aldehyde (4) can be reacted with a common reducing agent such as sodium borohydrid in a solvent such as DMF or pyridine to hydroxymethyl fredericamycin (11). The reaction can be summarized as a single pot reaction (iodate cleavage of fredericamycin tetrol (2) to fredericamycin aldehyde (4) (see diagram 2) and reduction without isolation of the intermediates to fredericamycin alcohol (11)).
embedded image


Fredericamycin aldehyde (4) can be oxidized with the oxidizing agent sodium chlorite (NaClO2), a buffer such as sodium dihydrogenphosphate in presence of an alkene such as 2,3-dimethylbutene with very good yields to fredericamycin carboxylic acid (12). The usually employed oxidation methods such as those being used in preparative chemistry for the oxidation of aldehydes to carboxylic acids (oxidation with chromium(VI) compounds, manganese(VII) compounds as well as peroxo acid) did not lead to success. Only the use of the above described oxidation method provided the desired product. The literature describes oxidations of 2-pyridone-6-aldehydes with silver ions and potassium permanganate in an alkaline medium. This method, however, is not suited for fredericamycin and its derivatives since fredericamycin (1) contains base-labile (-reactive) groups (OH groups) causing undesired side reactions.


The potassium salt of the fredericamycin acid (13) was obtained according to a common method by stoichiometric neutralization.


Substitution in the B Ring


Fredericamycin (1) can be reacted with halogenation agents such as N-bromosuccinimide (NBS) and N-iodosuccinimide (NIS) with good yields to the substituted 5-bromo or 5-iodo fredericamycin derivatives (14) and (15) (diagram 6). The fredericamycin aldehyde (4) and (36) can be transformed with elemental bromine, NBS, BrI, NIS, and NCS to the appropriate halogen-substituted fredericamycin aldehyde (37), (38) and (39).


The appropriate fluorine compound is accessible, too.
embedded image


Both of the two following fredericamycin compounds (23) and (24) are also precursors. (23) is the precursor for an amino acid-linked fredericamycin derivative.


The preparation of (23) may be recognized as proof that the aldehyde (4) may be reacted with phosphorylides according to Wittig or Wittig-Horner (see diagram 7).
embedded image


The compound (24) is the precursor of an N-methylated fredericamycin derivative (diagram 8).
embedded image


Fredericamycin may be transformed by palladium/hydrogen almost quantatively to tetrahydro fredericamycin (25), and may be halogenated in the nucleus according to the above described methods, e.g. to the bromine compound (26) (diagram 9):
embedded image


Surprisingly it has also been found that the methoxy groups in fredericamycin and the derivatives according to the invention can be exchanged under alkali or earth alkali acetate catalysis by oxygen nucleophiles such as alcohols or polyols. Thereby, the alcohols can carry a multitude of different substituents (table 4).
embedded image

TABLE 4UVmaxYieldExampleR1R2R3(nm)m/e(%)243embedded imageHembedded image504(M + H) 55497244embedded imageHembedded image500(M+) 58296245embedded imageHembedded image500(M + H) 56870246embedded imageHembedded image504(M + H) 59736247embedded imageBrembedded image504(M+) 632/63471248embedded imageHembedded image500(M + H) 56691249embedded imageHembedded image499(M+) 56952250embedded imageHembedded image504(M + H) 61699251embedded imageHembedded image500(M+) 58099252embedded imageHembedded image499(M + H) 62220253embedded imageHembedded image500(M + H) 66999254embedded imageHembedded image504(M + H) 65348255embedded imageHembedded image504(M + H) 59450256embedded imageHembedded image499(M + H) 632/63499


Exchange of the Methoxy Group at the F Ring


The exchange of the methoxy groups at the F ring of the fredericamycin and at the derivatives is possible by primary, secondary or aromatic amines. Thereby, the components are stirred with the appropriate primary or secondary amines at room temperature in DMF or in another inert solvent. With aromatic amines, a catalysis with Lewis acids such as stannous(IV)chloride, etc. is required.
embedded image

TABLE 5R1embedded imageExampleIembedded image257Iembedded image258Brembedded image259Hembedded image260Hembedded image261Hembedded image262Hembedded image263Hembedded image264Hembedded image265Iembedded image266Hembedded image267Hembedded image268Hembedded image269Brembedded image270


Preparation of Heterocyclic Fredericamycin Derivatives


The fredericamycin aldehyde (4) can be reacted to pyridal acetone (271) according to Wittig or Wittig-Horner. Bromation with bromine in DMF yields the dibromo-derivative (272) substituted in the side chain and at the B ring. With the appropriately substituted thioamides or thioureas, the respective thiazole derivatives (273-276) are accessible.
embedded image

TABLE 6RExampleNH2273Ph274CH3CONH275CH3276


Preparation of Thioanalogoues of Fredericamycin Derivatives


By sulfurization of fredericamycin or its derivatives with Lawesson reagent or P4S10 in pyridine, the derivatives analogous to thiopyridone are accessible (see diagram 13).
embedded image


Fredericamycin (1) forms inclusion compounds such as (25) with polysugars such as α-cyclodextrin, that have good water solubility compared to the original substance.


The dextrin inclusion compounds form easily if the components are mixed in the appropriate stoichiometric ratio in a suitable solvent such as DMSO (see diagram 11).
embedded image

Biological Activity Against 12 Cancer Cell Lines:


LCL (H460, lung), MACL (MCF7, breast), LXFL (52L, lung), LXFA (629L, lung), MEXF (462NL, melanoma), MEXF (514L, melanoma), MAXF (401NL, breast), RXF (944L, renal), RXF (486L, renal), UXF (1138L, uterus), PRXF (PC3M, prostate), PRXF (22RV1).


Efficacy (IC70) Averaged Over all Cell Lines in μg/mL at 5 Test Concentrations

TABLE 7Example/referenceIC70 μg/mLadriamycin0.0210cisplatin37.1020fredericamycin0.279010.1130130.0050140.0070220.0080230.01101210.20201270.15501920.07501960.09501970.03401980.25602030.15902120.21002140.02202150.07202170.12902180.07602240.04702250.11102300.09102320.31702330.10002340.05202350.08102360.12102650.13302750.36802760.0840







EXAMPLES
Example 1
1-Desoxy-5-C-[(8R)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphalene]-3-yl]pentitol (2)

Two hundred (200) mg (0.38 mmol) fredericamycin A (1) are dissolved in 30 mL dichloromethane. After addition of 20 mL methanol and 4.4 ml water, 350 mg (2.6 mmol) N-methylmorpholine-N-oxide are added. Under vigorous stirring, 0.2 ml of a 2.5% osmium(IV)oxide solution in t-butanol is added dropwise. The reaction mixture is acidified with 2-3 drops of trifluoracetic acid. After stirring for 48 hours, the reaction is complete according to HPLC control (RP18, acetonitrile water (0.2% acetic acid)). The reaction mixture is added to 400 ml water under vigorous stirring, and the dark red crystalline solid is sucked off through a filter. Drying in HV. Yield: 195 mg (87% of the theoretical value) dark red powder. ES: M/e=606.2 (M+−H), λmax: 504.0.


Example 2
Tri-potassium-1-desoxy-5-C-[(8R)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl]pentitol (3)

Twelve (12.0) mg (19.8 μmol) fredericamycin tetrol (2) are dissolved in 1.5 mL absolute pyridine under nitrogen atmosphere. The solution is gassed for 30 min with argon at 0° C. Under the argon atmosphere, 5.94 mL of a 0.01 N KOH solution are added at once at 0° C. The reaction solution immediately turns turquoise. The reaction mixture is stirred for another 1 hour, and subsequently is frozen and lyophilized. Yield: 13.2 mg (100% of the theoretical value); deep blue crystal mass.


Example 3
(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde (4)

1.) Fifty (50) mg (82.3 μmol) tetrahydroxy fredericamycin (tetrol (2)) are dissolved in 4 mL DMF. Under vigorous stirring, an aqueous sodium iodate solution (300 mg NaIO4 in 1 mL water) is added dropwise within one hour. After 1 h stirring at room temperature, 2 drops of trifluoracetic acid are added. After stirring for another 30 min, the reaction solution is diluted with 3 ml DMF, and 150 mg NaIO4 dissolved in 0.5 ml water are added.


After another hour, 100 mL water are added. The supernatant over the precipitate is sucked off, and dryed in HV. Dark red crystal powder. Yield: 41 mg (100% of the theoretical value). M/e=501.3, UVmax: 504.0 nm.


2.) One hundred and nine (109) mg (179 μmol) fredericamycin tetrol (2) are dissolved in 8 mL pyridine. 180 μL water are added. To the reaction mixture, 450 mg (1.08 mmol, 6 eq.) (polystryrylmethyl)trimethylammonium periodate resin are added. Then the mixture is stirred for 12 h at RT. The resin is filtered off; washing and concentrating until dry. Dark red residue.


Yield: 89.9 mg (100% of the theoretical value). M/e=501.3, UVmax: 504.0 nm.


Example 4
1-[2-Oxo-2-((2E)-2-{[(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl]methylene)ethyl]-dimethylamino trifluoroacetate (118)

Twenty (20) mg (39.9 μmol) fredericamycin aldehyde (4) are dissolved under argon in 1.5 mL absolute DMF. Addition of 9.1 mg (47.9 μmol, 1.2 eq.) acetylhydrazide dimethylammoniumchloride (Girard reagent D) and 20 mg polyvinylpyridine (2% DVB). The mixture is stirred for 2.5 h. Then, 27 mg (80 μmol, 2.0 eq.) aldehyde Wang resin (coating: 3.0 mmol/g) are added and stirred for another 1 h. Then, the resin is filtered, and washed 3× with DMF. Concentration in high vacuum. The residue is dissolved in 1 ml trifluoracetic acid, and concentrated after 10 min until dry.


Red solid; Yield: 28.5 mg (100%); ES+: M/e=601.3, UVmax: 504.0 nm.


Example 5
1-[2-Oxo-2-((2E)-2-{[(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl]methylene}hydrazino)-ethyl]pyridinium chloride (119)

Fifteen (15) mg (29.9 μmol) fredericamycin aldehyde (4) are dissolved in 3 mL DMF. At room temperature 7.5 mg (40.0 μmol) acethydrazinopyridinium chloride (Girard reagent P) dissolved in 75 μL water are added. The reaction mixture is stirred for 1.5 h at room temperature, and the course of the reaction is monitored by HPLC. When finished, acetic acid ethyl ester is added to the reaction mixture, until a precipitation occurs. After the crystallization is finished, the red solid is sucked off.


Yield: 9.1 mg (44% of the theoretical value). M/e=635.2; λmax: 486.0.


Example 6
(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde oxime (122)

Ten (10) mg (19.4 μmol) fredericamycin aldehyde (4) are dissolved in 2 mL DMF. After addition of 3.1 mg (44.6 μmol) hydroxylammonium chloride, 3.2 μl pyridine are added. Stirring for 2 h at room temperature. The reaction mixture is added to 50 ml water and extracted 3 times with ethyl acetate. After drying and concentration, a deep red amorphous crystal powder was left (HPLC clean).


Yield: 7.4 mg (72% of the theoretical value). ES: M/e=516.1; λmax: 500.0 nm.


Example 7
(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde-O-methyloxime (8)

Ten (10) mg (19.4 μmol) fredericamycin aldehyde (4) are dissolved in 2 mL DMF. After addition of 3.4 mg (40.7 μmol) O-methylhydroxylammonium chloride and 3.2 μl pyridine, the reaction mixture is stirred for 2 h at room temperature. Then, it is added to 100 ml water, and the supernatant is sucked off from the red precipitate (HPLC clean).


Yield: 7.6 mg (71% of the theoretical value). ES+: M/e=531.2; λmax: 500.0.


Example 8
(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde-O-benzyloxime (9)

Ten (10) mg (19.4 μmol) fredericamycin aldehyde (4) are dissolved in 2 mL DMF. After addition of 6.4 mg (43.2 μmol) O-benzylhydroxylammonium chloride and 3.2 μl pyridine, the reaction mixture is stirred for 2 h at room temperature. Then, it is added to 50 ml water, and the supernatant is sucked off from the red precipitate (HPLC clean).


Yield: 6.8 mg (57% of the theoretical value). ES+: M/e=607.2; λmax: 504.0 nm.


Example 9
1-O-({(1E)-[(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl]methylene}amino)-β-D-glucopyranose (10)

Two (2.0) mg (4.0 μmol) fredericamycin aldehyde (4) are dissolved in 150 μL DMF, and 0.86 mg (4.4 μmol) β-aminoxy-D-glucopyranose is added. The mixture is stirred for 24 h at room temperature, and 5 mg (15.0 μmol) aldehyde Wang resin (coating: 3.0 mmol/g) is added. After stirring for another 3 h, the resin is filtered off, washed with DMF, and the filtrate is concentrated in high vacuum until dry.


Yield: 2.7 mg (99% of the theoretical value), red powder; ES: M/e=678.1; λmax: 504.0 nm.


Example 10
(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′,3′,5′,8′(2H)-pentone (11)

Thirty (30) mg (49.4 μmol) tetrahydroxy fredericamycin (2) were dissolved in 2 mL pyridine. Twenty (20) mg (93.0 μmol) sodium metaperiodate dissolved in 0.3 ml water are added. After stirring for 4 h, 10 mg (260 μmol) sodium borohydride are added. After 12 h, concentration until dry, and the residue is separated by preparative HPLC.


Yield: 2.6 mg (13% of the theoretical value) red powder. ES: M/e=503.2; λmax: 504.0 nm.


Example 11
(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carboxylic acid (12)

Fifteen (15) mg (29.9 μmol) fredericamycin aldehyde (4) are dissolved in 1 mL dichloromethane and 0.5 ml t-butanol. Addition of 250 μl 2,4-dimethylbutene. Under stirring at room temperature, a solution of 6.0 mg (53.1 μmol) sodium chlorite (80%) and 5.1 mg sodium hydrogenphosphate in 250 μl water are added dropwise.


After 2.5 h, again a solution of 10.0 mg (88.5 μmol) sodium chlorite and 5 mg sodium dihydrogenphosphate in 200 μl water are added. After altogether 4 h, it is put on water, and extracted with ethyl acetate.


The raw mixture was purified by preparative HPLC (RP18, acetonitrile-water-acetic acid). Red amorphous powder.


Yield: 68.3 mg (53.5% of the theoretical value). E: M/e=516.1; λmax: 504.0 nm.


Example 12
Potassium(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carboxylate (13)

6.9 mg (13.3 μmol) Fredericamycin carboxylic acid (12) are dissolved in 5 mL DMF under nitrogen. At room temperature and under oxygen exclusion and vigorous stirring, 1.27 mL (12.7 μmol) of an aqueous 0.01 N KOH solution is added dropwise. It is stirred for 15 minutes at room temperature, and concentrated in high vacuum until dry.


Yield: 7.40 mg (100% of the theoretical value). E: M/e=516.1; λmax: 504.0 nm.


Example 13
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′,3′,5′,8′(2H)-pentone (14)

Twenty (20) mg (37.1 μmol) fredericamycin (1) were dissolved in 250 μl DMF, and then 6. 3 mg (35.3 μmol) N-bromosuccinimide in 250 μl DMF were added within one hour at 0° C. The reaction was stirred in a slowly thawing ice bath over night. Then, the DMF is removed in high vacuum, and the residue is purified by preparative HPLC.


Yield: 7 mg (32% of the theoretical value) red crystal mass. M/e=616.1/618.1; λmax: 486.0 nm.


Example 14
(8S)-5-iodo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,31,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′,3′,5′,8′(2H)-pentone (15)

Eighty four (84) mg (158 μmol) fredericamycin (1) were dissolved in 1.0 μl DMF, and then 33.0 mg (150.0 μmol) N-iodosuccinimide in 500 μl DMF were added within one hour at 0° C. The reaction was stirred in a slowly thawing ice bath over night. Then, the DMF is removed in high vacuum, and the residue (120 mg (14) with a content of 80%) is purified by preparative HPLC (gradient CH3CN 50-90% over 16 min.)


Yield: 18 mg (17% of the theoretical value) red crystal mass. M/e=665.0; λmax: 484.0 nm.


Example 15
Methyl-2-{[(benzyloxy)carbonyl]amino}-3-[(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl]acrylate (23)

Sixty six (66) mg (200 μmol) Z-α-phosphonoglycine trimethylester are dissolved under argon in 1 mL absolute pyridine, and 25 pL 1,1,3,3-tetramethylguanidine are added at 0° C. After 40 min. 20 mg (40 μmol) fredericamycin aldehyde (4) is added at 0° C. After 15 min. 20 ml 1 M acetic acid is added, and the mixture is extracted 3× with acetic acid. The raw product is purified by preparative HPLC (RP18, acetonitrile-water).


Yield: 10.0 mg (36% of the theoretical value). M/e=706.4; λmax: 492.0 nm.


Example 16
(8S)-9-hydroxy-4′,6′,9′-trimethoxy-2-methyl-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′,3′,5′,8′(2H)-pentone (24)

Ten (10) mg (15 μmol) fredericamycin (1) were dissolved under protective gas in 4 ml absolute DMF. At RT, 400 μl (4311 μmol) methyliodide and 81 mg powdered potassium carbonate are added. The reactions mixture is then stirred at RT for 20 h, and is then transferred onto water. Extraction with ethyl acetate, and purification of the residue by separating chromatography on chloroform/methanol 30/1.


Yield: 4 mg (37% of the theoretical value). Yellow residue. M/e=582.3; λmax: 368.0 nm.


Example 17
Fredericamycin A 1:2 complex with α-cyclodextrin (22)

Ten (10) mg fredericamycin (0.025 mMol) are added to a solution of 50 mg α-cyclodextrin (0.050 mMol) in 500 μl dimethylsulfoxide. The solution is then diluted with 5 ml water. A stock solution prepared in such way can be diluted as desired with water.


λmax=504.0 nm.


Example 18
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde(4-methylpiperazine-1-yl)hydrazone (111)

Five (5) mg (9.42 μmol) fredericamycin aldehyde (4) are dissolved in 500 μl DMF and 25 μl trifluoracetic acid. At room temperature, 1.30 mg (11.3 μmol) 1-amino-4-methyl-piperazine is added. After stirring for 4.5 h at room temperature, 1 equivalent each of Wang aldehyde resin and sulfonohydrazide resin is added and stirred for 2 h.


Filtration and concentration of the reaction solution at high vacuum.


Red powder. Yield: 5.4 mg (91% of the theoretical value). M/e=599 (M+H)+; λmax: 504.0 nm.


Example 19
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde-4,5-dihydro-1H-imidazole-2-yl-hydrazone (123)

Five (5.00) mg (9.42 μmol) fredericamycin aldehyde (4) are dissolved in 500 μl DMF and 25 μl trifluoracetic acid. At room temperature, 2.05 mg (11.3 μmol) 2-hydrazino-2-imidazolin hydrobromide is added. After stirring for 4.5 h at room temperature, 1 equivalent each of Wang aldehyde resin and sulfonohydrazide resin are added and stirred for 2 h. Separation of the resin by filtration and concentration of the reaction solution at high vacuum.


Red powder. Yield: 3.9 mg (67% of the theoretical value). M/e=584 (M+H)+; λmax: 504.0 nm.


Example 20
4′,9,9′-Trihydroxy-6′-methoxy-3-{(E)-[(4-oxo-2-thioxo-1,3-thiazolidin-3-yl)imino]methyl)-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′,3′,5′,8′(2H)-pentone (123)

Five (5.00) mg (9.42 μmol) fredericamycin aldehyde (4) are dissolved in 500 μl DMF and 25 μl trifluoracetic acid. At room temperature, 1.67 mg (11.3 μmol) 2N-aminorhodanide are added. After stirring for 4.5 h at room temperature, 1 equivalent each of Wang aldehyde resin and sulfonohydrazide resin are added and stirred for 2 h.


Filtration and concentration of the reaction solution.


Red powder. Yield: 4.1 mg (65% of the theoretical value). M/e=599 (M+H)+; λmax: 504.0 nm.


Example 21
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde-O-(2-morpholine-4-ylethyl)oxime (27)

Five (5.00) mg (9.42 μmol) fredericamycin aldehyde (4) are dissolved in 500 μl DMF and 25 μl trifluoracetic acid. At room temperature, 2.47 mg (11.3 μmol) N-(aminoxyethyl)morpholine dihydrochloride is added. After stirring for 4.5 h at room temperature, 1 equivalent of Wang aldehyde resin (3.1 mg, 9.4 μmol, coating: 3.0 mmol/g) as well as 1 equivalent sulfonohydrazide resin (6.1 mg, 9.4 mmol, 1.5 mmol) are added and stirred for 2 h.


Filtration and concentration of the reaction solution.


Red powder. Yield: 6.1 mg (98% of the theoretical value). M/e=630 (M+H)+; λmax: 504.0 nm.


Example 22
(8S)-5-chloro-4′,6′,9′-trimethoxy-2-methoxy-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′,3′,5′,8′(2H)-pentone (34)

Three hundred (300) mg (556.6 μmol) fredericamycin (1) are dissolved under argon in 10 μl DMF, and then 75.0 mg (556.6 μmol) N-chlorosuccinimide are added. The reaction is stirred for 5 h at 40° C. The reaction mixture is then added to 400 ml methanol/water 1:1, and the red precipitate is sucked off and dried at high vacuum.


Yield: 305 mg (96% of the theoretical value) red crystal mass. M/e=573/575; λmax: 504.0 nm.


Example 23
(8S)-5-fluoro-4′,9,9′-trihydroxy-6′-methoxy-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′,3′,5′,8′(2H)-pentone (35)

Fifty (50) mg (92.8 μmol) fredericamycin (1) are dissolved in 5 ml DMF under argon, and then 33.0 mg (93.5 μmol) 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) Selectfluor (is added. The reaction is stirred for 24 h at room temperature. The reaction mixture is then added to 200 ml water, and is extracted with ethyl acetate. The concentrated raw product is purified by preparative HPLC (RP18, acetonitrile- water-acetic acid).


Yield: 7.1 mg (14% of the theoretical value) red crystal mass. M/e=557; λmax: 504.0 nm.


Example 24
1-Desoxy-5-C-[(8R)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl]-pentitol (36)

Hundred twenty (120) mg (209 mmol) chlorofredericamycin (34) are dissolved in 25.0 ml dichloromethane. After addition of 3.6 ml methanol and 0.8 ml water, 197 mg (1.46 mmol) N-methylmorpholine-N-oxide is added. Under vigorous stirring, 0.12 ml of a 2.5% solution of osmium(IV)oxide in t-butanol is added dropwise. After stirring for 27 hours, the reaction is complete, according to HPLC monitoring (RP18, acetonitrile-water (0.2% acetic acid)). The reaction mixture is added to 200 ml water under vigorous stirring, and the dark red solid is sucked off. Drying in HV.


Yield: 101 mg (75% of the theoretical value) dark red powder. M/e=641/643; λmax: 504.0.


Example 25
(8S)-4′,9,9′-trihydroxy-5-bromo-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde (37)

Hundred (100) mg (200 μmol) fredericamycin aldehyde (4) are dissolved under argon in 5 ml DMF. Then, 200 μl of a 1M bromine solution in DMF is added. After stirring for 1.5 h at RT, another 20 μl bromine solution are added. According to HPLC monitoring, the reaction mixture is complete after 3.5 h.


Add to 150 ml water, and shake out with dichloromethane.


Yield: 96 mg (83% of the theoretical value) dark red powder. M/e=579/581; λmax: 504.0.


Example 26
1,2,3,4-Tetrahydro-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′,3′,5′,8′(2H)-pentone (26)

Eight (8.0) mg (0.0128 mmol) 1,2,3,4-tetrahydrofredericamycin (25) are dissolved in 1 ml absolute DMF under nitrogen. Then a solution of 2.3 mg (0.0128 mmol) bromine in 0.25 ml DMF is added dropwise to the solution. Stirring at room temperature over 24 h. The reaction mixture is concentrated to half volume in high vacuum, and is then transferred onto 100 ml water. The supernatant is sucked off from the precipitate and dried in a vacuum.


Red crystal powder 8.1 mg (88% of the theoretical value) m/e=621/623; λmax: 499 nm.


Example 27
(8S)-4′,9,9′-trihydroxy-6′-benzylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′,3′,5′,8′(2H)-pentone

Twenty (20) mg (37.1 μmol) fredericamycin are dissolved in 1 ml DMF under argon, then 4.76 mg (44.50 μmol) benzylamine are added at room temperature. According to HPLC (RP18, acetonitrile/water), a homogenous new product has formed after 3 h. The reaction mixture is concentrated at high vacuum until dry.


Red crystal mass; Yield: 23 mg (100% of the theoretical value) M/e=615.3 (M+H); λmax: 492 nm.


Example 28
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-benzylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′,3′,5′,8′(2H)-pentone

Five (5.0) mg (8.71 μmol) 5-chlorofredericamycin are dissolved in 1 ml DMF under argon, then 1.12 mg (10.45 μmol) benzylamine are added at room temperature. After 29 h, the reaction mixture is concentrated at high vacuum until dry.


Red crystal mass; Yield: 5 mg (89% of the theoretical value) M/e=649.1 (M+H); λmax: 492 nm.


Example 28
Translator: 28a
(8S)-4′,9,9′-trihydroxy-6′-ethanolamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′,3′,5′,8′(2H)-pentone

Ten (10) mg (18.6 μmol) fredericamycin are dissolved in 1 ml DMF under argon, then 1.36 mg (22.3 μmol) ethanolamine are added at room temperature. According to HPLC (RP18, acetonitrile/water), a homogenous new product has formed after 3 h. The reaction mixture is concentrated at high vacuum until dry.


Red crystal mass; Yield: 9 mg (85% of the theoretical value) M/e=569.3 (M+H); λmax: 500 nm.


Example 29
(8S)-4′,9,9′-trihydroxy-6′-(4-piperidylmethylamino)-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′,3′,5′,8′(2H)-pentone

Ten (10) mg (18.6 μmol) fredericamycin are dissolved in 1 ml DMF under argon, then 2.7 PI (22.3 μmol) 4-aminomethylpiperidine are added at room temperature. The reaction mixture is concentrated at high vacuum until dry after 24 h.


Red crystal mass; Yield: 11 mg (99% of the theoretical value) M/e=622.3 (M+H); λmax: 492 nm.


Examples 100-142

The compounds 100-142 can be generated analogously to examples 7, 8, 9, 10, 18, 19 and 20:


Example 100
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehydepyridine-2-yl-hydrazone (100)

Yield: (95% of the theoretical value) MS: M/e=593.1; λmax: 500.0 nm.


Example 101
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde [4-(trifluoromethyl)pyrimidine-2-yl]hydrazone (101)

Yield: (95% of the theoretical value) MS: M/e=562.1; λmax: 500.0 nm.


Example 102
N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]pyridyl-3-carbohydrazine (102)

Yield: (95% of the theoretical value) MS: M/e=621.1; λmax: 492.0 nm.


Example 103
N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]isonicotinohydrazine (103)

Yield: (95% of the theoretical value) MS: M/e=621.1; λmax: 500.0 nm.


Example 104
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde-1,2,4-triazole-4-ylhydrazone (104)

Yield: (80% of the theoretical value) MS: M/e=568.1; λmax: 500.0 nm.


Example 105
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde-4,5-dihydro-1H-imidazole-2ylhydrazone (105)

Yield: (95% of the theoretical value) MS: M/e=584.1; λmax: 492.0 nm.


Example 106
N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]-2-furohydrazine (106)

Yield: (95% of the theoretical value) MS: M/e=610.0; λmax: 492.0 nm.


Example 107
4-Amino-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]benzohydrazine (107)

Yield: (95% of the theoretical value) MS: M/e=635.1; λmax: 492.0 nm.


Example 108
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehydethiosemicarbazone (108)

Yield: (95% of the theoretical value) MS: M/e=558.0; λmax: 492.0 nm.


Example 109
N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]thiophene-2-carbohydrazine (109)

Yield: (95% of the theoretical value) MS: M/e=626.0; λmax: 492.0 nm.


Example 110
2-(1H-indole-3-yl)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazine (110)

Yield: (95% of the theoretical value) MS: M/e=673.1; lλmax: 492.0 nm.


Example 111
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde(4-methylpiperazine-1-yl)hydrazone (111)

Yield: (95% of the theoretical value) MS: M/e=599.1; λmax: 492.0 nm.


Example 112
2-Oxo-2-{(2E)-2-[(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]-hydrazino)acetamide (112)

Yield: (95% of the theoretical value) MS: M/e=587.1; λmax: 492.0 nm.


Example 113
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′,3′,5′,8′(2H)-pentone (113)

Yield: (95% of the theoretical value) MS: M/e=632.0; λmax; λmax:500.0 nm.


Example 114
1(2E)-2-[(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]-hydrazino}acetonitrile (114)

Yield: (95% of the theoretical value) MS: M/e=583.1; λmax: 492.0 nm.


Example 115
2-Amino-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]benzohydrazine (115)

Yield: (95% of the theoretical value) MS: M/e=635.1; λmax: 492.0 nm.


Example 116
4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-[2-morpholine-4-yl-ethyl]oxime (116)

Yield: (85% of the theoretical value) MS: M/e=630.1; λmax: 492.0 nm.


Example 117
(2E)-2-[(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]hydrazinecarboximidamide (117)

Yield: (95% of the theoretical value) MS: M/e=558.1; λmax: 500.0 nm.


Example 118
2-(Dimethylamino)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazine (118)

Yield: (85% of the theoretical value) MS: M/e=601.1; λmax: 492.0 nm.


Example 119
1-[2-Oxo-2-((2E)-2-{[(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene}hydrazino)ethyl]pyridinium chloride (119)

Yield: (85% of the theoretical value) MS: M/e=635.1; λmax: 492.0 nm.


Example 120
(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-methyloxime (120)

Yield: (90% of the theoretical value) MS: M/e=531.1; λmax: 492.0 nm.


Example 121
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-benzyloxime (121)

Yield: (95% of the theoretical value) MS: M/e=607.1; λmax: 492.0 nm.


Example 122
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde oxime (122)

Yield: (95% of the theoretical value) MS: M/e=517.1; λmax: 482.0 nm.


Example 123
1-O-({(1E)-[(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene}amino)-β-D-glucopyranose (123)

Yield: (95% of the theoretical value) MS: M/e=679.1; λmax: 500.0 nm.


Example 124
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde-phenylsemicarbazone (124)

Yield: (95% of the theoretical value) MS: M/e=635.1; λmax: 492.0 nm.


Example 125
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehydesemicarbazone (125)

Yield: (95% of the theoretical value) MS: M/e=559.1; λmax: 492.0 nm.


Example 126
2-Piperidino-4-yl-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (126)

Yield: (95% of the theoretical value) MS: M/e=641.1; λmax: 492.0 nm.


Example 127
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-(3-chlorobenzyl)oxime (127)

Yield: (95% of the theoretical value) MS: M/e=641.1; λmax: 492.0 nm.


Example 128
N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]-(2-methyl-1,3-thiazole-4yl)carbohydrazide (128)

Yield: (95% of the theoretical value) MS: M/e=641.1; λmax: 492.0 nm.


Example 129
2-(1H-imidazole-1-yl)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (129)

Yield: (90% of the theoretical value) MS: M/e=624.1; λmax: 500.0 nm.


Example 130
2-(Acetylamino)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (130)

Yield: (95% of the theoretical value) MS: M/e=615.1; λmax: 492.0 nm.


Example 131
2-(4-Methylpiperazine-1-yl)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (131)

Yield: (50% of the theoretical value) MS: M/e=656.1; λmax: 492.0 nm.


Example 132
2-Morpholine-4-yl-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (132)

Yield: (60% of the theoretical value) MS: M/e=643.1; λmax: 492.0 nm.


Example 133
2-(Methylamino)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (133)

Yield: (70% of the theoretical value) MS: M/e=587.1; λmax: 492.0 nm.


Example 134
2-[Isopropyl(methyl)amino]-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (134)

Yield: (70% of the theoretical value) MS: M/e=629.1; λmax: 492.0 nm.


Example 135
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-[2-(dimethylamino)ethyl]oxime (127)

Yield: (90% of the theoretical value) MS: M/e=588.1; λmax: 492.0 nm.


Example 136
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-[3-(4-(3-chlorophenyl)-piperazine-1-yl)propyl]oxime (136)

Yield: (85% of the theoretical value) MS: M/e=753.1; λmax: 492.0 nm.


Example 137
4′,9,9′-Trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-[3-(dimethylamino)propyl]oxime (137)

Yield: (70% of the theoretical value) MS: M/e=602.1; λmax: 492.0 nm.


Example 138
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehydepyridine-2-yl-hydrazone (138)

Yield: (95% of the theoretical value) MS: M/e=627.0; λmax: 500.0 nm.


Example 139
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde [4-(trifluoromethyl)pyrimidine-2-yl]hydrazone (139)

Yield: (95% of the theoretical value) MS: M/e=696.0; λmax: 500.0 nm.


Example 140
(8S)-5-chloro-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]pyridyl-3-carbohydrazine (140)

Yield: (95% of the theoretical value) MS: M/e=655.0; λmax: 500.0 nm.


Example 141
(8S)-5-chloro-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]isonicotinohydrazide (141)

Yield: (95% of the theoretical value) MS: M/e=655.0; λmax: 500.0 nm.


Example 142
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde-1,2,4-triazole-4-ylhydrazone (142)

Yield: (90% of the theoretical value) MS: M/e=602.0; λmax: 500.0 nm.


Example 143
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde-4,5-dihydro-1H-imidazole-2-ylhydrazone (143)

Yield: (95% of the theoretical value) MS: M/e=618.0; λmax: 500.0 nm.


Example 144
(8S)-5-chloro-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]-2-furohydrazide (144)

Yield: (95% of the theoretical value) MS: M/e=644.0; λmax: 500.0 nm.


Example 145
(8S)-5-chloro-4-amino-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]-benzohydrazide (145)

Yield: (95% of the theoretical value) MS: M/e=669.0; λmax: 500.0 mm.


Example 146
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehydethiosemicarbazone (146)

Yield: (95% of the theoretical value) MS: M/e=609.0; λmax:500.0 nm.


Example 147
(8S)-5-chloro-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]thiophene-2-carbohydrazide (147)

Yield: (95% of the theoretical value) MS: M/e=660.0; λmax: 500.0 nm.


Example 148
(8S)-5-chloro-2-(1H-indole-3-yl)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (148)

Yield: (95% of the theoretical value) MS: M/e=707.1; λmax: 500.0 nm.


Example 149
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde(4-methylpiperazine-1-yl)hydrazone (149)

Yield: (95% of the theoretical value) MS: M/e=633.1; λmax: 500.0 nm.


Example 150
(8S)-5-chloro-2-oxo-2-{(2E)-2-[4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]hydrazino}acetamide (150)

Yield: (95% of the theoretical value) MS: M/e=621.0; λmax: 500.0 nm.


Example 151
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′,3′,5′,8′(2H)-pentone (151)

Yield: (95% of the theoretical value) MS: M/e=665.3; λmax: 500.0 nm.


Example 152
(8S)-5-chloro-{(2E)-2-[4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]hydrazino}acetonitrile (152)

Yield: (95% of the theoretical value) MS: M/e=617.1; λmax: 500.0 nm.


Example 153
(8S)-5-chloro-2-amino-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]benzohydrazide (153)

Yield: (95% of the theoretical value) MS: M/e=669.1; λmax: 500.0 nm.


Example 154
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-[2-morpholine-4-yl-ethyl)oxime (154)

Yield: (95% of the theoretical value) MS: M/e=664.1; λmax: 500.0 nm.


Example 155
(8S)-5-chloro-(2E)-2-[(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]hydrazinecarboximidamide (155)

Yield: (95% of the theoretical value) MS: M/e=592.1; λmax: 500.0 nm.


Example 156
(8S)-5-chloro-2-(dimethylamino)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (156)

Yield: (95% of the theoretical value) MS: M/e=635.1; λmax: 500.0 nm.


Example 157
(8S)-5-chloro-1-[2-oxo-2-((2E)-2-1[(8S)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]hydrazino)ethyl]pyridinium chloride (157)

Yield: (95% of the theoretical value) MS: M/e=669.1; λmax: 500.0 nm.


Example 158
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde-O-methyloxime (158)

Yield: (95% of the theoretical value) MS: M/e=565.0; λmax: 500.0 nm.


Example 159
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde-O-benzyloxime (159)

Yield: (95% of the theoretical value) MS: M/e=641.1; λmax: 500.0 nm.


Example 160
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde oxime (160)

Yield: (95% of the theoretical value) MS: M/e=551.1; λmax: 500.0 nm.


Example 161
(8S)-5-chloro-1-O-(((1E)-[(8S)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]amino)-β-D-glucopyranose (161)

Yield: (95% of the theoretical value) MS: M/e=713.1; λmax: 500.0 nm.


Example 162
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde-phenylsemicarbazone (162)

Yield: (95% of the theoretical value) MS: M/e=669.1; λmax: 500.0 nm.


Example 163
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehydesemicarbazone (163)

Yield: (90% of the theoretical value) MS: M/e=593.0; λmax: 500.0 nm.


Example 164
(8S)-5-chloro-2-piperidino-4-yl-N′-[(1E)-[(8S)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (164)

Yield: (95% of the theoretical value) MS: M/e=675.1; λmax: 500.0 nm.


Example 165
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-(3-chlorobenzyl)oxime (165)

Yield: (90% of the theoretical value) MS: M/e=675.0; λmax: 500.0 nm.


Example 166
(8S)-5-chloro-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]a-2-methyl-1,3-thiazole-4yl-carbohydrazide (166)

Yield: (95% of the theoretical value) MS: M/e=675.0; λmax: 500.0 nm.


Example 167
(8S)-5-chloro-2-(1H-imidazole-1-yl)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (1647)

Yield: (90% of the theoretical value) MS: M/e=658.1; λmax: 500.0 nm.


Example 168
(8S)-5-chloro-2-(acetylamino)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,81-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (164)

Yield: (95% of the theoretical value) MS: M/e=649.0; λmax: 500.0 nm.


Example 169
(8S)-5-chloro-2-(4-methylpiperazine-1-yl)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (169)

Yield: (60% of the theoretical value) MS: M/e=690.1; λmax: 500.0 nm.


Example 170
(8S)-5-chloro-2-morpholine-4-yl-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (170)

Yield: (60% of the theoretical value) MS: M/e=677.1; λmax: 500.0 nm.


Example 171
(8S)-5-chloro-2-(methylamino)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (171)

Yield: (70% of the theoretical value) MS: M/e=621.1; λmax: 500.0 nm.


Example 172
(8S)-5-chloro-2-[isopropyl(methyl)amino]-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (172)

Yield: (95% of the theoretical value) MS: M/e=675.1; λmax: 500.0 nm.


Example 173
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-[2-(dimethylamino)ethyl]-oxime (173)

Yield: (60% of the theoretical value) MS: M/e=622.0; λmax: 500.0 nm.


Example 174
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-[3-(4-(3-chlorophenyl)-piperazine-1-yl)propyl]-oxime (174)

Yield: (90% of the theoretical value) MS: M/e=787.1; λmax: 500.0 nm.


Example 175
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-[3-(dimethylamino)propyl]oxime (175)

Yield: (75% of the theoretical value) MS: M/e=636.1; λmax: 500.0 nm.


Example 176
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehydepyridine-2-yl-hydrazone (176)

Yield: (95% of the theoretical value) MS: M/e=670.9; λmax: 500.0 nm.


Example 177
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde [4-(trifluoromethyl)pyrimidine-2-yl]hydrazone (177)

Yield: (95% of the theoretical value) MS: M/e=739.9; λmax: 500.0 nm.


Example 178
(8S)-5-bromo-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]pyridyl-3-carbohydrazide (178)

Yield: (90% of the theoretical value) MS: M/e=699.0; λmax: 500.0 nm.


Example 179
(8S)-5-bromo-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]isonicotinohydrazide (179)

Yield: (90% of the theoretical value) MS: M/e=699.0; λmax: 500.0 nm.


Example 180
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde-1,2,4-triazole-4-ylhydrazone (180)

Yield: (70% of the theoretical value) MS: M/e=645.9; λmax: 492.0 nm.


Example 181
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde-4,5-dihydro-1H-imidazole-2-ylhydrazone (181)

Yield: (95% of the theoretical value) MS: M/e=662.0; λmax: 492.0 nm.


Example 182
(8S)-5-bromo-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]-2-furohydrazide (182)

Yield: (95% of the theoretical value) MS: M/e=688.9; λmax: 492.0 nm.


Example 183
(8S)-5-bromo-4-amino-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]benzohydrazide (183)

Yield: (95% of the theoretical value) MS: M/e=713.0; λmax: 500.0 nm.


Example 184
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehydethiosemicarbazone (184)

Yield: (95% of the theoretical value) MS: M/e=653.0; λmax: 500.0 nm.


Example 185
(8S)-5-bromo-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]thiophene-2-carbohydrazide (185)

Yield: (95% of the theoretical value) MS: M/e=704.0; λmax: 492.0 nm.


Example 186
(8S)-5-bromo-2-(1H-indole-3-yl)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,81-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (186)

Yield: (95% of the theoretical value) MS: M/e=751.1; λmax: 500.0 nm.


Example 187
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde(4-methylpiperazine-1-yl)hydrazone (187)

Yield: (95% of the theoretical value) MS: M/e=677.1; λmax: 500.0 nm.


Example 188
(8S)-5-bromo-2-oxo-2-[(2E)-2-[(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]hydrazino}acetamide (188)

Yield: (95% of the theoretical value) MS: M/e=665.0; λmax: 500.0 nm.


Example 189
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′,3′,5′,8′(2H)-pentone (189)

Yield: (95% of the theoretical value) MS: M/e=709.9; λmax: 492.0 nm.


Example 190
(8S)-5-bromo-((2E)-2-[(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]hydrazino)acetonitrile (190)

Yield: (95% of the theoretical value) MS: M/e=661.0; λmax: 500.0 nm.


Example 191
(8S)-5-bromo-2-amino-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]benzohydrazide (191)

Yield: (70% of the theoretical value) MS: M/e=713.0; λmax: 492.0 nm.


Example 192
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-[2-morpholine-4-yl-ethyl)oxime (192)

Yield: (95% of the theoretical value) MS: M/e=708.0; λmax: 500.0 nm.


Example 193
(8S)-5-bromo-(2E)-2-[(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]hydrazinecarboximidamide (193)

Yield: (95% of the theoretical value) MS: M/e=636.0; λmax: 500.0 nm.


Example 194
(8S)-5-bromo-2-(dimethylamino)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (194)

Yield: (95% of the theoretical value) MS: M/e=679.0; λmax: 500.0 nm.


Example 195
(8S)-5-bromo-1-[2-oxo-2-((2E)-2-{[(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylenelhydrazino)ethyl]pyridinium chloride (195)

Yield: (95% of the theoretical value) MS: M/e=713.0; λmax: 500.0 nm.


Example 196
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-methyloxime (196)

Yield: (95% of the theoretical value) MS: M/e=609.0; λmax: 492.0 nm.


Example 197
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde-O-benzyloxime (197)

Yield: (95% of the theoretical value) MS: M/e=685.0; λmax: 492.0 nm.


Example 198
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde oxime (198)

Yield: (95% of the theoretical value) MS: M/e=595.0; λmax: 492.0 nm.


Example 199
(8S)-5-bromo-1-O-(((1E)-[(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene}amino)-β-D-glucopyranose (199)

Yield: (90% of the theoretical value) MS: M/e=757.0; λmax: 500.0 nm.


Example 200
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde-phenylsemicarbazone (200)

Yield: (90% of the theoretical value) MS: M/e=713.0; λmax; λmax:500.0 nm.


Example 201
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehydesemicarbazone (201)

Yield: (90% of the theoretical value) MS: M/e=637.0; λmax: 492.0 nm.


Example 202
(8S)-5-bromo-2-piperidino-4-yl-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (201)

Yield: (90% of the theoretical value) MS: M/e=719.0; λmax: 500.0 nm.


Example 203
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-(3-chlorobenzyl)oxime (203)

Yield: (95% of the theoretical value) MS: M/e=718.0; λmax: 492.0 nm.


Example 204
(8S)-5-bromo-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]-2-methyl-1,3-thiazole-4yl-carbohydrazide (204)

Yield: (95% of the theoretical value) MS: M/e=718.9; λmax: 492.0 nm.


Example 205
(8S)-5-bromo-2-(1H-imidazole-1-yl)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (205)

Yield: (95% of the theoretical value) MS: M/e=702.0; λmax: 500.0 nm.


Example 206
(8S)-5-bromo-2-(acetylamino)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (206)

Yield: (95% of the theoretical value) MS: M/e=693.0; λmax: 492.0 nm.


Example 207
(8S)-5-bromo-2-(4-methylpiperazine-1-yl)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (207)

Yield: (90% of the theoretical value) MS: M/e=734.1; λmax: 500.0 nm.


Example 208
(8S)-5-bromo-2-morpholine-4-yl-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (208)

Yield: (95% of the theoretical value) MS: M/e=721.1; λmax: 500.0 nm.


Example 209
(8S)-5-bromo-2-(methylamino)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (209)

Yield: (95% of the theoretical value) MS: M/e=665.0; λmax: 500.0 nm.


Example 210
(8S)-5-bromo-2-[isopropyl(methyl)amino]-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (210)

Yield: (95% of the theoretical value) MS: M/e=707.0; λmax: 500.0 nm.


Example 211
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-[2-(dimethylamino)ethyl]oxime (211)

Yield: (95% of the theoretical value) MS: M/e=666.0; λmax: 500.0 nm.


Example 212
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-[3-(4-(3-chlorophenyl)-piperazine-1-yl)propyl]oxime (212)

Yield: (95% of the theoretical value) MS: M/e=831.0; λmax: 500.0 nm.


Example 213
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-[3-(dimethylamino)propyl]oxime (213)

Yield: (95% of the theoretical value) MS: M/e=680.0; λmax: 492.0 nm.


Example 214
(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-isopropyloxime (214)

Yield: (95% of the theoretical value) MS: M/e=559.2; λmax: 500.0 nm.


Example 215
(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-n-hexyloxime (215)

Yield: (99% of the theoretical value) MS: M/e=601.3; λmax: 500.0 nm.


Example 216
(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-(4-fluorobenzyl)oxime (216)

Yield: (99% of the theoretical value) MS: M/e=625.2; λmax: 500.0 nm.


Example 217
(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-(4-chlorobenzyl)oxime (217)

Yield: (99% of the theoretical value) MS: M/e=641.2; λmax: 500.0 nm.


Example 218
(8S)-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-(3-fluorobenzyl)oxime (218)

Yield: (99% of the theoretical value) MS: M/e=625.3; λmax: 500.0 mm.


Example 219
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-isopropyloxime (219)

Yield: (80% of the theoretical value) MS: M/e=593.2; λmax: 500.0 nm.


Example 220
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-n-hexyloxime (220)

Yield: (90% of the theoretical value) MS: M/e=635.3; λmax: 500.0 nm.


Example 221
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-(4-fluorobenzyl)oxime (221)

Yield: (85% of the theoretical value) MS: M/e=659.3; λmax: 500.0 nm.


Example 222
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-(4-chlorobenzyl)oxime (222)

Yield: (80% of the theoretical value) MS: M/e=675.3; λmax: 500.0 nm.


Example 223
(8S)-5-chloro-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-(3-fluorobenzyl)oxime (223)

Yield: (80% of the theoretical value) MS: M/e=659.3; λmax: 500.0 nm.


Example 224
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-isopropyloxime (224)

Yield: (90% of the theoretical value) MS: M/e=639.3; λmax: 492.0 nm.


Example 225
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-n-hexyloxime (225)

Yield: (95% of the theoretical value) MS: M/e=679.3; λmax: 492.0 um.


Example 226
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-(4-fluorobenzyl)oxime (226)

Yield: (95% of the theoretical value) MS: M/e=703.3; λmax: 492.0 nm.


Example 227
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-(4-chlorobenzyl)oxime (227)

Yield: (95% of the theoretical value) MS: M/e=719.3; λmax: 492.0 nm.


Example 228
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-(3-fluorobenzyl)oxime (228)

Yield: (95% of the theoretical value) MS: M/e=705.3; λmax: 492.0 nm.


Example 229
(8S)-5-iodo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-isopropyloxime (229)

Yield: (99% of the theoretical value) MS: M/e=685.3; λmax:500.0 nm.


Example 230
(8S)-5-iodo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-n-hexyloxime (230)

Yield: (99% of the theoretical value) MS: M/e=727.4; λmax: 500.0 nm.


Example 231
(8S)-5-iodo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-(4-fluorobenzyl)oxime (231)

Yield: (99% of the theoretical value) MS: M/e=751.3; λmax: 500.0 nm.


Example 232
(8S)-5-iodo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-(4-chlorobenzyl)oxime (232)

Yield: (99% of the theoretical value) MS: M/e=767.3; λmax: 500.0 nm.


Example 233
(8S)-5-iodo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-(3-fluorobenzyl)oxime (233)

Yield: (99% of the theoretical value) MS: M/e=751.3; λmax: 500.0 nm.


Example 234
(8S)-5-iodo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-benzyloxime (234)

Yield: (99% of the theoretical value) MS: M/e=733.3; λmax: 500.0 nm.


Example 235
(8S)-5-iodo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-[2-morpholine-4-yl-ethyl)oxime (235)

Yield: (99% of the theoretical value) MS: M/e=756.3; λmax: 500.0 nm.


Example 236
(8S)-5-iodo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-methyloxime (236)

Yield: (95% of the theoretical value) MS: M/e=657.3; λmax: 492.0 nm.


Example 237
(8S)-5-iodo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-(3-chlorobenzyl)oxime (237)

Yield: (99% of the theoretical value) MS: M/e=767.3; λmax; λmax:492.0 nm.


Example 238
(8S)-5-iodo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde O-[3-(4-(3-chlorophenyl)-piperazine-1-yl)propyl]oxime (238)

Yield: (99% of the theoretical value) MS: M/e=879.4; λmax: 500.0 nm.


Example 239
(8S)-5-iodo-4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-carbaldehyde oxime (239)

Yield: (99% of the theoretical value) MS: M/e=643.3; λmax: 492.0 nm.


Example 240
(8S)-5-iodo-2-(4-methylpiperazine-1-yl)-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (240)

Yield: (99% of the theoretical value) MS: M/e=782.3; λmax: 500.0 nm.


Example 241
(8S)-5-iodo-2-morpholine-4-yl-N′-[(1E)-(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]acetohydrazide (241)

Yield: (99% of the theoretical value) MS: M/e=782.3; λmax: 500.0 nm.


Example 242
(8S)-5-iodo-2-oxo-2-{(2E)-2-[(4′,9,9′-trihydroxy-6′-methoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl)methylene]hydrazino}acetamide (242)

Yield: (99% of the theoretical value) MS: M/e=713.3; λmax: 500.0 nm.


Example 243
(8S)-4′,9,9′-trihydroxy-6′-ethoxy-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (243)

Five (5) mg (0.0095 mmol) fredericamycin (1) are suspended in 2.0 ml ethanol. Under N2 atmosphere, 90 mg sodium acetate are added and boiled under reflux. After a few minutes, the suspension turns into a deep blue solution. After 24 h it is cooled, transferred onto water and shaken out with ethyl acetate (0.1% CF3COOH). After drying and concentration, a chromatographically homogenous, red powder is left.


Yield: 5.0 mg (97% of the theoretical value) MS=554 (M+H)+; λmax: 504.0 nm.


Example 244
(8S)-4′,9,9′-trihydroxy-6′-n-butoxy-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (244)

Six (6) mg (0.0114 mmol) fredericamycin (1) are suspended in 3.0 ml n-butanol. Under N2 atmosphere, 50 mg potassium acetate are added and heated to 100° C. After a few minutes, the suspension turns into a deep blue solution. The solution is left for 1 h at this temperature, and is then cooled. It is transferred onto water and shaken out with ethyl acetate (0.1% CF3COOH). After drying and concentration, a chromatographically homogenous red powder is left.


Yield: 6.2 mg (96% of the theoretical value) MS=582 (M)+; λmax: 500.0 nm.


Example 245
(8S)-4′,9,9′-trihydroxy-6′-n-isopropyloxy-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (245)

Five (5) mg (0.0095 mmol) fredericamycin (1) are suspended in 3.0 ml n-propanol. Under N2 atmosphere, 50 mg potassium acetate (anhydrous) are added and heated to 80° C. After a few minutes, the suspension turns into a deep blue solution. The solution is left for 48 h at this temperature, and is then cooled. It is transferred onto water and shaken out with ethyl acetate (0.1% CF3COOH). After drying and concentration, a chromatographically homogenous red powder is left.


Yield: 3.7 mg (70% of the theoretical value) MS=568 (M+H)+; λmax: 500.0 nm.


Example 246
(8S)-4′,9,9′-trihydroxy-6′-(2-dimethylaminoethoxy)-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (246)

6.1 mg (0.01159 mmol) fredericamycin (1) are suspended in 3.5 ml N,N-Dimethylaminoethanol. Under N2 atmosphere, 52 mg anhydrous potassium acetate are added and heated to 80° C. After a few minutes, the suspension turns into a deep blue solution. The solution is left for 1.5 h at this temperature, and is then cooled. It is transferred onto water and shaken out with ethyl acetate (0.1% CF3COOH). After drying and concentration, a chromatographically homogenous red powder is left.


Yield: 2.4 mg (36% of the theoretical value); MS=597 (M+H)+; λmax: 504.0 nm.


Example 247
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-(2-dimethylaminoethoxy)-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (247)

Ten (10.0) mg (0.019 mmol) bromofredericamycin (14) are suspended in 3.0 ml ethanol. Under N2 atmosphere, 50 mg anhydrous potassium acetate are added and heated to 80° C. After a few minutes, the suspension turns into a deep blue solution. The solution is left for 48 h at this temperature, and is then cooled. It is transferred onto water and shaken out with ethyl acetate (0.1% CF3COOH). After drying and concentration, a chromatographically homogenous red powder is left.


Yield: 7.2 mg (71% of the theoretical value); MS=632/634 (M+H)+; λmax: 504.0 nm.


Example 248
(8S)-4′,9,9′-trihydroxy-6′-allyloxy-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (248)

9.6 mg (0.01824 mmol) fredericamycin (1) are suspended in 3.0 ml allyl alcohol. Under N2 atmosphere, 58 mg anhydrous potassium acetate are added and heated to 70° C. After a few minutes, the suspension turns into a deep blue solution. The solution is left for 2.5 h at this temperature, and is then cooled. It is transferred onto water and shaken out with ethyl acetate (0.1% CF3COOH). After drying and concentration, a chromatographically homogenous red powder is left.


Yield: 9.2 mg (91% of the theoretical value); MS=566 (M+H)+; λmax: 500.0 nm.


The compounds 249, 250, 251, 252, 253, 254, 255 were generated analogously to the instructions 244-248:


Example 249
(8S)-4′,9,9′-trihydroxy-6′-(2-hydroxyethoxy)-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (249)

Yield: 5.2 mg (52% of the theoretical value); MS=569 (M)+; λmax: 499.0 nm.


Example 250
(8S)-4′,9,9′-trihydroxy-6′-benzyloxy-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (250)

Yield: 10.2 mg (99% of the theoretical value); MS=616 (M+H)+; λmax: 504.0 nm.


Example 251
(8S)-4′,9,9′-trihydroxy-6′-cyclopropylmethoxy-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (251)

Yield: 12.9 mg (99% of the theoretical value); MS=580 (M)+; λmax:500.0 nm.


Example 252
1-Desoxy-5-C-[(8R)-4′,9,9′-trihydroxy-6′-ethoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6′,7′,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl]pentitol (252)

Yield: 2.0 mg (20% of the theoretical value); MS=622 (M+H)+; λmax: 499.0 nm.


Example 253
(8S)-4′,9,9′-trihydroxy-6′-(2-t-butoxycarbonylaminoethoxy)-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (253)

Yield: 12.9 mg (99% of the theoretical value); MS=669 (M)+; λmax: 500.0 mm.


Example 254
(8S)-4′,9,9′-trihydroxy-6′-(2-N,N-diisopropylaminoethoxy)-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (249)

Yield: 5.8 mg (48% of the theoretical value); MS=653 (M+H)+; λmax: 500.0 nm.


Example 255
1-Desoxy-5-C-[(8R)-4′,9,9′-trihydroxy-6′-ethoxy-1,1′,3′,5′,8′-pentaoxo-1,1′,2,3′,5′,6,7,8′-octahydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene)-3-yl]pentitol (255)

Yield: 5.5 mg (50% of the theoretical value); MS=594 (M+H)+; λmax: 500.0 nm.


Example 256
(8S)-4′,9,9′-trihydroxy-6′-(2-bromoethoxy)-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (256)

10.6 mg (0.02014 mmol) fredericamycin (1) are suspended in 2.0 ml bromoethanol. Under N2 atmosphere, 150 mg anhydrous potassium acetate are added and heated to 120° C. After a few minutes, the suspension turns into a deep blue solution. After 12 hours, addition of another 150 mg potassium acetate. The solution is left for another 12 h at this temperature, and is then cooled. It is transferred onto water and shaken out with ethyl acetate (0.1% CF3COOH). After drying and concentration, a chromatographically homogenous red powder is left.


Yield: 11.5 mg (99% of the theoretical value); MS=632/634 (M+H)+; λmax: 499.0 nm.


Example 257
(8S)-5-iodo-4′,9,9′-trihydroxy-6′-cyclopropylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopent[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (257)

Five (5.0) mg (7.5 μmol) 5-iodofredericamycin (15) are dissolved under argon in 1.0 ml anhydrous DMF. After addition of 0.64 mg (11.2 μmmol) cyclopropylamine, it is stirred at room temperature for 3 h. Excess cycloprolylamine and DMF are removed at high vacuum. After drying and concentration, a chromatographically homogenous red powder is left.


Yield: 5.1 mg (99%); MS=691.3 (M+H)+; λmax: 504.0 nm.


Example 258
(8S)-5-iodo-4′,9,9′-trihydroxy-6′-n-butylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (258)

Five (5.0) mg (7.5 μmol) 5-iodofredericamycin (15) are dissolved under argon in 1.0 ml anhydrous DMF. After addition of 0.82 mg (11.2 μmmol) n-butylamine, it is stirred at room temperature for 20 h. Excess n-butylamine and DMF are removed at high vacuum. After drying and concentration, a chromatographically homogenous red powder is left.


Yield: 5.3 mg (99%); MS=707.3 (M+H)+; λmax: 504.0 nm.


Example 259
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-n-butylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (259)

Five (5.0) mg (8.1 μmol) 5-bromofredericamycin (15) are dissolved under argon in 1.0 ml anhydrous DMF. After addition of 0.89 mg (12.2 μmmol) n-butylamine, it is stirred at room temperature for 20 h. Excess n-butylamine and DMF are removed at high vacuum. After drying and concentration, a chromatographically homogenous red powder is left.


Yield: 5.3 mg (99%); MS=659.4/661.4 (M+H)+; λmax: 504.0 nm.


Example 260
(8S)-4′,9,9′-trihydroxy-6′-cyclopropylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (260)

Five (5.0) mg (9.3 μmol) fredericamycin (1) are dissolved under argon in 1.0 ml anhydrous DMF. After addition of 2.12 mg (37.2 μmmol) cyclopropylamine, it is stirred at room temperature for 2 h. Excess cyclopropylamine and DMF are removed at high vacuum. After drying and concentration, a chromatographically homogenous red powder is left.


Yield: 5.1 mg (99%); MS=565.4 (M+H)+; λmax: 510.0 nm.


Example 261
(8S)-4′,9,9′-trihydroxy-6′-anilino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (261)

Five (5.0) mg (9.3 μmol) fredericamycin (1) are dissolved under argon in 1.0 ml anhydrous DMF. After addition of 3.46 mg (37.2 μmmol) aniline and 37.2 μg stannous(IV)chloride (1.0 M in CH2Cl2), it is heated to 60° C. The reaction mixture is stirred for 24 h, and then excess diethanolaminomethyl polystyrene resin is added. Stir for 1 h. Exhaust off the resin and wash with DMF. The organic phase is concentrated at high vacuum. A chromatographically homogenous red powder is left.


Yield: 5.5 mg (99%); MS=601.1 (M+H)+; λmax: 504.0 nm.


Example 262
(8S)-4′,9,9′-trihydroxy-6′-piperidino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (262)

Five (5.0) mg (9.3 μmol) fredericamycin (1) are dissolved under argon in 1.0 ml anhydrous DMF. After addition of 3.16 mg (37.2 μmmol) piperidine, it is stirred for 22 h at room temperature. Excess amine and DMF are removed in high vacuum. A chromatographically homogenous red powder is left.


Yield: 5.5 mg (99%); MS=593.4 (M+H)+; λmax: 504.0 nm.


Example 263
(8S)-4′,9,9′-trihydroxy-6′-dimethylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (263)

Five (5.0) mg (9.3 μmol) fredericamycin (1) are dissolved under argon in 1.0 ml anhydrous DMF. After addition of 1.67 mg (37.2 μmmol) dimethylamine (2M in MeOH), it is stirred for 4 h at room temperature. Excess amine and DMF are removed in high vacuum. A chromatographically homogenous red powder is left.


Yield: 5.5 mg (99%); MS=553.6 (M+H)+; λmax: 526.0 nm.


Example 264
(8S)-4′,9,9′-trihydroxy-6′-isopropylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (264)

Five (5.0) mg (9.3 μmol) fredericamycin (1) are dissolved under argon in 1.0 ml anhydrous DMF. After addition of 2.19 mg (37.2 μmmol) isopropylamine, it is stirred for 4 h at room temperature. Excess amine and DMF are removed in high vacuum. A chromatographically homogenous red powder is left.


Yield: 5.2 mg (99%); MS=567.3 (M+H)+; λmax: 504.0 nm.


Example 265
(8S)-4′,9,9′-trihydroxy-6′-methylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (265)

Five (5.0) mg (9.3 μmol) fredericamycin (1) are dissolved under argon in 1.0 ml anhydrous DMF. After addition of 0.34 mg (11.1 μmmol) methylamine (2M in CH3OH), it is stirred for 19 h at room temperature. Excess amine and DMF are removed in high vacuum. A chromatographically homogenous red powder is left.


Yield: 5.0 mg (99%); MS=539.2 (M+H)+; λmax: 504.0 nm.


Example 266
(8S)-5-iodo-4′,9,9′-trihydroxy-6′-methylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (266)

Five (5.0) mg (7.5 μmol) 5-iodofredericamycin (1) are dissolved under argon in 1.0 ml anhydrous DMF. After addition of 0.28 mg (9.0 μmmol) methylamine (2M in CH3OH), it is stirred for 2 h at room temperature. Excess amine and DMF are removed in high vacuum. A chromatographically homogenous red powder is left.


Yield: 5.0 mg (99%); MS=665.2 (M+H)+; λmax: 492.0 nm.


Example 267
(8S)-4′,9,9′-trihydroxy-6′-morpholino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (267)

Five (5.0) mg (9.3 μmol) fredericamycin (1) are dissolved under argon in 1.0 ml anhydrous DMF. After addition of 3.24 mg (37.2 μmmol) morpholine, it is stirred for 18 h at room temperature. Excess amine and DMF are removed in high vacuum. A chromatographically homogenous red powder is left.


Yield: 5.5 mg (99%); MS=595.5 (M+H)+; λmax: 518.0 nm.


Example 268
(8S)-4′,9,9′-trihydroxy-6′-amino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (268)

Five (5.0) mg (9.3 μmol) fredericamycin (1) are dissolved under argon in 1.0 ml anhydrous DMF. After addition of 0.67 mg (37.2 μmmol) ammonia (2M in EtOH), it is stirred for 24 h at room temperature. Excess ammonia and DMF are removed in high vacuum. A chromatographically homogenous red powder is left.


Yield: 4.8 mg (99%); MS=525.4 (M+H)+; λmax: 504.0 nm.


Example 269
(8S)-4′,9,9′-trihydroxy-6′-pyrrolidino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (269)

Five (5.0) mg (9.3 μmol) fredericamycin (1) are dissolved under argon in 1.0 ml anhydrous DMF. After addition of 0.99 mg (13.9 μmmol) pyrrolidine, it is stirred for 19 h at room temperature. Excess amine and DMF are removed in high vacuum. A chromatographically homogenous red powder is left.


Yield: 5.3 mg (99%); MS=579.2 (M+H)+; λmax: 554.0 nm.


Example 270
(8S)-5-bromo-4′,9,9′-trihydroxy-6′-methylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1,1′-3′,5′,8′(2H)-pentone (270)

Five (5.0) mg (8.1 μmol) 5-bromofredericamycin (1) are dissolved under argon in 1.0 ml anhydrous DMF. After addition of 0.70 mg (12.2 μmmol) cyclopropylamine, it is stirred for 5 h at room temperature. Excess cyclopropylamine and DMF are removed in high vacuum. A chromatographically homogenous red powder is left.


Yield: 5.0 mg (99%); MS=643.4/645.4 (M+H)+; λmax: 492.0 nmn.


Example 271
2-[Acetyl]-3-[(8S)-4′,9,9′-trihydroxy-6′-methylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopent[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl]ethene (271)

79.5 mg (479 μmol) (2-oxo-propyl)-phosphonic acid dimethylester are dissolved under argon in 8 ml absolute pyridine, and 60.2 μl (479 μmol) 1,1,3,3-tetramethylguanidine are added at 0° C. After 5 minutes, 80.0 mg (159.7 μmol) fredericamycin aldehyde (4) is added at 0° C. After 2 hours, 100 ml 1 M hydrochloric acid are added, and the supernatant is sucked off from the precipitate. Dry under high vacuum.


Yield: 60.0 mg (69% of the theoretical value); M/e=542.2; λmax: 492.0 nm.


Example 272
2-[Bromoacetyl]-3-[(8S)-4′,9,9′-trihydroxy-6′-methylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl]ethene (272)

Fifty (50.0) mg (92.4 μmol) acetyl fredericamycin are dissolved under argon in 5 ml absolute DMF, and then 36.9 mg (231.1 μmol) bromine as a 1 M bromine solution in DMF are added under exclusion of light. It is stirred for 23 h under exclusion of light, and then 100 ml water are added. The precipitate is sucked off and dried under high vacuum.


Yield: 57.0 mg (87% of the theoretical value) red powder; M/e=697.9/699.9/701.9; M+; λmax: 504.0 nm.


Example 273
2-[2-Amino-thiazole-4-yl]-3-[(8S)-4′,9,9′-trihydroxy-6′-methylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl]ethene (273)

Twenty (20.0) mg (28.7 μmol) bromoacetyl fredericamycin (273) are dissolved under argon in 4 ml absolute DMF. At room temperature, first 3.3 mg (43.0 μmol) thiourea, and then 20 mg IR120H+ are added. After 2 hours, it is filtered off the resin, and added to 50 ml water. The precipitate is dried under high vacuum. Red powder.


Yield: 18.0 mg (93% of the theoretical value); M/e=676.1/678.1; (M+H); λmax: 492.0 nm.


Example 274
2-[2-Phenyl-thiazole-4-yl]-3-[(8S)-4′,9,9′-trihydroxy-6′-methylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopenta[g]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl]ethene (274)

Five (5.0) mg (7.2 μmol) bromoacetyl fredericamycin (273) are dissolved under argon in 1 ml absolute DMF. At room temperature, first 1.5 mg (10.8 μmol) thiobenzamide, and then 5 mg IR120H+ are added. After 3.5 h, addition of hydrazinosulfonyl resin, and stirring for 2 h. It is filtered off the resin, and added to 10 ml water. The precipitate is dried under high vacuum. Red powder.


Yield: 3.0 mg (57% of the theoretical value); M/e=737.2/739.2; (M+H); λmax: 492.0 nm.


Example 275
2-[2-Acetylamino-thiazole-4-yl]-3-[(8S)-4′,9,9′-trihydroxy-6′-methylamino-3-[(1E,3E)- penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl]ethene (275)

Five (5.0) mg (7.2 μmol) bromoacetyl fredericamycin (273) are dissolved under argon in 1 ml absolute DMF. At room temperature, first 1.3 mg (10.8 μmol) acetylthiourea, and then 5 mg IR120H+ are added. After 22 h, addition of hydrazinosulfonyl resin, and stirring for 2 h. It is filtered off the resin, and added to 10 ml water. The precipitate is dried under high vacuum. Red powder.


Yield: 2.0 mg (39% of the theoretical value); M/e=718.3/720.4; (M+H); λmax: 492.0 nm.


Example 276
2-[2-Methyl-thiazole-4-yl]-3-[(8S)-4′,9,9′-trihydroxy-6′-methylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-3-yl]ethene (276)

Five (5.0) mg (7.2 μmol) bromoacetyl fredericamycin (273) are dissolved under argon in 1 ml absolute DMF. At room temperature, first 0.81 mg (10.8 μmol) thioacetamide, and then 5 mg IR120H+ are added. After 2 h, addition of hydrazinosulfonyl resin, and stirring for 2 h. It is filtered off the resin, and added to 10 ml water. The precipitate is dried at high vacuum. Red powder.


Yield: 3.0 mg (62% of the theoretical value); M/e=675.2/677.2; (M+H); λmax: 492.0 nm.


Example 277
(8S)-4′,9,9′-trihydroxy-6′-methylamino-3-[(1E,3E)-penta-1,3-dienyl]-6,7-dihydrospiro[cyclopentag]isoquinoline-8,2′-cyclopenta[b]-naphthalene]-1-thio-1,1′-3′,5′,8′(2H)-tetrone-thiofredericamycin (277)

Ten (10.0) mg (18.5 μmol) fredericamycin (1) are dissolved under argon in 2 ml absolute pyridine. After addition of 20.5 mg (92.5 mmol) phosphorous-V-sulfide, it is heated for 12 h to 60° C. Addition of another 20.5 mg (92.5 mmol) phosphorous-V-sulfide. According to HPLC (acetonitrile/water CF3COOH), the reaction was complete after 1 h. It is transferred onto water and shaken out with ethyl acetate. Dry and concentrate. Purple-red powder.


Yield: 5.0 mg (49% of the theoretical value); M/e=55.7; (M+H); λmax: 504.0 nm.


Example A
Water Solubility of the Fredericamycin Derivatives

The water solubility of the various fredericamycin derivatives can be determined in a 0.9% NaCl solution with a pH of 7.


The compounds (22) and (3) dissolve very well. Compound (6) dissolves well, and compounds (2), (10), and (13) are soluble. Compounds (5), (7), (11) and (12) are sufficiently and markedly better soluble than fredericamycin (compound (1)).

Claims
  • 1. The compounds according to the general formula Ia or Ib:
  • 2. The compounds according to claim 1, wherein Formula Ia or Ib adopts the stereochemistry of Formula IIa or IIb
  • 3. The compounds of Formula Ia, Ib, IIa, IIb according to claim 2, wherein R2 has a water solubility that is at least two times higher compared to R2 being CH═CH—CH═CH—CH3, with all other residues being maintained.
  • 4. The compounds according to claim 1, wherein R3 means F, Cl, Br, I, OH, OR31, NO2, NH2, NHR31, NR31R32, NHCHO, NHCOR31, NHCOCF3, CH3-mhalm (with hal=Cl, F, and m=1, 2, 3), or OCOR31.
  • 5. The compounds according to claim 1, wherein R3 means (CH2)rCHO, (CH2)rCH═NOH, —(CH2)rCH═NOR21, (CH2)rCH═NOCOR21, (CH2)rCH═NOCH2CONR21R22, (CH2)rCH═NOCH(CH3)CONR21R22, (CH2)rCH═NOC(CH3)2CONR21R22, (CH2)rCH═N—NHCO—R23, (CH2)rCH═N—NHC(O)NH—R23, (CH2)rCH═N—NHC(S)NH—R23, (CH2)rCH═N—NHC(NH)NH—R23, (CH2)rCH═N—NHC(NH)—R23, (CH2)rCH═N—NHCO—CH2NHCOR21, (CH2)rCH═N—O—CH2NHCOR21, (CH2)rCH═N—NHCS—R23, (CH2)rCH═CR24R25 (trans or cis), (CH2)rCH═NR21, (CH2)rCH═N—NR21R22,
  • 6. The compounds according to claim 1, wherein X means N or S, or X—R5 is OH.
  • 7. The compounds according to claim 1, wherein R1 means H, C1-C5 alkyl, cycloalkyl, R2 means C1-C5 alkyl, C1-C4 alkylaryl, C2-C5 alkenyl, heteroaryl, C1-C4 alkylheteroaryl, CHF2, CF3, polyol side chain, CH2Y (Y=F, Cl, Br, I), CH2NH2, CH2NR21R22, CH2NHCOR23, CH2NHCSR23, CH2SH, CH2S(O)nR21, with n=0, 1, 2, CH2SCOR21, CH2OH, CH2OR21, CH2OSO2—R21, CHO, CH(OR21)2, CH(SR21)2, CN, CH═NOH, CH═NOR21, CH═NOCOR21, CH═N—NHCO—R32, CH═CR24, R25 (trans or cis), COOH, COOR21, CONR21R22, —CH═NR21, —CH═N—NR21R22, (with X′=NR215, O, S, and R211, R212, R213, R214, R215 being independently H or C1-C6 alkyl), —CH═N—NHSO2 aryl, —CH═N—NHSO2 heteroaryl, or CH═N—NHCO—R23, R21, R22 independently mean C1-C6 alkyl, cycloalkyl, aryl, C1-C4 alkylaryl, heteroaryl, or C1-C4 alkylheteroaryl, R23 independently of R21, has the same meanings as R21, or CH2-pyridinium salts, or CH2-tri-C1-C6 alkylammonium salts, R24 independently of R21, has the same meanings as R21, or H, CN, COCH3, COOH. COOR21, CONR21R22, NH2, or NHCOR21, R25 independently of R21, has the same meanings as R21, or H, CN, COCH3, COOH, COOR21, CONR21R22, NH2, or NHCOR21, R24, R25 together mean C4-C8 cycloalkyl, R3 means F, Cl, Br, I, NO2, NH2, or NHCOR31, R31 independently means C1-C6 alkyl, R5 means H, C1-C6 alkyl, C3-C8 cycloalkyl, C3-C8 cycloalkenyl, C1-C6 alkenyl, C1-C6 alkinyl, C1-C4 alkylcycloalkyl, heterocycloalkyl, C1-C4 alkylheterocycloalkyl, aryl, C1-C4 alkylaryl, heteroaryl, C1-C4 alkylheteroaryl, CmH2m+o−pYp (with m=1 to 6, for o=1, p=1 to 2 m+o; for m=2 to 6, o=−1, p=1 to 2 m+o; for m=4 to 6, o=−2, p=1 to 2 m+o; Y=independently selected from the group consisting of halogen, OH, OR21, NH2, NHR21, NR21R22, SH, SR21), hydroxyalkyl with one or more OH groups, R4, R6, R7 independently mean H, C1-C5 alkyl, or CO—R41, R41 independently from R21, has the same meanings as R21, X means O, S. NH, or N—R8, Y means O, or S.
  • 8. The compounds according to claim 1 in the form of inclusion compounds with cyclodextrin.
  • 9. Drugs containing compounds according to claim 1, a carrier and adjuvants.
  • 10. Drugs according to claim 9 in combination with further agents for tumor treatment.
  • 11. A preparation of drugs for tumor treatment which comprises using compounds according to claim 1.
  • 12. A preparation of drugs for treatment of parasites which comprises using the compounds according to claim 1, or compounds in which the following meanings can be concomitantly adopted in case of Formula Ia: R1: H, C1-C6 alkyl, R2: C1-C6 alkyl, C2-C6 alkenyl, R3: H, R4 and R6 identical, and independently H, C1-C6 alkyl, CO—R41, with R41 being C1-C6 alkyl, aryl, and R7 being H, C1-C6 alkyl, and in case of Formula Ib: R1: H, R2: pentyl, 1-pentenyl, 3-pentenyl, 1,3-pentdienyl, R3: H, R4 and R6 being H, and X—R5 being methoxy.
  • 13. A preparation of drugs for immunosuppression which comprises the compounds according to claim 1, or compounds in which the following meanings can be concomitantly adopted in case of Formula Ia: R1: H, C1-C6 alkyl, R2: C1-C6 alkyl, C2-C6 alkenyl, R3: H, R4 and R6 identical, and independently H, C1-C6 alkyl, CO—R41, with R41 being C1-C6 alkyl, aryl, and R7 being H, C1-C6 alkyl, and in case of Formula Ib: R1: H, R2: pentyl, 1-pentenyl, 3-pentenyl, 1,3-pentdienyl, R3: H, R4 and R6 being H, and X—R5 being methoxy.
  • 14. A preparation of drugs for treatment of neurodermitis which comprises using compounds according to claim 1, or compounds in which the following meanings can be concomitantly adopted in case of Formula Ia: R1: H, C1-C6 alkyl, R2: C1-C6 alkyl, C2-C6 alkenyl, R3: H, R4 and R6 identical, and independently H, C1-C6 alkyl, CO—R41, with R41 being C1-C6 alkyl, aryl, and R7 being H, C1-C6 alkyl, and in case of Formula Ib: R1: H, R2: pentyl, 1-pentenyl, 3-pentenyl, 1,3-pentdienyl, R3: H, R4 and R6 being H, and X—R5 being methoxy.
Priority Claims (2)
Number Date Country Kind
102 12 580.0 Mar 2002 DE national
102 48 451.1 Oct 2002 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP03/02922 3/20/2003 WO 9/24/2004