Not applicable.
Not applicable.
The present invention relates to the field of communications technologies, and in particular, to a free cooling system apparatus and a communication equipment.
Heat of a communication equipment deteriorates equipment performance or even damages the equipment. To make the communication equipment work normally, it is necessary to solve the problem of heat dissipation of the communication equipment and ensure that an ambient temperature in which the communication equipment stays is within an allowed range.
There are three common heat dissipation solutions: air conditioning, heat exchanger, and free cooling. The air conditioner and the heat exchanger consume much energy and have a large size, poor reliability, and poor maintainability. In the free cooling, outdoor fresh air is used to dissipate heat of the communication equipment directly, which makes the equipment work in a good environment and has a significant energy saving effect; in addition, a free cooling system apparatus has a small size, meets a trend of product downsizing, and is highly reliable and maintainable.
Currently, as shown in
To improve the filtering efficiency, an air-ventilated film is used to replace the filter screen in the prior art. The air-ventilated film brings a high filtering efficiency, but the resistance of the air-ventilated film increases along with the increase of wind force, causing a significant air resistance effect. In a windy and dusty area, the air-ventilated film may be clogged with dust and need maintenance before long, which leads to a very short maintenance cycle.
The foregoing existing free cooling system apparatus has a short maintenance cycle, needs frequent maintenance, and has a high maintenance cost.
Embodiments of the present invention provide a free cooling system apparatus and a communication equipment.
A free cooling system apparatus, applied to a communication equipment, includes: an air intake apparatus that is disposed at an air intake of the communication equipment, where the air intake apparatus includes an air intake duct that is disposed along a direction of gravity or at an acute angle against the direction of gravity, where the air intake duct has an opening below the air intake of the communication equipment to allow an airflow to enter the air intake duct through the opening, and a filtering module is disposed inside the air intake duct; and the filtering module includes a substrate and grass-like fibers, where the substrate is attached to a sidewall of the air intake duct, roots of the grass-like fibers are fixed onto the substrate, and tips of the grass-like fibers are suspended inside the air intake duct of the air intake apparatus and are transversely placed in the air intake duct along a direction of a cross section of the air intake duct.
A communication equipment includes: an enclosure, an equipment body disposed inside the enclosure, and the free cooling system apparatus described above disposed outside the enclosure, where the enclosure has an air intake and an air exhaust, and an air intake apparatus of the free cooling system apparatus is disposed at the air intake.
In the free cooling system apparatus provided in the embodiments of the present invention, an air intake duct is disposed along a direction of gravity approximately, an opening used to allow entry of an airflow is below an air intake of a communication equipment, grass-like fibers disposed in a filtering module in the air intake duct are suspended in the air intake duct and transversely placed in the air intake duct along a direction of a cross section, and can swing freely as actuated by an incoming airflow. In this way, when an airflow enters the air intake duct from bottom to top, dust and impurities in the airflow are obstructed and filtered by the grass-like fibers layer by layer. The filtered dust and impurities subside naturally due to the swing of the grass-like fibers and finally fall down through the opening of the air intake duct. In this way, the free cooling system apparatus provided in the embodiments of the present invention has an automatic dust suppression function, and can be maintenance-free or prolong the maintenance cycle, thereby reducing the maintenance cost.
Embodiments of the present invention provide a free cooling system apparatus. The apparatus has an automatic dust suppression function, and can be maintenance-free or prolong the maintenance cycle, thereby reducing the maintenance cost. The embodiments of the present invention further provide a communication equipment that uses the free cooling system apparatus. Detailed descriptions are provided below.
Referring to
The air intake apparatus 200 includes an air intake duct 210 that is disposed along a direction of gravity or at an acute angle against the direction of gravity, where the air intake duct 210 has an opening 211 below the air intake 111 of the communication equipment 100 to allow an airflow to enter the air intake duct 210 through the opening 211, and a filtering module 220 is disposed inside the air intake duct 210. Because the opening 211 is located below the air intake 211, an outside airflow enters the opening 211 and flows from bottom to top along the air intake duct 210, and is filtered by the filtering module 220 and then arrives at the air intake 111 of the communication equipment 100. The air intake duct 210 may be disposed vertically along the direction of gravity, that is, perpendicular to the horizon; and may also be disposed at an acute angle against the direction of gravity, which is preferably an angle of less than 30 degrees.
As shown in
The principle of the filtering apparatus in this embodiment is similar to aquatic grasses filtering river water. Multiple clusters of grass-like fibers 222 arranged evenly or unevenly are fixed onto the substrate 221. When an airflow passes through a grass-like fiber clump formed by the multiple clusters of grass-like fibers 222, dust and impurities carried in the airflow are obstructed and filtered out by the grass-like fibers 222 which swing with the wind. Because the opening 211 of the air intake duct 210 is below the air intake 111 and the airflow flows from bottom to top, the obstructed dust and impurities constantly subside naturally due to constant swing of the grass-like fibers 222 with the wind, and finally fall down from the opening 211 of the air intake duct 210. In this way, the free cooling system apparatus in this embodiment has an automatic dust suppression function, and is not only free from clogging with dust but also does not need periodical manual maintenance for dust removal, and can be maintenance-free or prolong the maintenance cycle, thereby reducing the maintenance cost.
In addition, the filtering apparatus mainly formed of grass-like fibers provided in the embodiment of the present invention is a stereoscopic structure, and provides a certain filtering depth from bottom to top, which may be regarded as stereoscopic filtering. By contrast, a filter screen or an air-ventilated film in the prior art is constructed of only one layer, and may be called planar filtering. The stereoscopic filtering in this embodiment has higher filtering efficiency than that of the planar filtering, and is free from clogging with dust.
In addition, the filtering apparatus provided in the embodiment of the present invention is of a structure with a sound absorption effect, and can reduce noise.
The following describes the filtering module 220 in further detail.
As shown in
The filtering module 220 may include only one substrate 221 onto which multiple clusters of grass-like fibers 222 are fixed, where the substrate 221 is fixed to only one sidewall of the air intake duct 210; or may include multiple substrates 221 onto which multiple clusters of grass-like fibers 222 are fixed, where the substrates 221 are fixed to multiple sidewalls of the air intake duct 210 separately, so as to better obstruct the air intake duct 220 and improve the filtering efficiency.
In this embodiment, the materials of the substrate 221 and the grass-like fibers 222 in the filtering module 220 are not limited, and the sizes of the substrate 221 and the grass-like fibers 222 are not limited, as long as the sizes fit the air intake duct 220. For example, the substrate 221 may be in a rectangle with a length being about 400 millimeters (mm) and a width being about 450 mm; the grass-like fibers 222 may be in a column shape or a bar shape or other shapes with a length being not less than 10 mm and a diameter being not less than 1 mm. In an implementation manner, the length of the grass-like fibers 222 may be 50 mm; in this case, the thickness of the filtering module 220 is slightly greater than 50 mm.
In an embodiment, in order to make the dust and impurities filtered out by the filtering module 220 better subside naturally to prolong the maintenance cycle, dustproof treatment (also known as dust-resistance treatment) may be performed on the grass-like fibers 222, to make the grass-like fibers 222 dust-free. For example, a layer of nanometer materials may be disposed on surfaces of the grass-like fibers 222, or the grass-like fibers 222 are entirely made of nanometer materials, so as to achieve a better dust-resistance effect.
In an embodiment, as shown in
In an embodiment, as shown in
The intake fan 240 and the exhaust fan 320 may be powered by an external power supply, or may be powered by using a power supply inside the communication equipment 100. A control panel 400 including control buttons of the intake fan 240 and the exhaust fan 320 may be fixed inside or outside the communication equipment, for operation by management and maintenance personnel.
As shown in
In conclusion, the free cooling system apparatus provided in the embodiment of the present invention uses a filtering module which is mainly formed of grass-like fibers and features a large dust-tolerant rate and a low resistance coefficient, and with an air intake duct that is disposed along a direction of gravity and has an opening at a lower end, the free cooling system apparatus has a very high filtering efficiency, and brings an effect of automatic dust suppression, which can be maintenance-free or prolong the maintenance cycle, thereby reducing the maintenance cost. If dustproof treatment is performed on the grass-like fibers, the effect of automatic dust suppression will be better.
As shown in
Specifically, the communication equipment 100 may be a communication cabinet. The free cooling system apparatus may be separated from the communication cabinet, and connected to an enclosure of the communication cabinet in a manner of screw connection or the like. The free cooling system apparatus and the enclosure of the communication cabinet may also form an integrated structure.
The communication equipment may be a communication equipment of another type such as an outdoor cabinet, an outdoor equipment room, or an outdoor mini-shelter.
It should be noted that the free cooling system apparatus in the embodiment of the present invention is applicable to not only the communication equipment, but also any equipment that needs heat dissipation.
The free cooling system apparatus and the communication equipment provided in the embodiments of the present invention are introduced in detail above. Specific examples are used for illustration of the principles and implementation manners of the present invention. The description of the foregoing examples is merely used to help understand the method and core ideas of the present invention, and shall not be construed as a limitation to the present invention.
This application is a continuation of International Application No. PCT/CN2011/074701, filed on May 26, 2011, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2011/074701 | May 2011 | US |
Child | 14086040 | US |