1. Field of the Invention
The present invention relates to the field of free piston engines.
2. Prior Art
Various types of free piston engines are well known in the prior art. Of particular relevance to the present invention are the free piston engines and methods disclosed in U.S. Patent Application Publication No. 2011/0083643, the disclosure of which is hereby incorporated by reference. Those engines utilize a high pressure hydraulic rail and a low pressure hydraulic rail and a plurality of hydraulic pistons and valving to controllably couple the hydraulic pistons to the high pressure hydraulic rail or the low pressure hydraulic rail. In each cylinder a central hydraulic piston is connected to the free piston and configured so as to draw the free piston away from the top dead center position, such as during an intake stroke, or to exert a force on the free piston toward the top dead center position, such as during a compression stroke or a power stroke during which hydraulic energy is delivered to the high pressure rail. The additional hydraulic pistons are symmetrically distributed around the center hydraulic piston and may be controllably coupled to the high pressure rail or the low pressure rail as appropriate for a compression stroke, and the output of hydraulic energy to the high pressure rail during a power stroke as appropriate to control the free piston velocities, excursion, etc.
In any free piston engine the task is to control the free piston motion during each stroke of its operating cycle and to recover the energy output of the free piston in an efficient manner. Of particular importance are the top dead center and bottom dead center positions of the piston and its velocity profile therebetween. In the free piston engines described in the U.S. published application hereinbefore referred to, the position of the free piston is sensed and from that information the top dead center and the bottom dead center positions of the piston may be controlled, as well as the velocity profile of the free piston, throughout all strokes of the operating cycle. This is done by coupling the hydraulic pistons to the high pressure rail or the low pressure rail in combinations to provide the desired force on the free piston for that particular stroke. By way of example, for a power stroke all hydraulic pistons might initially be coupled to the high pressure rail to deliver high pressure hydraulic fluid thereto, with hydraulic pistons being switched to the low pressure rail as the combustion chamber pressure drops and the free piston slows.
In an exemplary embodiment a central hydraulic piston and six additional hydraulic pistons distributed symmetrically around the center hydraulic piston are used. For a relative force of seven on the free piston toward the top dead center position all seven hydraulic cylinders would be coupled to the high pressure rail, for a relative force of six all except the center piston would be coupled to the high pressure rail, for a relative force of five the center piston and four of the surrounding symmetrically located pistons would be coupled to the high pressure rail, etc. Note that if one uses all combinations during a power stroke, each hydraulic piston will be switched between the high pressure and low pressure rails a number of times during that power stroke. While this may not be necessary, it does illustrate the point that one (or a pair) of hydraulic cylinders may need to be switched between the high and low rails (or accumulators) more than once during any one stroke of the free piston.
In accordance with the present invention, the ability to operate the valves in a time period which is much shorter than an individual stroke of the free piston makes feasible the modulation of the valving between coupling to the high pressure rail or accumulator and the low pressure rail or accumulator, and to the vent (reservoir). As shown in
The region below the hydraulic piston 24 is coupled to first and second three-way valves 28 and 30 and the region above hydraulic piston 24 is coupled to three-way hydraulic valves 32 and 34.
For relative values, the reservoir RESV may be, by way of example, open to the atmosphere, i.e., at atmospheric pressure, whereas the pressure in the accumulator ACCU LOW preferably will be significantly above atmospheric pressure, and most preferably at least high enough to backfill the hydraulic volumes on either side of the hydraulic piston 24 when the same is moving in a direction to require such backfilling. The pressure of the high pressure rail or accumulator ACCU HIGH will be quite high in comparison to the low pressure accumulator ACCU LOW, and may be, by way of example, on the order of a thousand bar.
It will be noted that the hydraulic area above hydraulic piston 24 is equal to the area of hydraulic piston 24 minus the cross-sectional area of the free piston rod 22. Thus the same pressure in the hydraulic region above hydraulic piston 24 will cause a substantially lower downward force on the free piston 20 than the upward force the same hydraulic pressure in hydraulic cylinder 26 below hydraulic piston 24 will cause. However less downward force will generally be needed to be exerted on the free piston 20, as this is required generally only for an intake stroke, whereas the upward force required must be adequate for the compression stroke and of course adequate to absorb the hydraulic energy during the combustion or power stroke.
Typically the three-way valves 28, 30, 32 and 34 will be two-stage valves, the first stage being electronically controllable, with the second stage being hydraulically actuated by the first stage, though valves of other configurations may also be used, provided they have a sufficient operating speed.
In operation, when one side of the hydraulic piston 24 is not to be pressurized the corresponding three-way valve 28 or 32 will couple the same to the reservoir RESV. For the side of the hydraulic piston 24 to be pressurized, the three-way valve 28 or 32 will couple the corresponding hydraulic region to one of three-way valves 30 and 34, which will alternate between coupling flow to the high pressure accumulator ACCU HIGH and the low pressure accumulator ACCU LOW at a high speed and with varying timing so that the average force on the hydraulic piston 24 during the corresponding time interval approximates the desired force. For this purpose, it is particularly important that the three-way valves 30 and 34 are carefully designed to avoid a momentary hydraulic lock when switching between their two valve positions, yet at the same time avoid any substantial direct coupling between the high pressure accumulator and the low pressure accumulator. The hydraulic lock or a near hydraulic lock consideration is also important for the three-way valves 28 and 32, though those valves would normally switch at or around the top dead center and bottom dead center positions of the free piston where velocities and flow rates are not substantial, though the short circuit possibilities between either accumulator or either accumulator and the vent is still a particular concern.
Referring again to
For piston position sensing, a magnetic steel plunger 40 is used together with a coil 42 which is excited with a relatively high frequency AC signal. The impedance of the coil will vary with the position of the magnetic plunger 40. While the variation in impedance with plunger position as measured may not be linear and/or the circuitry for sensing the impedance may not be linear, a calibration curve may readily be applied to linearize the output signal with piston position.
Now referring to
The free piston engine may be configured and operated as a conventional four stroke compression ignition engine, a two stroke compression ignition engine or in accordance with other operating cycles, as desired. Compression ignition at or near a piston top dead center position may be assured cycle to cycle adjustment in the operation of the intake and exhaust valves INT and EXH. In a free piston engine, a compression stroke may be continued, provided fuel is available, until ignition occurs, so the cycle to cycle adjustment is essentially controlling the top dead center free piston position at which compression ignition occurs. Ignition may be sensed by putting a pressure sensor in each free piston combustion chamber, though a simpler and less expensive way of sensing ignition is to sense the rapid rise in pressure in the hydraulic fluid under hydraulic piston 24.
As shown in
Also as shown in
As pointed out before, the ability to operate the valves (28, 30, 32 and 34 in the exemplary embodiment) in a time period which is much shorter than an individual stroke of the free piston makes feasible the modulation of the valving between coupling to the high pressure rail or accumulator and the low pressure rail or accumulator, and to the vent (reservoir) when the hydraulic fluid is being discharged to the vent. Preferably each piston will follow predetermined position and velocity profiles, either fixed for all operation of the engine or dependent on the specific engine operating conditions. The position profiles particularly define the top dead center and bottom dead center piston positions, with the velocity profiles particularly defining the preferred piston velocities between these two end positions.
In theory, one could modulate the operation of the valves at a high frequency to accurately hold the piston velocities to the desired velocity profile. However there are some losses associated with the actuation of the valves that limits the number of actuations that are practical per piston stroke. Aside from the energy required to operate the valves, it is particularly important that hydraulic fluid flow never be blocked when the respective free piston is moving. This means for instance that when switching between the high pressure accumulator and the low pressure accumulator, one must allow momentary coupling together of the high and low pressure accumulators. It is for this reason that it is preferred to use 3-way valves for valves 28, 30, 32 and 34 rather than two, 2-way valves for each, as a 3-way valve can be designed to have a momentary coupling that is adequate but not excessive, and is not subject to problems of the possible difference in speed of operation of two 2-way valves. Consequently to avoid excessive losses due to valve actuation, the control system should allow significant deviation from the intended or ideal velocity profile to limit the amount of valve actuation losses commensurate with the added losses that large excursions from the intended velocity profile will cause. In that regard, an ideal velocity profile can be easily experimentally established, and in fact different profiles might be used dependent on whether maximum efficiency or maximum power is desired.
Thus the present invention has a number of aspects, which aspects may be practiced alone or in various combinations or sub-combinations, as desired. While a preferred embodiment of the present invention has been disclosed and described herein for purposes of illustration and not for purposes of limitation, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Patent Application No. 61/499,049 filed Jun. 20, 2011.
Number | Date | Country | |
---|---|---|---|
61499049 | Jun 2011 | US |