The present application is a 35 U.S.C. ยงยง 371 national phase conversion of PCT/JP2013/055509, filed Feb. 28, 2013, which claims priority to Japanese Patent Application No. 2012-101266, filed Apr. 26, 2012, the contents of which are incorporated herein by reference. The PCT International Application was published in the Japanese language.
The present invention relates to a free-standing liner unit and a method of building a tank.
Low-temperature liquefied gases such as LNG (Liquefied Natural Gas) are stored, for example, in cylinder-shaped double-shell tanks having an internal tank made of metal and an outer tank made of concrete. The following process is generally followed when building this type of double-shell tank. Concrete outer tank shell plates are formed in a plurality of stages in the height direction from the base, an outer tank roof is then formed inside these and is lifted up. Then, internal tank shell plates are formed underneath the outer tank roof in a plurality of stages in the height direction in the same way as the outer tank shell plates.
In this conventional building method, it is necessary for a large-size forming frame to be set up inside the outer tank side until the outer tank shell plates have been built up to a certain height. Because of this, work to form the tank internal structure on the inside of the outer tank shell plates cannot proceed. For example, an annular plate (i.e., the previously mentioned internal structure) that is used to join together the internal tank shell plates and the bottom plate is positioned inside the tank, however, the task of positioning this annular plate cannot be performed until the outer tank shell plates have been built up to 3 or 4 levels.
In contrast, in Patent Document 1, a method is disclosed in which a precast concrete forming frame that is equipped with an outer tank liner, which is formed by integrating an outer tank liner plate with precast concrete, is used. According to this method, by setting up this precast concrete forming frame equipped with the outer tank liner on a base, and using it as a forming frame for pouring the concrete, the building of the outer tank lower portion can be performed concurrently with the forming of the tank internal structure.
[Patent Document 1] Japanese Unexamined Patent Application, First Publication No. 2010-106501
For example, one idea that may be considered is to apply the technology described in Patent Document 1, and to integrate the outer tank liner plate and a portion of the outer tank shell plates together into a forming frame (i.e., a free-standing liner unit). However, if the outer tank liner plate and the outer tank shell plates, which are made of concrete, are integrated into a single unit, then the weight of this integrated structural body is huge. This causes the workload during its transporting to increase, and the costs incurred in its transporting to increase, so that there is a worsening in the ease of handling of the forming frame.
The present invention was conceived in view of the above-described drawbacks, and it is an object thereof to make it possible to shorten the construction period by performing the formation of the outer tank shell plates and the formation of the tank internal structure concurrently with each other, and to also obtain an improvement in the handleability of the free-standing liner unit.
The present invention employs the following structures as a means of solving the above-described problems.
A free-standing liner unit according to a first aspect of the present invention includes a planar outer tank liner plate, a planar secondary barrier plate, and a cold insulator layer that is interposed between the outer tank liner plate and the secondary barrier plate, in which the outer tank liner plate, the secondary barrier plate, and the cold insulator layer are integrated into a single unit.
In the free-standing liner unit according to a second aspect of the present invention, in the free-standing liner unit according to the above-described first aspect, there is further provided a reinforcing means that is fixed to one or a plurality of the outer tank liner plate, the secondary barrier plate, and the cold insulator layer, and provides improved rigidity.
In the free-standing liner unit according to a third aspect of the present invention, in the free-standing liner unit according to the second aspect, the reinforcing means takes the form of anchor bolts that penetrate the outer tank liner plate, the secondary barrier plate, and the cold insulator layer.
In the free-standing liner unit according to a fourth aspect of the present invention, in the free-standing liner unit according to the second aspect, the reinforcing means takes the form of ribs that are fixed to the outer tank liner plate.
A method of building a tank according to a fifth aspect of the present invention has: a step erecting the free-standing liner units according to any of the first through fourth aspects; a step of forming outer tank shell plates that are made of concrete on the outer tank liner plate side of the free-standing liner units; and a step of forming a tank internal structure on the secondary barrier plate side of the free-standing liner units concurrently with the step of forming the outer tank shell plates.
According to the present invention, a free-standing liner unit is formed by an outer tank liner plate, a secondary barrier plate, and a cold insulator layer. In this type of free-standing liner unit, because the outer tank shell plates, which are made of concrete, are not integrated into a single structure, compared to a free-standing liner unit in which the outer tank shell plates are integrated, the weight can be reduced, and the handleability improved. Furthermore, because the free-standing liner unit of the present invention can be used as a forming frame when the concrete shell plates are being formed, it is possible for the tank internal structure to be formed concurrently with the formation of the outer tank shell plates. Accordingly, according to the present invention, it is possible to shorten the construction period when the outer tank shell plates are formed concurrently with the formation of the tank internal structure, and to thereby achieve an improvement in the handleability of the free-standing liner unit.
Hereinafter, an embodiment of a free-standing liner unit and a method of building a tank according to the present invention will be described with reference made to the drawings. Note that in the following drawings, the scale of the respective components has been appropriately altered in order to make each component a recognizable size.
The outer tank liner plate 2 is a plate material formed, for example, from stainless steel, and makes up a portion of an outer tank liner 19 that is provided in a tank 10 (described below). As is shown in
The secondary barrier plate 3 is a plate material formed, for example, from 9% nickel steel, and makes up a portion of a secondary barrier 17 that is provided in the tank 10 (described below). As is shown in
The cold insulator layer 4 is placed between the outer tank liner plate 2 and the secondary barrier plate 3, and is supported by being sandwiched between the outer tank liner plate 2 and the secondary barrier plate 3. This cold insulator layer 4 forms a portion of a second cold insulating layer 18 that is provided in the tank 10 (described below). The cold insulator layer 4 is formed from a cold insulator such as, for example, foam glass, or PUF (rigid urethane foam) or the like.
The anchor bolts 5 penetrate the outer tank liner plate 2, the secondary barrier plate 3, and the cold insulator layer 4, and fasten these together. As is shown in
As is shown in
The base slab 11 is a foundation that is made from reinforced concrete and supports the outer tank 12 and the inner tank 14 and the like. The outer tank 12 is a circular cylinder-shaped container made from concrete that is formed directly on top of the base slab 11 so as to encircle the inner tank 14. This outer tank 12 is formed by outer tank shell plates 12a that form a circumferential surface, and an outer tank roof 12b that covers a top portion of the outer tank shell plates 12a. Note that the outer tank 12 forms the outermost shell of the tank 10. The components present inside this outer tank 12 form the tank internal structure of the present invention.
The bottom plate 13 is formed on the base slab 11 in an area enclosed by the outer tank shell plates 12a. As is shown in the enlarged view in
The inner tank 14 is a circular cylinder-shaped container made from metal (for example, 9% nickel steel) that is formed on top of the bottom plate 13 inside the outer tank 12. This inner tank 14 is formed by inner tank shell plates 14a that form a circumferential surface, an inner tank deck 14b that covers a top portion of the inner tank shell plates 14a, an inner tank bottom plate 14c that is placed on top of the bottom plate 13, and an annular plate 14d that joins the inner tank shell plates 14a and the inner tank bottom plate 14c together.
The resilient blanket 15 is placed on the outside of the inner tank shell plates 14a, and surrounds the entire circumference of the inner tank shell plates 14a. The first cold insulating layer 16 is placed on the outside of the resilient blanket 15, and surrounds the entire circumference of the resilient blanket 15. This first cold insulating layer 16 is formed, for example, from perlite. The secondary barrier 17 is placed so as to surround the bottom portion of the inner tank 14 while sandwiching the resilient blanket 15 and the first cold insulating layer 16 between the secondary barrier 17 and the inner tank 14 and, in the unlikely event of the inner tank 14 becoming fractured and LNG or the like leaking out, blocks any LNG leakage. This secondary barrier 17 is formed by joining a plurality of the secondary barrier plates 3 of the free-standing liner units 1 of the present embodiment together in the circumferential direction of the inner tank 14. The second cold insulating layer 18 is placed on the outer side of the secondary barrier 17, and surrounds the entire circumference of the secondary barrier 17. This second cold insulating layer 18 is formed by joining a plurality of the cold insulator layers 4 of the free-standing liner units 1 of the present embodiment together in the circumferential direction of the inner tank 14. The outer tank liner 19 is placed on the inner side of the outer tank shell plates 12a, and is provided on the entire circumference of the outer tank shell plates 12a. A bottom portion of this outer tank liner 19 is formed by joining a plurality of the outer tank liner plates 2 of the free-standing liner units 1 of the present embodiment together in the circumferential direction of the inner tank 14. The anchor strap 20 is embedded between the inner tank shell plates 14a and the outer tank shell plates 12a, and supports the inner tank shell plates 14a.
Next, a method of building the tank 10 having the above-described structure will be described with reference made to
Firstly, the base slab 11 is built, and the free-standing liner units 1 of the present embodiment are then erected on top of the base slab 11. Note that, when viewed from above, a plurality of the free-standing liner units 1 are arranged in a toroidal configuration, and are each joined together by welding. After the free-standing liner units 1 are erected in this manner, as is shown in
When the formation of the outer tank shell plates 12a has begun on the outer side of the free-standing liner units 1 in this manner, as is shown in
Next, as is shown in
Next, as is shown in
Next, as is shown in
Next, concurrently with the formation of the outer tank shell plates 12a, supporting pedestals 33 are formed on a portion of the outer tank shell plates 12a that have already been formed so as to support the outer tank roof 12b. In conjunction with this, the supporting trestle 31 and the supporting columns 32 are removed. Note that, as is shown in
Next, concurrently with the formation of the outer tank shell plates 12a, as is shown in
Next, as is shown in
Next, the operation and effects of the free-standing liner unit 1 of the present embodiment will be described. The free-standing liner unit 1 of the present embodiment is formed by the outer tank liner plate 2, the secondary barrier plate 3, and the cold insulator layer 4. In this free-standing liner unit 1 of the present embodiment, because the outer tank shell plates 12a, which are made of concrete, are not integrated into a single structure, compared with a conventional free-standing liner unit in which the outer tank shell plates are integrated, it is possible to achieve a reduction in weight and an improvement in handleability.
Furthermore, for example, as is shown in
Moreover, in the free-standing liner units 1 of the present embodiment, the anchor bolts 5 that fasten together the outer tank liner plate 2, the secondary barrier plate 3, and the cold insulator layer 4 are provided so as to improve the strength of the outer tank liner plate 2, the secondary barrier plate 3, and the cold insulator layer 4. Because of this, when the free-standing liner units 1 are used as a forming frame, they are able to easily withstand the liquid pressure of the concrete that is acting on the free-standing liner units 1. Note that the rigidity of the free-standing liner units 1 can be altered by modifying the placement pitch of the anchor bolts 5. Because of this, for example, it is also possible to determine the placement pitch of the anchor bolts 5 based on the aforementioned liquid pressure of the concrete. At this time, because the bottom portion of the free-standing liner units 1 receives a higher liquid pressure than the top portion thereof, it is possible for the anchor bolts 5 to be installed at a higher density in the bottom portion of the free-standing units 1 than in the top portion thereof.
While the preferred embodiment of the present invention has been described with reference to the drawings, the present invention is not limited to the aforementioned embodiment. All shapes and combinations of the means and each component shown in the aforementioned embodiment are only examples and may be variously modified based on design requirements without deviation from the gist of the present invention. That is, all shapes and combinations of each component shown in the aforementioned embodiment may allow additions, omissions, substitutions, and other modifications of the constitution without deviation from the spirit of the present invention. The present invention is not limited by the above description, and is only limited by the appended claims.
For example, in the above-described embodiment, a structure in which the anchor bolts 5 that penetrate the outer tank liner plate 2, the secondary barrier plate 3, and the cold insulator layer 4 are used as the reinforcing means of the present invention. However, the present invention is not limited to this. For example, it is also possible to use ribs as the reinforcing means of the present invention.
According to the present invention, when building a tank, it is possible to shorten the construction period by performing the formation of the outer tank shell plates and the formation of the tank internal structure concurrently with each other, and to achieve an improvement in the handleability of the free-standing liner units.
1 . . . Free-standing liner unit, 1A . . . Free-standing liner unit, 2 . . . Outer tank liner plate, 3 . . . Secondary barrier plate, 4 . . . Cold insulator layer, 5 . . . Anchor bolt, 6 . . . Rib, 10 . . . Tank, 11 . . . Base slab, 12 . . . Outer tank, 12a . . . Outer tank shell plate, 12b . . . Outer tank roof, 13 . . . Bottom plate, 13a . . . Bottom liner plate, 13b . . . Dry sand layer, 13c . . . Foam glass layer, 13d . . . Dry sand layer, 13e . . . Leveling concrete, 13f . . . Perlite concrete block, 13g . . . Reinforced concrete, 14 . . . Inner tank, 14a . . . Inner tank shell plate, 14b . . . Inner tank deck, 14c . . . Inner tank bottom plate, 14d . . . Annular plate, 15 . . . Resilient blanket, 16 . . . First cold insulating layer, 17 . . . Secondary barrier, 18 . . . Second cold insulating layer, 19 . . . Outer tank liner, 20 . . . Anchor strap, 31 . . . Stand, 32 . . . Supporting column, 33 . . . Supporting pedestal, 34 . . . Crane
Number | Date | Country | Kind |
---|---|---|---|
2012-101266 | Apr 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/055509 | 2/28/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/161385 | 10/31/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3300943 | Owens | Jan 1967 | A |
3583592 | Kerfman | Jun 1971 | A |
6035795 | Dhellemmes | Mar 2000 | A |
20060086741 | Bacon | Apr 2006 | A1 |
20080000172 | Dhellemmes | Jan 2008 | A1 |
20080302804 | Simmons | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
101343955 | Jan 2009 | CN |
102051992 | May 2011 | CN |
51-129914 | Nov 1976 | JP |
54-002507 | Jan 1979 | JP |
58-123119 | Aug 1983 | JP |
05-180393 | Jul 1993 | JP |
2001-180793 | Jul 2001 | JP |
2002-276894 | Sep 2002 | JP |
2002276894 | Sep 2002 | JP |
2003-240197 | Aug 2003 | JP |
2010-106501 | May 2010 | JP |
59507 | Nov 1940 | SU |
Entry |
---|
Singapore Search Report and Written Opinion, dated May 19, 2015, issued in corresponding Singapore Patent Application No. 11201406811P. Total 21 pages. |
Chinese Office Action, dated Jun. 1, 2015, issued in corresponding Chinese Patent Application No. 201380020885.5. English translation of Search Report. Total 12 pages. |
International Search Report and Written Opinion dated May 7, 2013 in corresponding PCT International Application No. PCT/JP2013/055509. |
Number | Date | Country | |
---|---|---|---|
20150053692 A1 | Feb 2015 | US |