The present disclosure relates generally to refrigerant-based heat exchange systems, and more particularly to a refrigerant-to-air heat exchanger and an air-to-refrigerant heat exchanger with humidity control.
Freezer warehouses are known in which large pallets of items including meats, fruit, vegetables, prepared foods, and the like are frozen in blast rooms of a warehouse and then are moved to a storage part of the warehouse to be maintained at a controlled temperature until their removal.
Vapor compression type refrigeration systems are used for controlling temperature within conditioned spaces, and by their operation, can also impact humidity. In the residential context, such air conditioning systems may be used to cool the air of the living space to a temperature below the ambient temperature outside the residence. In industrial applications, refrigeration systems may be used to cool and condition the air within walk-in/drive-in coolers or freezers, such as for cooling and/or preservation of certain products as noted above.
Basic vapor compression refrigeration systems utilize a compressor, condenser, expansion valve and evaporator connected in serial fluid communication with one another forming an air conditioning or refrigeration circuit. A quantity of condensable refrigerant, such as R717 or R517 refrigerant commonly used in refrigeration systems, is circulated through the system at varying temperatures and pressures, and is allowed to absorb heat at one stage of the system (e.g., within the cooled, conditioned space), and to dissipate the absorbed heat at another system stage (e.g., to the ambient air outside the cooled conditioned space). In the basic vapor compression refrigeration system, the evaporator is located within the conditioned space. Warm fluid, typically in the form of a liquid, is fed to the expansion valve, where the liquid is allowed to expand into a cold mixed liquid-vapor state. This cold fluid is then fed to an evaporator within the conditioned space.
The evaporator acts as a heat exchanger to effect thermal transfer between the cold refrigerant and the relatively warmer air inside the conditioned space, so that heat transfer to the refrigerant from the conditioned space vaporizes the remaining liquid to create a superheated vapor, i.e., a vapor that is measurably above its phase change temperature. This superheated vapor is then fed to a compressor that is typically located outside the conditioned space. The compressor compresses the refrigerant from a low-pressure superheated vapor state to a high pressure superheated vapor state thereby increasing the temperature, enthalpy and pressure of the refrigerant.
This hot vapor-state refrigerant is then passed into the condenser, which is located outside the conditioned space and typically surrounded by ambient air. Because the compressor sufficiently raises the pressure of the refrigerant, the resulting condensing temperature of the vapor is measurably higher than the ambient conditions surrounding the condenser. This temperature differential enables the condenser to effect a transfer of heat from the refrigerant to the ambient air as the high pressure refrigerant is passed through the condenser's heat exchanger at a substantially constant pressure.
This heat transfer effects another phase change in the refrigerant, from a hot vapor state to a slightly subcooled liquid state. This high temperature, liquid-phase refrigerant flows from the condenser and to the expansion valve to begin the process again.
As cold vapor-phase refrigerant passes through the evaporator as discussed above, the removal of heat from the conditioned air passing through the evaporator heat exchanger may cause the air passing through the heat exchanger to be cooled to below its saturation temperature, sometimes also referred to as a “dew point.” This cooling causes moisture to precipitate out of the conditioned air, typically causing liquid or frost to form on the fins of the heat exchanger. In liquid form the condensed moisture will drip down into a catch pan or conduit where the liquid water can be withdrawn from the conditioned space. In the frozen state, the moisture can remain on the evaporator surfaces until a defrost cycle (or manual defrost) is able to melt the frost and enable it to drain out of the pan.
In this way, vapor compression type refrigeration systems are able to remove a certain amount of humidity from the conditioned space. The amount of humidity removed from the conditioned space is a function of the volume of air moved through the evaporator(s), the temperature differential between the refrigerant and the air as the air passes through the evaporator(s) and the relative humidity of the air (which is a driver of the dew-point temperature of the air). A greater temperature differential increases the amount of moisture that precipitates out of the conditioned air, thereby effecting greater dehumidification. Similarly, a greater volume of air moved through the evaporator and cooled to a given temperature can also effect greater dehumidification.
In some cases, the amount of humidity removable by the vapor compression system may not be adequate to compensate for the amount of humidity being introduced into the cooled space. In these instances, condensation and precipitation may occur within the cooled space, causing wetness, frost or snow to accumulate on surfaces and/or product within the cooled space.
Previously, desiccant systems have been used for humidity control in freezer spaces. These systems, such as the Munter Ice Dry system described in a reference described in a document submitted in an information disclosure statement on even date herewith, use desiccant which absorbs moisture from its surrounding environment. When the desiccant becomes saturated, it is heated to evaporate and remove the accumulated moisture. At this point, a new cycle begins in which the desiccant again absorbs moisture for later removal by heating. While this type of system may be effective at removing moisture from a cold-storage environment, its installation cost may be prohibitively expensive for some applications, and its energy-intensive operation also renders it costly to operate.
The present disclosure provides an augmented heat transfer system which can be used to control the humidity of adjacent conditioned spaces by selectively absorbing latent heat energy from a relatively warm space, such as a loading dock, and discharging this energy in the form of sensible heat to an adjacent relatively cold space, such as a freezer served by the loading dock. This transfer of sensible heat energy into the cold space induces a vapor compression system to remove sufficient moisture from the cold space to avoid uncontrolled precipitation. At the same time, the process of removing moisture/latent heat from the warm space can also be used to reduce humidity in the warm space via condensation on a cold evaporator. Therefore, in operations where the warm space and the cold space are both nominally sealed from ambient air, such as an indoor loading dock serving a freezer, the augmented heat transfer system can eliminate uncontrolled precipitation in the freezer while also mitigating moisture ingress to the freezer from the dock space.
According to an embodiment of the present disclosure, a humidity control system is configured for use in a first space having a first temperature and a second space adjacent to the first space having a second temperature greater than the first temperature. The humidity control system includes a heat exchanger configured to be operably interposed between the first space and the second space and operable to absorb latent heat from the second space and discharge sensible heat into the first space, and a controller programmed to selectively operate the heat exchanger to discharge sufficient sensible heat into the first space to maintain a humidity in the first space at or below a threshold humidity, whereby the controller prevents or mitigates uncontrolled precipitation within the first space.
According to another embodiment of the present disclosure, the humidity control system includes: a conditioned space that is selectively sealed from outside ambient air, the conditioned space having a first temperature; a dock space adjacent to the conditioned space having a second temperature that is greater than the first temperature, wherein the dock space is selectively sealed from outside ambient air; a heat exchange system functionally interposed between the conditioned space and the dock space, the heat exchange system including: an evaporator in the dock space; a condenser in the conditioned space and operably coupled to the evaporator; a first fan operably coupled to the condenser, the first fan positioned to induce heat to flow from the condenser into the conditioned space; a second fan operably coupled to the evaporator, the second fan positioned to induce heat to flow into the evaporator from the dock space; and a controller operably coupled to the first fan, the controller programmed to control the rate of heat discharge from the condenser into the conditioned space by selectively activating the first fan, the controller programmed to control the rate of heat absorption from the dock space into the evaporator by selectively activating the second fan.
According to yet another embodiment of the present disclosure, the humidity control system includes: a conditioned space that is selectively sealed from outside ambient air, the conditioned space having a first temperature; a dock space adjacent to the conditioned space having a second temperature that is greater than the first temperature, wherein the dock space is selectively sealed from outside ambient air; a heat exchange system functionally interposed between the conditioned space and the dock space, the heat exchange system including: a heat exchanger operably disposed between the dock space and the conditioned space; a first fan operably coupled to the heat exchanger, the first fan positioned to induce airflow from the dock space through the heat exchanger and back into the dock space; a second fan positioned at an interface of the conditioned space and the dock space, the second fan positioned to induce airflow from the conditioned space through the heat exchanger and back into the conditioned space; and a controller operably coupled to the first fan, the controller programmed to control the rate of heat discharge from the heat exchanger into the conditioned space by selectively activating the first fan, the controller programmed to control the rate of heat absorption from the dock space into the heat exchanger by selectively activating the second fan.
The above mentioned and other features and objects of this disclosure, and the manner of attaining them, will become more apparent and the disclosure itself will be better understood by reference to the following description of embodiments of the disclosure taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. Although the exemplifications set out herein illustrate embodiments of the disclosure, in several forms, the embodiments disclosed below are not intended to be exhaustive or to be construed as limiting the scope of the disclosure to the precise forms disclosed.
The present disclosure provides a heat exchange system 10, shown schematically in
1. Enclosed Freezer and Dock Space
Referring to
In the illustrated embodiment of
However, it is contemplated that other spatial arrangements for walls 108, ceiling 110, and roof 114 may be utilized as required or desired for a particular application, provided that conditioned space 12 is substantially thermally isolated from dock space 14, and that dock space 14 is substantially sealed from fluid exchange with ambient air 15.
In the context of the present disclosure, “substantially thermally isolated” means a space which is insulated and substantially sealed within reasonable practicable limits. For example, the substantial thermal isolation of conditioned space may mean that a temperature within conditioned space 12 can be maintained at a substantial differential (e.g., in excess of 50 degrees Fahrenheit) by activation of vapor compression system 90. A substantially thermally isolated space may be selectively thermally exposed by, e.g., a door which can be opened for ingress and egress but which remains generally shut during operation.
In the context of the present disclosure, “substantially sealed” means a space which experiences minimal fluid communication with surrounding ambient air within reasonable practicable limits. For example, dock space 14 may be a substantially sealed space such that the space experiences fewer than 2 air changes in a 24-hour period, e.g., the volume of air exchange with the ambient environment is less than or equal to twice the volume of dock space 14 over the course of one day. A substantially sealed space may experience selectively higher air exchange rates by, e.g., the opening of a door for ingress and egress which remains generally shut during operation.
2. Vapor Compression System
As shown in
System 90 utilizes a closed loop of fluid conduits joining the various system components and passing back and forth between conditioned space 12 and ambient air 15 across the insulated boundary B formed by ceiling 110 and/or walls 108. A quantity of refrigerant passes through the various fluid conduits 56, 66, 76, 86 and components 50, 60, 70, and 80 to absorb heat QV from conditioned space 12 and discharge the absorbed heat into ambient air 15 as described in detail below, thereby cooling the air in conditioned space 12 relative to the temperature of the ambient air 15.
More particularly, compressor 50 receives cool or cold refrigerant in a vapor state at compressor inlet 52, and elevates the pressure of this vapor. According to the ideal gas law, pv=nrt, the elevation of the pressure of the warm vapor at a constant volume and in a constant amount causes an related increase in vapor temperature, thus, superheated pressurized vapor is discharged from compressor 50 at compressor outlet 54 and into fluid conduit 56.
This hot vapor is delivered to condenser 60 at condenser inlet 62, which passes the hot pressurized vapor through a tortuous path in the manner of a traditional heat exchanger. Air is passed over this tortuous fluid path to effect heat transfer from the hot, superheated refrigerant vapor to ambient air 15. This airflow over the heat exchanging elements of condenser 60 may be enhanced and controlled by condenser fan 58, which is positioned and oriented to force a flow of ambient air 15 over the heat exchanging elements of condenser 60. Thus, condenser 60 exhausts heat from the hot vapor received at condenser inlet 62 and converts such hot vapor into hot liquid, which is discharged at condenser outlet 64 and into fluid conduit 66. The structure and arrangement of condenser 60, in cooperation with control over condenser fan 58, ensures that the liquid passing through conduit 66 is measurably sub-cooled, i.e., is at a pressure and temperature combination that would require non-trivial changes to enthalpy of the refrigerant to convert the liquid back to a vapor.
Upon exit from condenser 60, liquid refrigerant is delivered to expansion valve 70 via fluid conduit 66 attached to expansion valve inlet 72. Expansion valve 70 operates to decrease the pressure of the hot or warm liquid refrigerant received therein, converting the liquid refrigerant to a cool or cold vapor/liquid mix, which is discharged at expansion valve outlet 74 into fluid conduit 76. This cool vapor/liquid mix is delivered to evaporator 80 via fluid conduit 76, which is fluidly coupled to evaporator inlet 82.
Like condenser 60 described above, evaporator 80 operates as a heat exchanger between the refrigerant passing therethrough and the surrounding air of conditioned space 12. However, in this case, the fluid passing through evaporator 80 is colder than the air within the conditioned space 12. Thus, as air passes over the tortuous fluid conduit of the heat exchanger within evaporator 80, heat QV from conditioned space 12 is transferred to the refrigerant. This heat exchange process fully boils the liquid refrigerant inside the evaporator and further superheats the refrigerant, such that cool or cold vapor is discharged at evaporator outlet 84 and into fluid conduit 86. In an exemplary embodiment, evaporator fan 88 is selectively controllable to force air from conditioned space 12 over the tortuous fluid path of evaporator 80, thereby controlling the amount of heat transfer from conditioned space 12 to the cold refrigerant. The resulting warmed vapor-state refrigerant is then delivered via fluid conduit 86 to compressor inlet 52, and the cycle begins anew.
As the air passing over evaporator 80 is cooled by removal of sensible and latent heat QV, moisture may accumulate on the coils of evaporator 80. System 90 may be designed to evacuate such moisture in a liquid state and/or system 90 may include a defrost cycle known in the art for freezer vapor compression systems in order to liquefy any frozen accumulated moisture on evaporator 80, followed by evacuation of the liquid. In this way, evaporator 80 operates to dehumidify the air within conditioned space 12 during the process of removing sensible and latent heat QV. As further described herein, this dehumidification function of vapor compression system 90 can be leveraged by heat exchange system 10 to selectively control the relative humidity within conditioned space 12.
Referring still to
Moreover, controller 30 is also programmed to control the time and duration of activation of vapor compression system 90 by selectively activating compressor 50. When controller 30 activates compressor 50, refrigerant is circulated through system 90 to effect transfer of heat QV, while deactivation of compressor 50 avoids such heat transfer.
3. Latent and Sensible Heat Exchange and Humidity Reduction
As noted above, heat exchange system 10 is operable to control the relative humidity within conditioned space 12, while also efficiently dehumidifying dock space 14. In this way, heat exchange system 10 can be used in conjunction with controller 30 to avoid uncontrolled precipitation within conditioned space 12 by maintaining relative humidity below a threshold level, while also reducing introduction of new humidity from dock space 14 when door 112′ is opened. These tandem benefits may be achieved with minimal additional energy consumption, as detailed below.
In addition to the temperature signal from temperature sensor 33, controller 30 receives a signal indicative of the ambient relative humidity within conditioned space 12 from a first humidity sensor 32. Humidity sensor 32 measures relative humidity at one location within conditioned space 12, thereby giving an indication of the overall relative humidity throughout conditioned space 12. In some applications (e.g., larger warehouse spaces), it is contemplated that multiple humidity sensors 32 may be used at different locations within conditioned space for enhanced accuracy.
When controller 30 receives a signal from humidity sensor 32 indicating that the relative humidity within conditioned space 12 is above a preprogrammed threshold, controller 30 activates heat exchange system 10 to add sensible heat QF to conditioned space 12 while also removing latent heat QD from dock space 14, as further discussed below. This addition of sensible heat QF raises the temperature of conditioned space 12, inducing vapor compression system 90 to activate to lower the temperature. However, this increase in temperature within conditioned space 12 occurs without any concomitant introduction of humidity, and as vapor compression system 90 lowers the temperature, it simultaneously extracts humidity from the air within conditioned space 12. In this way, the addition of sensible heat QF to conditioned space 12 can be used in concert with vapor compression system 90 to selectively lower the humidity within conditioned space 12, with a direct correlation between addition of sensible heat QF and reduction of absolute (and, to the extent temperature remains constant, relative) humidity.
Heat exchange system 10 can also reduce the humidity of dock space 14, with the amount of humidity reduction selectively controllable via activation and/or speed control of fans 26, 28 by controller 30. In particular, as the operation of heat exchange system 10 removes primarily latent heat QD from dock space 14, at least a local area around evaporator 20 is cooled within dock space 14. This cooling may reduce the localized temperature of the dock space air to below its dew point, such that liquid moisture precipitates and collects on the coils of evaporator 20. As this liquid is generated and collected, a concomitant reduction of humidity within dock space 14 occurs. Thus, heat exchange system 10 can be used to simultaneously reduce the existing humidity of conditioned space 12 and of dock space 14, such that incoming humidity to conditioned space 12 from dock space 14 is reduced when door 112′ is opened for, e.g., ingress and egress of people, equipment and product (such as pallets P) to conditioned space 12.
Similar to humidity sensor 32 in conditioned space 12, humidity sensor 34 measures the relative humidity at a location within dock space 14, thereby giving an indication of the overall humidity throughout dock space 14. A signal is then issued from humidity sensor 34 to controller 30, which may use the signal to alter the operation of heat exchange system 10 as described below. In some instances, it is contemplated that multiple humidity sensors 34 may be used at different locations within dock space 14, similar to the use of multiple humidity sensors 32 as described above.
In an exemplary embodiment, controller 30 is programmed to avoid any uncontrolled precipitation within conditioned space 12 by maintaining the relative humidity of that space below saturation (i.e., 100% relative humidity) by a predetermined margin. Thus, controller 30 is programmed with a threshold relative humidity, above which controller 30 activates or increases the heat transfer via heat exchange system 10, with a corresponding activation of vapor compression system 90, in order to reduce the relative humidity below the threshold while maintaining a temperature set point within conditioned space 12. In one embodiment, for example, the threshold for relative humidity as measured by sensor 32 may be as low as 60%, 75% or 90%, and may be as high as 92%, 94% or 96%, or may be any humidity within any range defined by any pair of the foregoing nominal values.
When controller 30 receives a signal from humidity sensor 32 indicating that the relative humidity within conditioned space 12 and/or dock space 14 is above a pre-pre-programmed threshold, controller 30 activates (or increases the speed of) fans 26 and/or 28 to draw air through condenser 18 and/or evaporator 20, thereby inducing or increasing the absorption of latent heat QD from dock space 14 and corresponding discharge of sensible heat QF into conditioned space 12. This addition of sensible heat QF momentarily raises the temperature within conditioned space 12, thereby lowering the relative humidity and any further increases which might otherwise results in saturation and subsequent uncontrolled precipitation, e.g., in the form of frozen moisture (e.g., ice, “snow”, frost, etc.). The rising temperature within conditioned space 12 may also exceed a maximum-temperature threshold programmed into controller 30, such that controller 30 activates or increases the function of vapor compression system 90, which removes moisture from conditioned space 12 and also lowers the relative humidity.
When humidity sensor 32 indicates that the relative humidity of conditioned space 12 has fallen to or below the pre-programmed set point, controller 30 reduces the output of fans 26, 28 or stops fans 26, 28 in order to reduce or cease the transfer of sensible heat QF. In an exemplary embodiment, controller may be programmed to reduce the relative humidity to a point below the threshold by a predetermined amount, such as between 1-5% below the threshold. This allows heat exchange system 10 to remain completely deactivated for a period of time before reactivation, thereby avoiding excessive cycling of system 10. Alternatively, controller 30 can use a feedback loop and one or more variable-frequency drives (VFD) to modulate the speed of fan 26 and/or fan 28, such that the speed of fans increases or slows rate of discharge of sensible heat QF in proportion to a widening or narrowing difference, respectively, between the actual relative humidity as measured by sensor 32 and the programmed threshold. Where VFDs are employed, controller 30 may be programmed to slow the rate of discharge of sensible heat QF to zero as this temperature differential difference reaches zero, i.e., when the measured relative humidity equals the target or threshold relative humidity.
As noted herein, the absorption of latent heat QD can simultaneously reduce the humidity in dock space 14. In some applications of heat exchange system 10, this humidity level may also be monitored and/or controlled by controller 30, which can be programmed to compare a measured relative humidity and temperature within dock space by sensors 34, 35 respectively against a threshold or threshold range. For example, controller 30 may compute the absolute humidity within dock space 14 from the measured temperature and relative humidity, such that controller 30 can estimate the amount of expected moisture ingress to conditioned space 12 from dock space 14 resulting from the opening of door 112′ (
In some cases, controller 30 may be programmed to withstand a precipitation-triggering event, such as the opening of doors 112 and/or 112′ (
As discussed above, controller 30 can be programmed to operate dynamically and substantially autonomously based on the inputs received from any combination or permutation of humidity sensors 32, 34 and temperature sensors 33, 35. However, it is also contemplated that in alternate embodiments controller 30 can operate in accordance with a predetermined schedule such that controller 30 periodically sends signals to humidity sensors 32, 34 to determine the relative humidity within conditioned space 12 and dock space 14. Based on these periodic readings, controller 30 activates or de-activates heat exchange system 10 and/or vapor compression system 90 to control the relative humidity of conditioned space 12 and/or dock space 14. Moreover, heat exchange system 10 may be capable of maintaining a desired level of relative humidity within conditioned space 12 despite changing environmental conditions, such as varying ambient humidity with changing seasonal weather (e.g., in the summer, more sensible heat may be discharged into conditioned space 12 by system 10 in order to address higher amounts of incoming humidity, while less sensible heat discharge may be sufficient for precipitation-free winter operation).
In addition to maintaining a setpoint humidity as described above, controller 30 may also monitor and utilize the temperature of conditioned space 12 and/or dock space 14, as measured by temperature sensors 33, 35. For example, controller 30 may be programmed with a setpoint and/or threshold range of temperatures for dock space 14. When the temperature as measured by sensor 35 is above the setpoint or threshold, controller 30 may activate heat exchange system 10 in order to remove latent heat QD from dock space 14 and thereby lower the temperature to the desired temperature or temperature range. Conversely, when the temperature as measured by sensor 35 is below the setpoint or threshold, controller 30 may prevent activation of heat exchange system 10 to avoid any further lowering of the temperature.
The provision and operation of heat exchange system 10 in connection with a conditioned space 12 served by a vapor compression system 90, together with an adjacent dock space 14 which is also sealed from the ambient air, facilitates system performance and control which can be leveraged in the context of, e.g., industrial freezing and storage systems. As described in detail herein, humidity control within conditioned space 12 can be leveraged to avoid uncontrolled precipitation resulting from a high moisture load. For example, when a barrier located at interface 16 (e.g., door 112′ in
This avoidance of uncontrolled precipitation also protects evaporator 80 of vapor compression system 90 from becoming frequently “iced” or otherwise needing to be defrosted, which in turn preserves the proper and efficient function of evaporator 80 by ensuring proper air flow through the coil and preventing resistance to heat transfer between the air within conditioned space 12 and the refrigerant of vapor compression system 90. This leads to longer run times of vapor compression system 90 between defrost cycles, resulting in a substantial reduction in energy consumption and associated lower operating costs.
Moreover, heat exchange system 10 may be particularly useful in otherwise highly efficient freezer spaces, which may be super-insulated and/or use efficient, low-wattage lighting (as further described below). In such efficient conditioned spaces 12, vapor compression system 90 may operate too infrequently to remove significant amounts of moisture, leading to potential saturation of the air within conditioned space 12 in conditions that might not pose an issue in less-efficient freezer spaces. Heat exchange system 10 can ensure moisture removal in the right amount for any freezer space used in virtually any manner, including for such highly efficient freezer spaces.
For purposes of the present disclosure, heat exchange system 10 refers to any heat exchange system which is operable to selectively absorb latent heat QD from dock space 14 and discharge sensible heat QF into conditioned space 12. Exemplary heat exchange systems 10 are described in detail below as heat exchange systems 10A, 10B and 10C, with reference to
Each of heat exchange systems 10A, 10B and 10C, shown in
Turning now to
The liquid refrigerant is allowed to flow downwardly through fluid conduit 21 toward dock space 14, where it is received in evaporator 20. This liquid refrigerant was cooled by condenser 18 to a temperature below the temperature within dock space 14, such that the refrigerant absorbs primarily latent heat QD from dock space 14 (e.g., via fan 28) as it passes through evaporator 20, which evaporates the refrigerant into a warm vaporized refrigerant that is allowed to drive upwardly through conduit 19 back to condenser 18. To the extent that the coils of evaporator 20 are cooled below the dew point of the air in dock space 14, moisture from dock space 14 collects on evaporator 20 and is allowed to flows downwardly through drain tube 24 under the force of gravity. This moisture may be collected and evacuated from dock space 14, thereby dehumidifying the air within dock space 14.
The positioning of condenser 18 higher than evaporator 20 in heat exchange system 10A allows the above-described heat exchange to operate without a compressor, because this configuration permits gravity-driven movement of refrigerant within fluid conduits 19, 21 of heat exchange system 10A. Moreover, to the extent that system 10A requires electrical power at all, such power is used only by fans 26 and/or 28, which can operate reliably over a long service life with minimal electrical draw. By not requiring any additional power components, heat exchange system 10A facilitates these heat exchange operations with low operating and maintenance costs.
In the illustrative embodiment of
An alternative configuration of heat exchange system 10A shown in
Referring now to
Heat exchange system 10B operates to control the humidity of both conditioned space 12 and dock space 14 similar to the heat exchange system 10A of
This air-to-air heat transfer results in warmer air exiting heat exchanger 36 into exhaust conduit 39, and back to conditioned space 12. In this way, sensible heat QF is discharged into conditioned space 12, thereby providing similar benefits related to humidity reduction as described above with respect to heat exchange system 10 of
Similar to heat exchange system 10A of
Heat exchange system 10B also benefits from low power requirements and mechanical simplicity, since its only powered components are fans 38 and 40. In addition, it lacks any fluid conduit or closed-loop refrigerant system, further simplifying its setup and operational costs.
Referring now to
When exposed to a temperature differential (e.g., the temperature differential between conditioned space 12 and dock space 14), volatile refrigerant contained within in the tubes cycle between evaporation and condensation, thereby effectively transferring heat between the condenser and evaporator sides 42, 44. In other words, latent or sensible heat QD is removed from dock space 14 as it enters through evaporator side 44, and is transferred to the refrigerant contained within the coils. In an exemplary embodiment, convective and/or forced air flows across evaporator side 44 may facilitate this heat transfer, as illustrated. The refrigerant then moves from the evaporator side 44 to the condenser side 42 where sensible heat QF is released into conditioned space 12, again by air flow over the condenser side 42 as shown. In this way, the temperature within conditioned space 12 increases without increasing the relative humidity. Additionally, the latent heat removed from dock space 14 effectively reduces the humidity within dock space 14 as described in detail with respect to systems 10A, 10B above.
In some applications of system 10C, it may still be desirable to include fan 26 operating on condenser side 42, in order to increase and/or control the amount of sensible heat QF discharged into conditioned space 12. Similarly, fan 28 may be provided to operate on evaporator side 44, in order to increase and/or control the amount of latent heat QD absorbed from dock space 14.
4. Retrofit Systems
It is contemplated that heat exchange system 10 may be integrated to new cooler/freezer system installations, or alternatively, may be added to pre-existing cooler/freezer systems as needed to address moisture issues. For example, in existing freezer systems which are retrofitted to increase efficiency, e.g., by adding insulation, tightening air sealing, or using more efficient lighting such as light-emitting diode (LED) based lighting, the new efficiency may change the moisture-removal characteristics of the existing vapor compression system (as noted above).
In such retrofitted systems, heat exchange system 10 may also be added to account for the changed moisture characteristics and control any uncontrolled precipitation which may otherwise occur in a newly-efficient freezer space. In effect, heat exchange system 10 can be used to “replace” sensible heat which might otherwise have been discharged by less-efficient lighting or insulation. However, heat exchange system 10 adds sensible heat QF only to the extent necessary to avoid moisture precipitation, as described above, such that the efficiency gains may still be realized to the fullest extent possible given the moisture conditions present. Moreover, to the extent that the adjacent dock space 14 is sealed, heat exchange system 10 reduces the incoming moisture to conditioned space 12, such that the moisture conditions themselves are also at least partially controlled by the use of heat exchange system 10.
In one exemplary retrofit arrangement, heat exchangers 18 and 20 (
While this disclosure has been described as having exemplary designs, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this disclosure pertains and which fall within the limits of the appended claims.
This application claims the benefit under Title 35, U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 62/623,103, filed Jan. 29, 2018 and U.S. Provisional Patent Application Ser. No. 62/624,161, filed Jan. 31, 2018, both entitled FREEZER DEHUMIDIFICATION SYSTEM, the entire disclosures of which are hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4827733 | Dinh | May 1989 | A |
5269151 | Dinh | Dec 1993 | A |
5586441 | Wilson et al. | Dec 1996 | A |
5669222 | Jaster et al. | Sep 1997 | A |
7000414 | Lee et al. | Feb 2006 | B2 |
7886983 | Criss et al. | Feb 2011 | B2 |
8196425 | Popov | Jun 2012 | B2 |
9784490 | Tippmann | Oct 2017 | B2 |
20080102744 | Moore et al. | May 2008 | A1 |
20100231100 | Kato et al. | Sep 2010 | A1 |
20110225994 | Fotiadis et al. | Sep 2011 | A1 |
20110232873 | Seki | Sep 2011 | A1 |
20110302939 | Rockenfeller et al. | Dec 2011 | A1 |
20140260383 | Tippmann | Sep 2014 | A1 |
20150013354 | Ramirez et al. | Jan 2015 | A1 |
20150377540 | Jo | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
0760452 | May 1997 | EP |
H05223440 | Aug 1993 | JP |
H10329536 | Dec 1998 | JP |
2004233034 | Aug 2004 | JP |
20060015976 | Feb 2006 | KR |
Entry |
---|
Choi, “Power saving dehumidifying operation method of air conditioner” 2003, Full Document (Year: 2011). |
Heat Pipe Technology for Greater Efficiency; Colmac Coil Manufacturing Inc. 4 pages. |
IceDry; A Guide to Conditioned Cold Stores, Munters—Your Perfect Climate. 8 pages. |
Frost, On Air-Cooling Evaporators, By Douglas T. Reindl, Ph.D, P.E., & Todd B. Jekel, Ph.D, P.E., published in ASHRAE Journal, Feb. 2009. 7 pages. |
Number | Date | Country | |
---|---|---|---|
20190234677 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62624161 | Jan 2018 | US | |
62623103 | Jan 2018 | US |