Information
-
Patent Grant
-
6360552
-
Patent Number
6,360,552
-
Date Filed
Thursday, October 19, 200024 years ago
-
Date Issued
Tuesday, March 26, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
-
CPC
-
US Classifications
Field of Search
US
- 062 199
- 062 200
- 062 500
- 062 513
-
International Classifications
-
Abstract
The present invention relates to a freezing system having two vaporizers for a refrigerator constructed as a single-loop cycle which is capable of using a genuine coolant as well as a mixed coolant by providing the coolant to a compressor after mixing the each coolant passed through a freezing chamber vaporizer and a chilling chamber vaporizer and heightening the pressure. The present invention comprises a compressor, a condenser for condensing the coolant compressed at the compressor, a freezing chamber expanding mean and a chilling chamber expanding mean for depressing the condensed coolant as a first pressure and a second pressure, a freezing chamber vaporizer and a chilling chamber vaporizer for cooling the air to be provided to the freezing chamber and chilling chamber as a first temperature and a second temperature by vaporizing the coolant expanded at the freezing chamber expanding mean and chilling chamber expanding mean, and an ejector for providing the coolant to the compressor after mixing the each coolant passed through the freezing chamber vaporizer and chilling chamber vaporizer and heightening the pressure.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a freezing system having two vaporizers for a refrigerator, in particular to a freezing system having two vaporizers for a refrigerator which is capable of providing a coolant to a compressor after mixing the each coolant passed through a freezing chamber vaporizer and a chilling chamber vaporizer and heightening the pressure.
2. Description of the Prior Art
As depicted in
FIG. 1
, the conventional freezing system for a refrigerator comprises a compressor
1
for converting a coolant into high temperature and high pressure vapor state by compressing the coolant, a condenser
2
for condensing the high temperature and high pressure vapor state coolant passed through the compressor
1
into a high pressure liquid state and at the same time rising a temperature of the surrounding air by performing the heat-exchange with the surrounding air, an expanding unit
4
for decompressing the high pressure liquid state coolant passed through the condenser
2
in order to vaporize easily, and a vaporizer
5
for converting the coolant passed through the expanding unit
4
into a low temperature and low pressure vapor state and at the same time lowering the temperature of the surrounding air by performing the heat-exchange with the surrounding air.
The compressor
1
and condenser
2
are installed on a machine room (not shown) of the refrigerator, a radiating fan
3
for radiating the condenser
2
and a motor
7
for providing a power to the radiating fan
3
are installed on the side of the condenser
2
In addition, the vaporizer
5
is installed on the rear side of a freezing chamber
8
of the refrigerator, and provides the cooling air to the freezing chamber
8
and a chilling chamber
9
, a freezing fan
6
for absorbing the heat of the vaporizer
5
and a motor
10
for providing the power to the freezing fan
6
are installed on the side of the vaporizer
5
.
The operation and effect of the freezing system of the conventional refrigerator will now be described with reference to accompanying FIG.
2
.
First, a low temperature and low pressure state coolant a is converted into a high temperature and high pressure vapor state coolant b by being compressed by the compressor
1
, and is soaked into the condenser
2
, the condenser
2
changes the high temperature and high pressure vapor state coolant b into high temperature and high pressure liquid state c or of by releasing the heat continually.
A certain part of the coolant condensed by the condenser
2
is expanded as isenthalpic by being decompressed while passing through the expanding unit
4
, and is changed into a quarter-phase state d mixed with the liquid and gas
After that, the coolant soaked into the vaporizer
5
totally vaporizes, is changed into the low temperature and low pressure state a or ag, and cools the surroundings by taking the heat of the surroundings during the vaporization.
The air cooled by the vaporizer
5
flows into the freezing chamber
8
and chilling chamber
9
through a cooling air duct (not shown) and a flow regulator (not shown), accordingly the each temperature of the freezing chamber
8
and chilling chamber
9
is stably kept as −18° C. and 4° C.
However, the conventional freezing system of the refrigerator cools the freezing chamber and chilling chamber as different temperature with only one vaporizer installed on the rear side of the freezing chamber, accordingly the energy efficiency of the refrigerator lowers because compression work of the compressor increases by the increase of the pressure difference between the vaporizer and condenser by setting the evaporating pressure of the coolant in the vaporizer according to the saturation temperature of the freezing chamber lower than the temperature of the chilling chamber.
In addition, in the conventional freezing system of the refrigerator, while the air cooled by the vaporizer is separately provided to the freezing chamber and chilling chamber, the air of the freezing chamber and chilling chamber can be mixed each other, moisture and food odor of the chilling chamber can flow into the freezing chamber, accordingly amenity of the refrigerator lowers.
In addition, in the conventional freezing system of the refrigerator, because of the moisture flowed from the chilling chamber a frost layer is formed on the surface of the vaporizer having very low temperature, accordingly the heat transmission efficiency of the vaporizer lowers, and at the same time air volume passing through the vaporizer decreases.
In addition, in the conventional freezing system of the refrigerator, a defrost system using an electronic heater is required in order to remove the frost layer formed on the surface of the vaporizer, the electronic heater consumes about 5˜10% of the total electric consumption, accordingly the system efficiency lowers.
In the meantime, in order to solve the above-mentioned problems, the freezing system having the two vaporizers is developed.
There are different types of the freezing system having the two vaporizer, among them a dual-loop cycle and a single-loop cycle can be represented.
The dual-loop cycle comprises independent two freezing cycles having each different vaporizing temperature, it is good for the energy efficiency because the compression work of the compressor decreases drastically by reducing the pressure difference of the condenser by generating the high evaporating pressure, but it has to use the two compressors and two vaporizers, accordingly its usefulness lowers due to the increase of the supplementary expense.
The single-loop cycle can be represented as a Lorentz-Meutzner cycle which uses one compressor and two vaporizers, it does not have the efficiency lowering problem due to the increase of the supplementary expense because only one vaporizer is additionally installed, however a mixed coolant is required for this type, accordingly the usable mixed coolant has to be developed first, and can be provided cheaply.
SUMMARY OF THE INVENTION
The object of the present invention is to provide a freezing system having two vaporizers for a refrigerator which is capable of maximizing the energy efficiency with minimum supplementary expense by constructing a single-loop cycle usable with a genuine coolant as well as a mixed coolant by providing a coolant to a compressor after mixing the coolant separately passed through a freezing chamber vaporizer and a chilling chamber vaporizer through an ejector and heightening the pressure.
In order to achieve the above-mentioned object, the present invention comprises a compressor for compressing the coolant, a condenser for condensing the coolant compressed at the compressor, an expanding mean for the freezing chamber for depressing the coolant condensed at the condenser as a second pressure, an expanding mean for the chilling chamber for depressing the coolant condensed at the condenser as a second pressure, a vaporizer for the freezing chamber for cooling the air to be provided to the freezing chamber as a first temperature by vaporizing the coolant expanded at the expanding mean for the freezing chamber, a vaporizer for the chilling chamber for cooling the air to be provided to the chilling chamber as a second temperature by vaporizing the coolant expanded at the expanding mean for the chilling chamber, and an ejector for providing the coolant to the compressor after mixing the coolant passed through the vaporizer for the freezing chamber and vaporizer for the chilling chamber and compressing it.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a schematic block diagram illustrating the conventional freezing system of a refrigerator.
FIG. 2
is a graph illustrating a pressure-enthalpy chart of the conventional freezing system.
FIG. 3
is a block diagram illustrating a freezing system having two vaporizers for a refrigerator according to the first embodiment of the present invention.
FIG. 4
is a graph illustrating the pressure-enthalpy chart of the freezing system according to the present invention.
FIG. 5
is a block diagram illustrating the freezing system of the refrigerator according to the second embodiment of the present invention.
FIG. 6
is a block diagram illustrating the freezing system of the refrigerator according to the third embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Hereinafter, the preferred embodiments of a freezing system of a refrigerator according to the present invention will now be described with reference to accompanying drawings.
Parts overlapping with the construction parts of
FIG. 1
will be described with the same reference numerals.
The present invention can be embodied many ways, hereinafter the preferred embodiments will now be described.
The object, character, and effects of the present invention will be better understood with the preferred embodiments.
As depicted in
FIG. 3
, the first embodiment of the freezing system of the refrigerator according to the present invention comprises a compressor
51
for compressing the coolant, a condenser
53
for condensing the coolant compressed at the compressor
51
, a freezing chamber expanding mean
56
for decompressing the coolant condensed at the condenser
53
as a first pressure, a chilling chamber expanding mean
58
for decompressing the coolant condensed at the condenser
53
as a second pressure, a freezing chamber vaporizer
61
for cooling the air to be provided to the freezing chamber
8
as a first temperature by vaporizing the coolant expanded at the freezing chamber expanding mean
56
, a chilling chamber vaporizer
63
for cooling the air to be provided to the chilling chamber
9
as a second temperature by vaporizing the coolant expanded at the chilling chamber expanding mean
58
, and an ejector
65
for providing the coolant to the compressor
51
after mixing the each coolant passed through the freezing chamber vaporizer
61
and chilling chamber vaporizer
63
and heightening the pressure.
Herein, the freezing chamber expanding mean
56
and chilling chamber expanding mean
58
is separately constructed as an electron expansion valve
57
,
59
in order to adjust the flow quantity of the coolant flowed from the condenser
53
to the freezing chamber vaporizer
61
and chilling chamber vaporizer
63
.
Meanwhile, a radiating fan (not shown) for releasing the heat of the condenser
53
is installed on the side of the condenser
53
, each heat absorption fan (not shown) for absorbing the heat of the each vaporizer
61
,
63
is separately installed on the side of the freezing chamber vaporizer
61
and chilling chamber vaporizer
63
, and a motor (not shown) for providing the power is connectedly installed on the radiating fan and heat absorption fan.
The freezing system of the refrigerator according to the present invention will now be described with reference to FIG.
4
.
First, a low temperature and low pressure state coolant a is compressed by the compressor
1
, is changed into the high temperature and high pressure vapor state b, is flowed into the condenser
53
, and the coolant b is changed into a normal temperature and high pressure liquid state c by releasing the heat at the condenser
53
.
After that, the quantity of the coolant passed through the condenser
53
is determined according to the load set on the freezing chamber
8
and chilling chamber
9
, and is separately flowed into the freezing chamber expanding mean
56
and chilling chamber expanding mean
58
.
Herein, the freezing chamber expanding mean
56
and chilling chamber expanding mean
58
adjust the flow quantity of the coolant corresponding to the load of the freezing chamber
8
and chilling chamber
9
in order to provide the appropriate quantity of the coolant to the freezing chamber vaporizer
61
and chilling chamber vaporizer
63
.
After that, the coolant passed through the freezing chamber expanding mean
56
is depressed as a first pressure state d
1
, the coolant passed through the chilling chamber expanding mean
58
is depressed as a second pressure d
2
, the coolant is expanded as the isenthalpic while passing the freezing chamber expanding mean
56
and chilling chamber expanding mean
58
, and the coolant is changed into a two-phase state mixed with the liquid and gas.
The coolant passed through the freezing chamber expanding mean
56
and chilling chamber expanding mean
58
is changed into the low temperature and low pressure state coolant e
1
, e
2
while it is totally vaporized after being separately flowed into the freezing chamber vaporizer
61
and chilling chamber vaporizer
63
, and the coolant cools the surrounding air as the first temperature and second temperature by absorbing the surrounding heat.
The air cooled as the set temperature by the freezing chamber vaporizer
61
and chilling chamber vaporizer
63
is separately provided to the freezing chamber
8
and chilling chamber
9
through a cooling air duct (not shown) and a flow regulator (not shown).
Herein, flow channels of the cooling air provided to the freezing chamber
8
by the freezing chamber vaporizer
61
and cooling air provided to the chilling chamber
9
by the chilling chamber vaporizer
63
are divided, accordingly the cooling air of the freezing chamber
8
and chilling chamber
9
can not be mixed.
After that, the pressure of the low temperature and low pressure gas state coolant passed through the freezing chamber vaporizer
61
and chilling chamber vaporizer
63
heightens by being flowed into the ejector
65
and being mixed together, the coolant compressed by the ejector
65
is flowed into the compressor
51
, and above process is performed repeatedly.
A non-described reference numeral
52
is an oil-separator installed between the compressor
51
and condenser
53
for separating the oil from the coolant in order to make the only coolant flow into the condenser
53
, the reference numeral
54
and
55
are driers separately installed on the coolant outlet of the condenser
53
for removing the moisture included in the coolant, and a receiver for adjusting the flow quantity of the coolant according to the load of the freezing chamber
8
and chilling chamber
9
.
In addition, a reference numeral
68
is an accumulator installed on the coolant inlet of the compressor
51
for separating the gas state coolant and liquid state coolant in order to get only the gas state coolant be flowed into the compressor
51
, and a reference numeral
69
is a strainer installed on the coolant inlet of the compressor
51
for removing impurities included in the coolant.
Meanwhile, as depicted in
FIG. 5
, in the second embodiment of the present invention, the freezing chamber expanding mean
56
and chilling chamber expanding mean
58
comprises a plurality of capillary tubes
57
a,
57
b,
57
c,
59
a,
59
b,
59
c.
The number of the capillary tube is illustrated as three per each expanding mean in
FIG. 5
, but it can be changed variously.
The each capillary tubes
57
a,
57
b,
57
c,
59
a,
59
b,
59
c
comprised in the expanding means
56
,
58
is separately diverged in order to change the flow channel of the coolant in accordance with the each load set on the freezing chamber
8
and chilling chamber
9
, orifices can be used on the behalf of the capillary tubes in the modification of the present invention.
The each expanding mean
56
,
58
comprising the plurality of the capillary tubes
57
a,
57
b,
57
c,
59
a,
59
b,
59
c
can change the flow channel of the coolant in accordance with the load of the freezing chamber
8
and chilling chamber
9
because of the plurality of the capillary tubes can be separately diverged.
Meanwhile, as depicted in
FIG. 6
, in the third embodiment of the present invention, a pre-heater
67
is installed between the ejector
65
and compressor
51
in order to rise the temperature of the coolant before the coolant is flowed into the compressor
51
.
Herein, the pre-heater
67
heats the coolant passed through the ejector
65
by performing the heat-exchange of the low temperature coolant passed through the ejector
65
with the high temperature coolant passed through the vaporizer
53
.
As described above, when the heat-exchange is performed between the coolant passed through the condenser
53
and the coolant passed through the ejector
65
by the pre-heater
67
, the coolant passed through the condenser
53
is overcooled and is flowed into the each expanding mean
56
,
58
, the coolant passed through the ejector
65
is overheated and is flowed into the compressor
51
, accordingly the pre-cooler
67
can largely help to improve the energy efficiency of the freezing system.
As described above, the freezing system having the two vaporizers for the refrigerator according to the present invention is capable of maximizing the energy efficiency with the minimum supplementary expense by constructing the single-loop cycle adaptable to the genuine coolant by providing the coolant to the compressor after mixing the coolant passed through the freezing chamber vaporizer and chilling chamber vaporizer through the ejector and heightening the pressure.
As the present invention may be embodied in several forms without departing from the spirit or essential characteristics thereof, it should also be understood that the above-described embodiments are not limited by any of the details of the foregoing description, unless otherwise specified, but rather should be constructed broadly within its sprit and scope as defined in the appended claims, and therefore all changes and modifications that fall within the meets and bounds of the claims, or equivalence of such meets and bounds are therefore intended to be embraced by the appended claims.
Claims
- 1. A freezing system having two vaporizers for a refrigerator, comprising:a compressor for compressing a coolant, a condenser for condensing the coolant compressed at the compressor, a freezing chamber expanding mean for decompressing the coolant condensed at the condenser as a first pressure, a chilling chamber expanding mean for decompressing the coolant condensed at the condenser as a second pressure, a freezing chamber vaporizer for cooling the air to be provided to a freezing chamber as a first temperature by vaporizing the coolant expanded at the freezing chamber expanding mean, a chilling chamber vaporizer for cooling the air to be provided to a chilling chamber as a second temperature by vaporizing the coolant expanded at the chilling chamber expanding mean; and an ejector for providing the coolant to the compressor after mixing the each coolant passed through the freezing chamber vaporizer and chilling chamber vaporizer and heightening the pressure; wherein the freezing and chilling vaporizers further comprise a pre-heater installed between the ejector and compressor.
- 2. The freezing system having the two vaporizers for the refrigerator according to claim 1, wherein the freezing chamber expanding mean and chilling chamber expanding mean are electronic expansion valves.
- 3. The freezing system having the two vaporizers for the refrigerator according to claim 1, wherein the freezing chamber expanding mean and chilling chamber expanding mean separately comprise a plurality of capillary tubes.
- 4. The freezing system having the two vaporizers for the refrigerator according to claim 1, wherein the freezing chamber expanding mean is constructed as the electronic expansion valve, and the chilling chamber expanding mean is constructed as the plurality of the capillary tubes.
- 5. The freezing system having the two vaporizers for the refrigerator according to claim 1, wherein the freezing chamber expanding mean is constructed as the plurality of capillary tubes, and the chilling chamber expanding mean is constructed as the electronic expansion valve.
- 6. The freezing system having the two vaporizers for the refrigerator according to claim 1, wherein the pre-heater performs the heat exchange between the low temperature coolant passed through the ejector and high temperature coolant passed through the condenser.
Priority Claims (1)
Number |
Date |
Country |
Kind |
99/45377 |
Oct 1999 |
KR |
|
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
2513361 |
Rausch |
Jul 1950 |
A |
5444987 |
Alsenz |
Aug 1995 |
A |