The present application claims priority from Russian Application No. 2 669 902, filed Dec. 14, 2017, the disclosure of which is incorporated herein by reference.
The invention relates to railway transport and may be used in truck bolster designs.
A freight car truck bolster is disclosed containing a top member with a center bowl and support shelves for side bearers, a bottom member with bearing surfaces for swing suspension springing elements, going into diagonal tension members, two side walls joining the top and bottom members, pockets to install friction wedges on the bolster end parts, each of them being formed by a sloping and two vertical walls (see US 20040031413 A1, publ. 02.19.2004).
A reinforced railway bolster is disclosed containing a top member with a center bowl, a bottom member, two side walls joining the top and the bot tom members, two vertical longitudinal ribs of constant thickness connected with the top and bottom members, and two horizontal longitudinal ribs located between the vertical longitudinal ribs above and below across the center bowl width (see US 3482531 A, publ. 12.09.1969).
A freight car truck bolster is also disclosed, selected as the closest prior art, containing a top member implemented with a center bowl and support shelves for side bearers, a bottom member implemented with bearing surfaces for swing suspension springing elements, going into diagonal tension members, side walls joining the top and bottom members, two vertical ribs located across the entire bolster width between the top and bottom members, pockets to install friction wedges on the bolster end parts, each of them being formed by one sloping and two vertical walls, made with rounded transitions into the bottom member, while the bottom member being implemented with constant thickness in the transition areas of the bearing surfaces into the diagonal tension members, and the vertical ribs being implemented with their thickness increased in the horizontal direction towards the bolster center, in the area under the center bowl (see RU 118275 U1, publ. 07.20.2012).
A technical problem, which cannot be solved when the prior arrangements are used, is the insufficient bearing capacity of bolsters not providing strength in the stress raiser formation areas. Such areas of the bolster are the transition areas, where the bearing surfaces for swing suspension springing elements go into the diagonal tension members, which (the transition areas) are located under the side bearers, and where breakages in the bolster cross-section are observed. Another area of increased stress is the center bowl area below the bolster bottom member experiencing increased operating loads. Stress raiser areas are also the sites where the friction wedge pockets are located, in central portions of which the bolsters are particularly weakened and susceptible to the formation of transverse cracks and breakages.
The technical result achieved when using the invention is strengthening of the freight car truck bolster.
The technical result is achieved by the fact that the freight car truck bolster, similarly to the closest prior art, contains a top member implemented with a center bowl and support shelves for side bearers, a bottom member implemented with bearing surfaces for swing suspension springing elements on the end parts, going into diagonal tension members, side walls joining the top and bottom members, vertical longitudinal ribs located between the top and bottom members and implemented with their thickness increased in the center bowl area, pockets to install friction wedges on the bolster end parts, each of them being formed by one sloping and two vertical walls, while the sloping and vertical wall transitions into the bottom member bearing surfaces inside the bolster are made rounded. As distinct from the closest prior art, the bottom member is implemented with its thickness increased in the transition areas of the bearing surfaces into the diagonal tension members, in addition, the vertical ribs are implemented with their thickness increased at the top of the center bowl area, the rounded transitions of the sloping walls into the bottom member bearing surfaces are implemented with a radius exceeding the radius of the rounded transitions of the vertical walls into the said bearing surfaces.
In specific bolster implementations, the bottom member is made with increased thickness of the bearing surfaces, equaling 15-25 mm, and that of the diagonal tension members, equaling 20-30 mm, to the thickness in the transition areas of the bearing surfaces into the diagonal tension members, equaling 30-40 mm.
In specific bolster implementations, the vertical longitudinal ribs are made with their thickness increased in the horizontal direction from 10-20 mm on the bolster end parts to 20-30 mm in the center bowl area and with their thickness increased in the vertical direction from 20-30 mm at the bottom of the center bowl area to 30- 40 mm at the top of the center bowl area.
In specific bolster implementations, the rounded transitions into the bottom member of the sloping walls and of the pocket vertical walls are made with radiuses R1 and R2 equaling 30-50 mm and 10-20 mm, respectively.
The invention is shown on the drawings as follows:
The freight car truck bolster (
Top member 1 of the bolster is implemented with cylindrical center bowl 1.1 in the central part and with support shelves 1.2 for side bearers in the bolster end parts. Cylindrical center bowl 1.1 is implemented with circular stop collar 1.1.1 and flat bearing surface 1.1.2.
Bottom member 2 of the bolster is implemented with bearing surfaces 2.1 for swing suspension springing elements, going into diagonal tension members 2.2 via areas 2.3. Thickness s.2.1 of bearing surfaces 2.1 is 15-25 mm, thickness s2.2 of diagonal tension members 2.2 is 20-30 mm, thickness s2.3 of areas 2.3 is 30-40 mm (
Between top 1 and bottom 2 members two vertical longitudinal ribs 4 are implemented, parallel to each other over the bolster length between areas 2.3 and going into one rib above bearing surfaces 2.1. Ribs 4 have variable thickness increased in the horizontal direction in the area of center bowl 1.1, consistent with the increase of thickness from s4 to s4′ and to s4″. Ribs 4 have variable thickness increased also in the vertical direction from the bot tom to top of the center bowl 1.1 area with the increase of thickness from s4′ and to s4″. Vertical longitudinal ribs 4 (
In each end part of the bolster, two pockets 5 to install friction wedges are implemented (
The proposed values of bottom member 2 thickness s2 increase, vertical longitudinal ribs 4 thickness s4 increase and of the vertical wall rounded transitions into pockets 5 bearing surfaces radii R are calculated using the correct-by-construction design method.
The freight car truck bolster operates as follows.
The forces from freight car body act on the bolster through center bowl 1.1 and support shelves 1.2 for side bearers. From the bolster, the load on the truck side frames is transmitted through bearing surfaces 2. 1 for swing suspension springing elements. The said sections of the bolster, as areas of stress raiser formation, are reinforced using the proposed design solutions allowing increasing the freight car truck bolster bearing capacity and its strength.
Number | Date | Country | Kind |
---|---|---|---|
2669902 | Dec 2017 | RU | national |