The disclosed technology relates to frequency/wavelength conversion of non-ionising electromagnetic radiation, and in particular to a frequency conversion device, a frequency conversion process, and a process for producing a frequency conversion device.
There are many applications that require or at least benefit from the conversion of non-ionising electromagnetic radiation from one frequency/wavelength to a different frequency/wavelength, including imaging and detection applications. For example, night vision and thermal imaging devices are able to generate images in the visible light region from ambient or artificial radiation in the infrared region. However, despite the advantageous capabilities of existing frequency/wavelength conversion devices, there is a need to improve their performance. For applications including night vision equipment, there is a need to reduce bulkiness.
The innovations described in the claims each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of the claims, some prominent features of this disclosure will now be briefly described.
One aspect is a frequency conversion device. The frequency conversion device includes an array of mutually spaced semiconductor islands formed of at least one III-V semiconductor compound and configured so that electromagnetic radiation of a first wavelength incident upon the semiconductor islands causes them to emit electromagnetic radiation of a second wavelength shorter than the first wavelength by a nonlinear frequency conversion process. The frequency device further includes a transparent support that supports the semiconductor islands. The transparent support is substantially transparent to radiation of the second wavelength. At least the radiation of the second wavelength passes through the transparent support.
In some embodiments, the semiconductor islands are at least partially embedded in the transparent support. In some embodiments, the transparent support includes a transparent substrate attached to a layer of a transparent material in which the semiconductor islands are at least partially embedded. In some embodiments, the transparent substrate and the transparent material are both substantially transparent to radiation of the first wavelength and to radiation of the second wavelength.
In some embodiments, the refractive index of the transparent substrate is equal to or approximately equal to the refractive index of the transparent material. In some embodiments, the refractive index of the transparent substrate is different to the refractive index of the transparent material. In some embodiments, the transparent substrate is a glass and the transparent material is a polymer.
In some embodiments, the radiation of the second wavelength is simultaneously emitted in a forward direction and a backward direction relative to the direction of incidence of the radiation of the first wavelength. The semiconductor islands may be configured to support Mie resonances at the first and/or second wavelengths.
In some embodiments, the radiation of the first wavelength is infrared radiation, and the radiation of the second wavelength is visible light.
In some embodiments, the semiconductor islands are in the form of cylinders with diameters and/or heights of the order of hundreds of nanometers.
Another aspect is a night vision device including of any one of the above frequency conversion devices.
Another aspect is a method of manufacturing a frequency conversion device. The method includes forming, on a substrate, an array of mutually spaced semiconductor islands composed of at least one III-V semiconductor compound. The semiconductor islands are of nanometer-scale and configured so that radiation of a first wavelength incident upon the semiconductor islands causes them to emit radiation of a second wavelength shorter than the first wavelength by a nonlinear frequency conversion process. The substrate is substantially opaque to electromagnetic radiation of the second wavelength. The method further includes attaching the semiconductor islands to a transparent support that is substantially transparent to radiation of the second wavelength to provide a frequency conversion device. The array of mutually spaced nanometer-scale semiconductor islands is supported by the transparent support so that radiation of the first wavelength incident upon the frequency conversion device causes it to emit radiation of the second wavelength. At least the radiation of the second wavelength passes through the transparent support.
In some embodiments, the process includes removing the substrate from the semiconductor islands.
In some embodiments, the semiconductor islands are at least partially embedded in the transparent support.
In some embodiments, the transparent support includes a transparent substrate attached to a layer of a transparent material in which the semiconductor islands are at least partially embedded. In some embodiments, the transparent substrate is a glass or MgF2 or BaF2 substrate, and the transparent material is a polymer.
Another aspect is a method of frequency conversion. The method includes directing radiation of a first wavelength onto an array of mutually spaced III-V compound semiconductor islands supported by a transparent support to cause the array to emit radiation of a second wavelength shorter than the first wavelength by a nonlinear frequency conversion process. At least the radiation of the second wavelength passes through the transparent support.
Some embodiments of the disclosed technology are hereinafter described, by way of example only, with reference to the accompanying drawings.
The following detailed description of certain embodiments presents various descriptions of specific embodiments. However, the innovations described herein can be embodied in a multitude of different ways, for example, as defined and covered by the claims. In this description, reference is made to the drawings where like reference numerals can indicate identical or functionally similar elements. It will be understood that elements illustrated in the figures are not necessarily drawn to scale. Moreover, it will be understood that certain embodiments can include more elements than illustrated in a drawing and/or a subset of the elements illustrated in a drawing. Further, some embodiments can incorporate any suitable combination of features from two or more drawings.
As shown in
Compound semiconductors formed from combinations of elements from groups iii and V of the periodic table (referred to in the art as “III-V semiconductors”) are used because they have relatively large quadratic non-linear electromagnetic properties. In contrast, elemental semiconductors such as Si and Ge do not exhibit bulk quadratic nonlinearity due to their centro-symmetric crystalline structure.
The property of the support described as “transparent” in the context of this specification should be understood as meaning that the support is substantially transparent to radiation of the second wavelength. In some embodiments, the support is also substantially transparent to radiation of the first wavelength. As will be understood by those skilled in the art, in practice no medium is completely transparent, and there will always be at least a small degree of loss when electromagnetic radiation passes through a medium, hence when the support is described herein as being transparent, it will be understood that this does not require the support to be completely transparent with zero insertion loss.
In any case, the transparency of the support allows at least one of the radiation of the first wavelength and the radiation of the second wavelength to pass through the transparent support. However, in some embodiments, the emitted electromagnetic radiation can include radiation emitted in a direction that is emitted at an angle of more than 90° relative to the direction of incidence of the radiation of the first wavelength, as shown by 306 in
The values of the first and second wavelengths are determined by the composition of the compound semiconductor islands and their physical dimensions, allowing the semiconductor islands to be configured so that the values of the first and second wavelengths suit a particular application of interest. However, the composition of the compound semiconductor is chosen to support a nonlinear frequency conversion process, such as a harmonic generation process that effectively blue-shifts the incident radiation of the first wavelength to the output radiation of the second wavelength that is shorter than the first wavelength. In the described embodiments, the nonlinear frequency conversion process is a harmonic generation process; however, it will be apparent to those skilled in the art that other nonlinear interactions can be used in other embodiments to generate output radiation of the second wavelength that is shorter than the first wavelength.
The semiconductor islands can be formed of any compound semiconductor provided that the lattice mismatch between the crystalline semiconductor and the corresponding transparent crystalline substrate is not so large that it causes high concentrations of defects in the semiconductor that effectively render the frequency conversion processes ineffective in a practical sense. Examples of such compounds include those based on GaN, GaSb, GaAs, InP, InAs and InGaAs. For example, the semiconductor islands may be composed of AlxGa(1-x)As or InxGa(1-x)As with x∈[0, 1]. The orientation of the substrate (and thus the semiconductor islands epitaxially grown on the substrate) is typically a major crystallographic orientation such as [100], [110], or [111].
The semiconductor islands can be freestanding and not embedded in the transparent support, as shown in
The frequency conversion devices described herein are thus able to up-convert or blue-shift non-ionizing electromagnetic radiation at a wide range of input wavelengths and output wavelengths, as determined by the configuration of the individual compound semiconductor islands. Accordingly, by providing islands of different composition and/or physical dimensions in a single two-dimensional array or three-dimensional array, a single frequency conversion device as described herein can provide conversion over a wide range of desired input and/or output wavelengths.
In particular, where the described compound semiconductor islands are configured to blue-shift incident infrared radiation, a frequency conversion device as described herein can be used for thermal imaging or night vision. In some embodiments, the blue-shifting produces light at wavelengths in the visible wavelength region. In any case, by including compound semiconductor islands of different configurations selected to blue-shift different wavelengths of infrared radiation to respective different wavelengths of visible light, a color representation of objects having different temperatures and/or emissivities can be generated, either directly (if the output wavelengths are in the visible region), or indirectly (in all cases) via standard amplification and image generation methods known to those skilled in the art (including those currently used in existing thermal imaging and night vision equipment).
Fabrication of Non-Linear Electromagnetic Devices
The frequency conversion devices described herein can be manufactured by a production process such as that shown in
Having chosen the input and output wavelengths, at step 704, these are used to determine at least one corresponding configuration of the compound semiconductor islands, in particular the composition(s) and physical dimensions of the islands to support those wavelengths.
In the described embodiments, the semiconductor islands are in the form of cylinders composed of compound semiconductors with compositions of Alx Ga(1-x)As or InxGa(1-x)As, with x∈[0, 1.0] or alloys thereof, i.e., ranging from GaAs to AlAs, InAs or InGaAs. In the case of InxGa(1-x)As compounds, it is found that islands composed of In0.53Ga0.47As provide the best performance, as it provides the smallest lattice mismatch with the InP substrate, and consequently produces the lowest defect density.
In the described embodiments, the dimensions of the islands are nanometer-scale (‘nanoscale’) dimensions of about 20 nm-10 μm). Appropriate physical dimensions for a given desired wavelength and compound semiconductor composition can be determined by simulation, using a computational electromagnetics software package such as COMSOL Multiphysics®.
At step 706, an array of compound semiconductor islands of the selected dimensions and composition are formed on a crystalline substrate that is compatible with epitaxial growth of the selected compound semiconductor. For example, in the case of Alx Ga(1-x)As compounds, the substrate can be a single-crystal GaAs wafer, and in the case of InxGa(1-x)As compounds, the substrate can be a single-crystal InP wafer. Unfortunately, compatible substrates have high refractive indices and are opaque to electromagnetic radiation in the wavelength ranges of interest (e.g., in the visible region). Growth of compound semiconductors on transparent substrates such as glass results in a high density of dislocations in the grown semiconductors, and therefore poor characteristics.
Typically, the formation step 706 involves standard semiconductor processing steps known to those skilled in the art, including epitaxial growth of a layer of the corresponding compound semiconductor on an opaque semiconductor substrate (possibly preceded by an intermediate or buffer layer, as described below), followed by deposition of a mask layer, patterning of the mask layer by lithography, selected area etching of the compound semiconductor layer, and removal of the remaining mask material. The specific details of the steps required to form compound semiconductor islands of a desired configuration are well within the capabilities of those of ordinary skill in the art.
In some embodiments, the semiconductor islands are at least partially decoupled from the substrate in order to weaken their attachment to the substrate. This can be achieved by growing an intermediate layer on the substrate, prior to growing the compound semiconductor from which the islands will be formed, with the intermediate layer being formed of a material that can be selectively removed in order to decouple the overlying semiconductor islands. Residual (but relatively weak) coupling forces (including Van der Waals forces) maintain the semiconductor islands at their originals locations. For example, where the semiconductor islands are composed of AlxGa(1-x)As compounds with x∈[0, ≈0.8], AlAs can be used as the intermediate layer as it is preferentially etched by HCl.
In all cases, having formed the compound semiconductor islands on the opaque substrate, at step 708 they are bonded to a transparent support, and at step 710 the opaque substrate is removed to provide the frequency conversion device in the form of mutually spaced semiconductor islands supported by the transparent substrate. In embodiments where the semiconductor islands have been decoupled, the opaque substrate can be removed by simply pulling it away from the semiconductor islands, because the decoupling step causes the bonding between these to be weaker than the bonding between the semiconductor islands and the transparent support. Otherwise, in the absence of the decoupling step, the opaque substrate can be removed by etching, for example. In the case of InxGa(1-x)As compounds on an InP substrate, for example, the substrate can be preferentially removed by HCl acid. In the case of AlAs compounds on a GaAs substrate, for example, the substrate can be preferentially removed by a citric acid/H2O2 solution.
As described above, the resulting frequency conversion device can be used at step 712 to blue-shift electromagnetic radiation.
Incidentally, although it would be possible to transfer the compound semiconductor layer to a transparent (e.g., glass) substrate and then pattern the bonded layer to form mutually spaced islands of the compound semiconductor, in practice due to poor adhesion and fragility of the transferred layer, it is not generally possible to form the islands in this way with high spatial resolution and smooth surfaces and edges, which are required characteristics to achieve high non-linear conversion performance.
Some embodiments of the disclosed technology are now described in the context of frequency conversion devices configured to convert infrared radiation to visible radiation for thermal imaging or night vision applications. In these embodiments, the compound semiconductor composition was chosen to be Al0.2Ga0.8As of [100] crystallographic orientation normal to the plane of a two-dimensional array of islands of this compound, and the semiconductor islands were chosen to be cylinders or disks having various diameters in the range of 340-690 nm and a fixed height of about 300 nm so that the semiconductor islands would support Mie-type resonances at the input and output wavelengths (since the frequency conversion frequency is maximized when the semiconductor islands are resonant at both the input and output wavelengths). In the described embodiment, the islands were arranged on a square grid at a pitch or periodicity of 5 μm. However, in general, the islands can be arranged in any manner, including hexagonal lattice arrangements for high packing density, quasi-random arrangements, and arrangements that provide diffraction of the output radiation (e.g., to excite Fano resonances and enhance efficiency). For comparison, some arrays of islands of the same composition were formed at a pitch of 1 μm.
A 20 nm AlAs sacrificial buffer layer was epitaxially grown on [100] GaAs wafers by metal-organic chemical vapor deposition (MOCVD), followed by a 300 nm layer of Al0.2 Ga0.8As, and finally a 5 nm GaAs capping layer to prevent oxidation of the Al0.2Ga0.8As. A 400 nm SiOx masking layer was then deposited over the Al0.2Ga0.8As by plasma-enhanced chemical vapor deposition (PECVD). The mask layer was then patterned using electron-beam lithography and reactive ion etching using Cl2, Ar and H2 gases to remove all of the masking layer except for a square array of circular regions having the pitch and diameters indicated above.
The compound semiconductor regions exposed by the circular openings in the mask layer were then etched in an inductively coupled plasma (ICP) etching tool to remove all of the epitaxially grown compound semiconductors and a small amount of the GaAs substrate. As shown in the schematic diagram of
The SiO2 layer 810 and the AlAs layer 806 are then removed from each pillar by wet etching in 2% HF to produce the structure shown in the schematic diagram of
After this step, the Al0.2Ga0.8As layer/disks 808 are attached to a transparent support. In the described embodiments, the transparent support is a composite structure or assembly consisting of a transparent polymer on a planar transparent substrate/superstrate. In some embodiments, the transparent support is formed and attached by spin-coating a thin (4 μm in some embodiments) polymer layer on the sample, curing the polymer, and bonding it to a thin transparent substrate/superstrate, as shown in
As an alternative, in some embodiments the attachment is achieved by first bonding the polymer and superstrate layers, and then attaching the resulting composite support to the semiconductor islands, as shown in
In either case, the hot embossing step can also be used to simultaneously cure the polymer. For example, where the polymer is BCB, it needs to be cured at a temperature of about 300° C., and consequently the hot embossing step can be performed at that temperature or higher in order to simultaneously cure the BCB layer. Once cured, BCB acts like a glass and can be heated to substantially higher temperatures (e.g., up to at least 500° C.) without melting, which can facilitate the addition of one or more further layers (including BCB layers).
In various embodiments, the transparent substrate and the polymer layer can have the same, similar, or different refractive indices, depending on the application. In some embodiments, the substrate is a glass substrate, and the polymer is benzocyclobutene (BCB), with equivalent refractive index to glass, allowing the BCB and glass to act as a composite waveguide. In some embodiments, the substrate is a MgF2 substrate (with a refractive index of about 1.3). In other embodiments, the substrate is a BaF2 substrate or a quartz substrate. In some embodiments, the polymer is PolyDiMethylSiloxane (PDMS). Many other suitable transparent substrates and polymers and combinations thereof will be apparent to those skilled in the art in light of this disclosure.
Finally, the remaining portion of the original opaque substrate 1702 is removed by peeling or otherwise pulling it away from the transparent superstrate, as shown in
The resulting frequency conversion device 1704 is in the form of a two-dimensional array of compound semiconductor islands (in the form of cylinders or ‘disks’ in this example) partially embedded in a transparent superstrate. Optionally, the semiconductor islands can be completely embedded within the transparent substrate in a variety of different ways, but most simply by adding (e.g., by bonding or forming in situ (e.g., by spin coating and curing)) a second transparent substrate/superstrate to cover the exposed surfaces of the semiconductor islands. Optionally, a second hot embossing step can be performed to remove any gap between the second transparent substrate and the semiconductor islands. A three-dimensional, array of semiconductor islands can be formed by bonding two or more single-layer frequency conversion devices together. The bonding can be achieved by simply arranging a stack of single-layer devices, typically in a wafer alignment tool to determine the relative locations of the islands in different layers, and using the tool to apply heat and pressure to the stack in order to achieve bonding. In some embodiments, different etch mask layouts are used to form the different layers and thus can provide lateral offsets between the islands in different layers, if desired.
Optical Characterization of Non-Linear Electromagnetic Properties
The electromagnetic behaviors of the manufactured frequency conversion devices and of single islands were characterized using a variety of different optical methods commonly used by researchers in the field.
The diameter of the focused pump laser beam is measured by performing knife-edge experiments and ensuring that the pump beam is close to a diffraction limit of 2.2 μm. The substrate side faces the visible objective. Thus, the objective lens of the Olympus MPlanFLN collects the output radiation from an individual island in the forward direction, and the Olympus LCPlanNIR lens collects the output radiation in the backward direction. The pump laser is a pulsed Er3+-doped fiber laser (˜500 fs, repetition rate of 5 MHz) operating at a wavelength of 1556 nm. At the laser output, a quarter-wave plate and a half-wave plate were used to control the output polarization, and two cooled CCD cameras were used to detect the output radiation. In the forward direction, a notch filter blocks the pump laser. In the backward direction, a dichroic mirror is used in front of the objective lens to direct the backward-directed output radiation onto the camera.
Linear Characterization
The extinction spectra of individual AlGaAs nanodisks were measured using the same equipment in a confocal configuration, using a white-light source (fiber-coupled tungsten halogen light bulb) and two spectrometers: a Princeton Instruments Acton SP 2300 monochromator with Andor DU490A-1.7 InGaAs array detector for infrared wavelengths, and an Ocean Optics 65000 for wavelengths in the visible region. Transmission spectra were measured through a disk and a field diaphragm, and the extinction cross-sections were calculated using an approximate relation of ln(1−T), where T is the measured transmission, normalized to the transmission of the substrate.
The linear extinction spectra of individual islands was measured in a linear transmission arrangement, as shown schematically in
The measurements shown in
The linear measurements applied to single semiconductor islands as shown in
Second Harmonic Generation
It is noted that the highest extinction is achieved when the amplitudes of the electric dipole and magnetic dipole become equal. In other words, the highest extinction is observed for islands that satisfy the generalized Kerker condition. At the SH wavelength (778 nm), higher-order multipoles are excited in the islands. These two resonant conditions at the FW and the SH wavelengths are responsible for SHG enhancement in the islands. However; a more-sophisticated dependence of the SHG efficiency on the sizes of the semiconductor islands is expected when the spatial overlaps of the resonant modes at the FW and the SH fields are taken into account. These results suggest that there are optimal sizes of individual islands to maximize the efficiency of SHG from single islands.
The nonlinear response of individual islands supported by transparent supports was measured in both forward and backward directions (relative to the incident radiation) for various island diameters, using linear (vertical) polarization of the pump laser at a 45° angle of incidence relative to the crystalline axes of the islands; as shown in
A laser beam with an average beam power of ˜1 mW is focused by an infrared wavelength objective (NA=0.85) to a diffraction limited spot of 2.2 μm, resulting in a peak intensity of ˜7 GW/cm2. Another visible wavelength objective (NA=0.9) collects the SH emitted by the semiconductor island in a forward direction, while the focusing objective collects the SH radiation in a backward direction. The SH signal is detected by the two cooled CCD cameras, calibrated with a power meter.
The results of the SHG measurements from single Al0.2Ga0.8As islands of different diameters are shown in
Importantly, as shown in
An important feature of the measurements is that the SH radiation pattern can be characterized in both forward and backward directions as well as in transverse momentum space. The data, however, suggest that the experimental measurement apparatus is capturing only a small portion of the total SH radiated power due to the finite numerical apertures of the objectives.
To estimate the total efficiency of the radiated SH power, the nonlinear response of the semiconductor islands was simulated numerically using the finite element method solver in COMSOL Multiphysics in the frequency domain. In these simulations, each semiconductor island is assumed to be embedded in a homogeneous medium having a refractive index equal to that of the glass substrate. The material dispersion of the compound semiconductor is taken from COMSOL tabulated data. The second-order nonlinear susceptibility tensor of the [100] oriented. Al0.2Ga0.8As, possessing a zinc blende crystalline structure, contains only off-diagonal elements Xijk(2) with i≠j≠k. Thus, in the principal-axis system of the crystal, the ith component of the nonlinear polarization at the SH frequency is given by:
Pi(2ω)=ε0Xijk(2)Ej(ω)Ek(ω) (1)
An undepleted pump approximation is assumed and two coupled steps are used to calculate the radiated SH power. First, linear scattering at the fundamental wavelength is simulated. To emulate the experimental conditions more accurately, the semiconductor island is excited by a focused monochromatic Gaussian beam, polarized along the [110] direction. The bulk nonlinear polarization given by Eq. 1, induced inside the island, is then employed as a source for the next electromagnetic simulation at twice the frequency, to obtain the generated SH field.
The disk size providing the maximum SH (d=490 nm) was chosen, and the three-dimensional SH far-field radiation pattern was calculated, as shown in
The radiation patterns are measured by building back-focal plane (BFP) images of the SU radiation pattern by adding a pair of confocal lenses between the objective lenses and the cameras, in both forward and backward directions. The top left images in
Third Harmonic Generation
To further support these findings, third harmonic generation (“THG”) from the same islands was measured. The third harmonic relies on the χ(3) nonlinear tensor, and in contrast to the SH radiation pattern has a radiation maximum in normal directions. Although the third-order nonlinear term of AlxGa(1-x)As non-linear polarization is much weaker than the second-order non-linear term, it is nevertheless non-zero, and third harmonic generation (TUG) signals from AlxGa(1-x)As islands can be observed. The THG is expected to be similar to the THG from other well-studied materials like silicon and germanium. Therefore, in terms of the radiation pattern, the THG signals are non-zero in the direction normal to the disks axis. This characteristic is in contrast to the SHG radiation pattern, which is reflected in the doughnut shape of back-focal plane (BFP) images because of zero diagonal components of the second-order tensors. This difference is clear from the forward and backward normalized intensity images shown in
This is an important finding for arrays of the semiconductor islands, because the interference of emission from multiple islands of an array will result in lower radiation efficiency from the zeroth order SH beam. It is also noted that surface second-order nonlinearities can in principle result in normal SH radiation for specific excitation; however, surface SHG is not pronounced in these experiments, and the bulk χ(2) is the dominant nonlinear contribution.
Polarization Properties of the Second Harmonic
Even more intriguing is the polarization state of the observed far-field doughnut beam. To test the polarization properties of the SH radiation from the semiconductor islands, the spatially resolved polarization states of the BFP images were retrieved using the Stokes formalism. The Stokes coefficients provide a complete description of the light polarization state in terms of its total intensity Itot, (fractional) degree of polarization ρ, polarization inclination angle ψ, and the ellipticity angle X The ellipticity tan(X) is defined as the ratio of the two axes of the polarization ellipse (see
Experimentally, the Stokes parameters are found by measuring light transmission through a set of six different polarizers: linear horizontal, vertical, two diagonal and two circular polarizers realized by different orientations of the quarter-wave plate and a linear polarizer. The set of measurements for the backward directionality of SH emission from a disk with diameter of 490 nm are shown in
The next step is to retrieve the Stokes vector
where
I=H+V=Da+Db=L+R
Q=H−V
U=Da−Db
V=L−R
Here, H is the transmission through horizontal polarizer, while V, Da, Db, L, R are the transmissions through vertical, two diagonal, left- and right-circular polarizers, respectively.
A set of four back-focal plane images forming the Stokes vector are shown in
Next, the coefficients are calculated as follows:
The resulting coefficients are shown in
We observe vector-beam formation at the SH frequency, as shown with arrows in
The nonlinear generation of vector beams from the semiconductor islands can be intuitively understood by the excitation of Mie-type multipoles at the wavelengths of the input and output radiation. In the simplest exemplary case, a vector beam of radial polarization can be emitted by an electric dipole oriented along the optical axis of the disk antenna. In a more complex situation, as in the examples described herein, higher-order multipoles are excited at the SH wavelength. The superposition of these multipolar contributions governs the output polarization state. This can be engineered for a specific application.
The radiation patterns and polarization states of SH emission from the compound semiconductor islands described above demonstrate that nonlinear conversion efficiencies exceeding 10−4 can be achieved, so the described nanostructures can be applied used to provide functional nonlinear devices at the nanoscale. In particular, nonlinear nanoscale light sources emitting vector beams with a desired polarization state, e.g., radial polarization, have been experimentally demonstrated. These results open new avenues for novel nonlinear imaging, as well as applications such as bright fluorescent markers for bio-imaging, or constituent elements for efficient nonlinear holograms (which can be used as security devices, for example).
Multipolar decomposition of these spectra supports the attribution of the observed spectral resonances in the linear regime to excitation of Mie-type multipoles. Polarization currents were used for this task, and the island parameter that provided the best performance was 490 nm, with corresponding results shown in
Multipolar decomposition in the non-linear regime of SH fields was also performed, for cylindrical islands with diameters of 340 nm, 490 nm and 640 nm. The relative contributions of different multipoles into the SH for these three diameters are shown in the respective pie charts of
The strong dependence of SH directionality on cylindrical island height is demonstrated by the directionality diagrams of
The strong dependence of SH efficiency on the relative orientation of the in-plane crystalline axis to the orientation of pump polarization is shown in
Finally, distributions of the near-fields at both the pump wavelength and the second harmonic wavelength are shown in
Many modifications will be apparent to those skilled in the art without departing from the scope of the disclosed technology.
The various features and processes described herein may be implemented independently of one another, or may be combined in various ways. All possible combinations and sub combinations are intended to fall within the scope of this disclosure. In addition, certain methods or process blocks may be omitted in some implementations. The methods and processes disclosed herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in any other sequences that are appropriate. For example, described blocks or states may be performed in an order other than that specifically disclosed, or multiple blocks or states may be combined in a single block or state. The example blocks or states may be performed in serial, in parallel, or in some other manner as appropriate. Blocks or states may be added to or removed from the disclosed example embodiments as suitable. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments. Various embodiments can apply different techniques for fabricating different types of electronic devices.
Aspects of this disclosure can be implemented in various devices. For example, the frequency conversion devices discussed herein can be implemented in night vision glasses, thermal imagers, cameras, imaging systems, medical sensors, laboratory equipment, augmented reality systems, portable computing devices, or any other suitable application that could benefit from any of the principles and advantages discussed herein.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel devices, systems, apparatus, methods, and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the disclosure. For example, while blocks are presented in a given arrangement, alternative embodiments may perform similar functionalities with different components and/or circuit topologies, and some blocks may be deleted, moved, added, subdivided, combined, and/or modified. Each of these blocks may be implemented in a variety of different ways. Any suitable combination of the elements and acts of the various embodiments described above can be combined to provide further embodiments.
Number | Name | Date | Kind |
---|---|---|---|
5113473 | Yoshida | May 1992 | A |
5543354 | Richard | Aug 1996 | A |
6528339 | Goldstein | Mar 2003 | B1 |
6541788 | Petroff | Apr 2003 | B2 |
6751243 | Mukai | Jun 2004 | B2 |
6958853 | Arnone | Oct 2005 | B1 |
6995371 | Garber | Feb 2006 | B2 |
7560707 | Bratkovski | Jul 2009 | B2 |
10054839 | Brener | Aug 2018 | B1 |
20020162995 | Petroff et al. | Nov 2002 | A1 |
20110002574 | Bermel | Jan 2011 | A1 |
20150369989 | Hsu | Dec 2015 | A1 |
20170309797 | De Boer | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
03028831 | Feb 1991 | JP |
WO 2008046147 | Apr 2008 | WO |
Entry |
---|
Hugonin et al., “RETICOLO Code for the diffraction by stacks of lamellar gratings”; Institut d'Optique; Orsay, France; 2005 (updated 2013); 56 pages. |
Number | Date | Country | |
---|---|---|---|
20180329273 A1 | Nov 2018 | US |