Frequency division multiple access schemes for wireless communication

Abstract
Techniques for transmitting data using single-carrier frequency division multiple access (SC-FDMA) multiplexing schemes are described. In one aspect, data is sent on sets of adjacent subbands that are offset from one another to achieve frequency diversity. A terminal may be assigned a set of N adjacent subbands that is offset by less than N (e.g., N/2) subbands from another set of N adjacent subbands assigned to another terminal and would then observe interference on only subbands that overlap. In another aspect, a multi-carrier transmission symbol is generated with multi-carrier SC-FDMA. Multiple waveforms carrying modulation symbols in the time domain on multiple sets of subbands are generated. The multiple waveforms are pre-processed (e.g., cyclically delayed by different amounts) to obtain pre-processed waveforms, which are combined (e.g., added) to obtain a composite waveform. A cyclic prefix is appended to the composite waveform to generate the multi-carrier transmission symbol.
Description
BACKGROUND

I. Field


The present disclosure relates generally to communication, and more specifically to techniques for transmitting data in a wireless communication system.


II. Background


Orthogonal frequency division multiplexing (OFDM) is a multi-carrier multiplexing scheme that partitions a frequency band (e.g., the system bandwidth) into multiple (K) orthogonal subbands. These subbands are also called tones, subcarriers, bins, and so on. With OFDM, each subband is associated with a respective subcarrier that may be independently modulated with data.


OFDM has certain desirable characteristics such as high spectral efficiency and robustness against multipath effects. However, a major drawback with OFDM is a high peak-to-average power ratio (PAPR), which means that the ratio of the peak power to the average power of an OFDM waveform can be high. The high PAPR for the OFDM waveform results from possible in-phase addition of all the subcarriers when they are independently modulated with data. In fact, it can be shown that the peak power can be up to K times greater than the average power for OFDM.


The high PAPR for the OFDM waveform is undesirable and may degrade performance. For example, large peaks in the OFDM waveform may cause a power amplifier to operate in a highly non-linear region or possibly clip, which would then cause intermodulation distortion and other artifacts that can degrade signal quality. The degraded signal quality may adversely affect performance for channel estimation, data detection, and so on.


There is therefore a need in the art for techniques to transmit data in a manner to achieve good performance and avoid high PAPR.


SUMMARY

Techniques for transmitting data using single-carrier frequency division multiple access (SC-FDMA) multiplexing schemes to achieve good performance and low PAPR are described herein. In one aspect, data is sent on sets of adjacent subbands that are offset from one another to achieve frequency diversity. A terminal is assigned a first set of N adjacent subbands that is offset by less than N (e.g., N/2) subbands from a second set of N adjacent subbands assigned to another terminal. These terminals may be in the same or different sectors. The first set of subbands overlaps partially with the second set of subbands. A transmission symbol is generated with modulation symbols sent in the time domain on the first set of subbands. This transmission symbol observes interference from the other terminal on only subbands that are common in the first and second sets.


In another aspect, multi-carrier SC-FDMA is used to achieve frequency diversity, interference diversity, and possibly other benefits. To generate a multi-carrier transmission symbol, multiple waveforms carrying modulation symbols on multiple sets of subbands are generated. Each set may include adjacent subbands or subbands distributed across the system bandwidth. The multiple waveforms are pre-processed (e.g., cyclically delayed by different amounts) to obtain pre-processed waveforms, which are combined (e.g., added) to obtain a composite waveform. A cyclic prefix is appended to the composite waveform to generate the multi-carrier transmission symbol.


Various aspects and embodiments of the invention are described in further detail below.





BRIEF DESCRIPTION OF THE DRAWINGS

The features and nature of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout.



FIG. 1 shows a wireless communication system.



FIG. 2A shows a subband structure for localized FDMA (LFDMA).



FIG. 2B shows a subband structure for interleaved FDMA (IFDMA).



FIGS. 3A and 3B show two processes for generating a transmission symbol.



FIG. 4 shows a subband structure that can provide interference diversity.



FIG. 5A shows a process to transmit data with the subband structure in FIG. 4.



FIG. 5B shows an apparatus to transmit data with the subband structure in FIG. 4.



FIG. 6 shows a multi-carrier SC-FDMA modulator.



FIG. 7 shows generation of a multi-carrier transmission symbol with cyclically delayed SC-FDMA waveforms.



FIG. 8A shows a process to generate a multi-carrier transmission symbol.



FIG. 8B shows an apparatus to generate a multi-carrier transmission symbol.



FIG. 9A shows a process to receive a multi-carrier transmission symbol.



FIG. 9B shows an apparatus to receive a multi-carrier transmission symbol.



FIG. 10 shows a block diagram of a transmitter and a receiver.





DETAILED DESCRIPTION

The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs.



FIG. 1 shows a wireless communication system 100 with multiple base stations 110 and multiple terminals 120. A base station is generally a fixed station that communicates with the terminals and may also be called an access point, a Node B, or some other terminology. Each base station 110 provides communication coverage for a particular geographic area 102. The term “cell” can refer to a base station and/or its coverage area depending on the context in which the term is used. To improve system capacity, a base station coverage area may be partitioned into multiple smaller areas, e.g., three smaller areas 104a, 104b, and 104c. Each smaller area is served by a respective base transceiver subsystem (BTS). The term “sector” can refer to a BTS and/or its coverage area depending on the context in which the term is used. For a sectorized cell, the BTSs for all sectors of that cell are typically co-located within the base station for the cell.


Terminals 120 are typically dispersed throughout the system, and each terminal may be fixed or mobile. A terminal may also be called a mobile station, a user equipment, or some other terminology. A terminal may be a wireless device, a cellular phone, a personal digital assistant (PDA), a wireless modem card, and so on. Each terminal may communicate with one or possibly multiple base stations on the forward and reverse links at any given moment. The forward link (or downlink) refers to the communication link from the base stations to the terminals, and the reverse link (or uplink) refers to the communication link from the terminals to the base stations. In the following description, the term “terminal” and “user” are used interchangeably.


For a centralized architecture, a system controller 130 couples to base stations 110 and provides coordination and control for these base stations. For a distributed architecture, the base stations may communicate with one another as needed.


System 100 may utilize SC-FDMA, orthogonal frequency division multiple access (OFDMA), and/or some other multiplexing scheme. SC-FDMA includes (1) LFDMA which transmits data on a group of adjacent subbands, (2) IFDMA which transmits data on subbands that are distributed across the system bandwidth, (3) enhanced FDMA (EFDMA) which transmits data on multiple groups of adjacent subbands, (4) multi-carrier SC-FDMA which transmits data on multiple sets of subbands, or (5) other variants of SC-FDMA. LFDMA is also called narrowband FDMA, classical FDMA, and FDMA. IFDMA is also called distributed FDMA. OFDMA utilizes OFDM. In general, modulation symbols are sent in the time domain with SC-FDMA and in the frequency domain with OFDM.


In general, system 100 may utilize one or more multiplexing schemes for the forward and reverse links. For example, system 100 may utilize (1) SC-FDMA (e.g., LFDMA) for both the forward and reverse links (2) one version of SC-FDMA (e.g., LFDMA) for one link and another version of SC-FDMA (e.g., IFDMA) for the other link, (3) SC-FDMA for the reverse link and OFDMA for the forward link, or (4) some other combination of multiplexing schemes. SC-FDMA, OFDMA, some other multiplexing scheme, or a combination thereof may be used for each link to achieve the desired performance. For example, SC-FDMA and OFDMA may be used for a given link, with SC-FDMA being used for some subbands and OFDMA being used for other subbands. It may be desirable to use SC-FDMA on the reverse link to achieve lower PAPR and to relax power amplifier requirements for the terminals. It may be desirable to use OFDMA on the forward link to potentially achieve higher system capacity.



FIG. 2A shows an exemplary subband structure 200 for LFDMA. The overall system bandwidth of BW MHz is partitioned into multiple (K) orthogonal subbands that are given indices of 1 through K, where K may be any integer value but is typically a power of two. For simplicity, the following description assumes that all K total subbands are usable for transmission. The spacing between adjacent subbands is BW/K MHz. For subband structure 200, the K total subbands are arranged into S non-overlapping groups. The S groups are non-overlapping or disjoint in that each of the K subbands belongs in only one group. Each group contains N adjacent subbands, and group g contains subbands (g−1)·N+1 through g·N , where K=S·N and gε{1, . . . , S}.



FIG. 2B shows an exemplary subband structure 210 for IFDMA. For subband structure 210, the K total subbands are arranged into S non-overlapping interlaces. Each interlace contains N subbands that are uniformly distributed across the K total subbands, and consecutive subbands in each interlace are spaced apart by S subbands. Interlace u contains subband u as the first subband, where K=S·N and uε{1, . . . , S}.


An exemplary subband structure for EFDMA may be defined as follows. The K total subbands are arranged into S non-overlapping sets. Each set contains L groups that are spaced apart by P subbands, and each group includes M adjacent subbands, where P=K/L. Each set thus contains a total of N=L·M subbands that are arranged into L groups of M adjacent subbands, with the subband groups being uniformly distributed across the system bandwidth.


In general, a subband structure may include any number of non-overlapping subband sets. Each subband set may contain any number of subbands and any one of the K total subbands. The subband sets may contain the same or different numbers of subbands. For each set, the subbands in the set may be adjacent to one another as shown in FIG. 2A, uniformly distributed across the system bandwidth as shown in FIG. 2B, non-uniformly distributed across the system bandwidth, or arranged in multiple groups that may be uniformly or non-uniformly distributed across the system bandwidth. For example, each subband set may correspond to a subband group in FIG. 2A, an interlace in FIG. 2B, or multiple groups of subbands for the EFDMA subband structure described above. Furthermore, N, S, L and M may or may not be integer divisors of K. Different users may be assigned different subband sets and would then be orthogonal to one another.



FIG. 3A shows a process 300 for generating a transmission symbol for a subband set, e.g., a subband group or an interlace. For clarity, FIG. 3A shows a simple case with K=32 total subbands, N=8 subbands in each set, and a cyclic prefix length of C=2.


An original sequence of N modulation symbols to be transmitted in one symbol period on one subband set is denoted as {dn}={d1, d2, . . . , dN} (block 310). Sequence {dn} is transformed to the frequency domain with an N-point discrete Fourier transform (DFT) or an N-point fast Fourier transform (FFT) to obtain a sequence of N frequency-domain values, {Dk}={D1, D2, . . . , DN} (block 312). The N frequency-domain values are mapped to the N subbands in the set used for transmission. These N assigned subbands have indices of U+1, U+2, . . . , U+N, where U is a start offset for the assigned subbands, and U=8 for the example shown in FIG. 3A. Zero values are mapped to the remaining K−N subbands to generate a sequence of K values, {Yk} (block 314). Sequence {Yk} is then transformed to the time domain with a K-point inverse discrete Fourier transform (IDFT) or a K-point inverse fast Fourier transform (IFFT) to obtain a sequence of K time-domain output samples, {yn}, which is also called an SC-FDMA waveform (block 316).


The last C output samples in sequence {yn} are copied to the start of the sequence to form a transmission symbol that contains K+C output samples (block 318). The C copied output samples are often called a cyclic prefix or a guard interval, and C is the cyclic prefix length. The cyclic prefix is used to combat intersymbol interference (ISI) caused by frequency selective fading, which is a frequency response that varies across the system bandwidth. The K+C output samples of the transmission symbol are transmitted in K+C sample periods, one output sample in each sample period. A symbol period is the duration of one transmission symbol and is equal to K+C sample periods. A sample period is also called a chip period.



FIG. 3B shows another process 350 for generating a transmission symbol for a subband set. For clarity, FIG. 3B also shows a simple case with K=32, N=8 and C=2. An original sequence of N modulation symbols to be transmitted in one symbol period on one subband set is denoted as {dn}={d1, d2, . . . , dN} (block 360). The N modulation symbols are mapped to a sequence {xn} with K total sample locations that are given indices of 1 through K (block 362). The N modulation symbols are mapped to N evenly spaced sample locations 1, S, 2S, . . . , (N−1)·S in sequence {xn}, are uniformly distributed across sequence {xn}, and are spaced apart by S sample locations. Zero values are mapped to the K·N remaining sample locations in sequence {xn}.


Sequence {xn} is then transformed to the frequency domain with a K-point DFT/FFT to obtain a sequence of K frequency-domain values, {Xk} (block 364). N frequency-domain values for the N assigned subbands with indices of U+1 through U+N are retained, and the remaining K−N unassigned subbands are filled with zeros to form a sequence of K values, {Yk} (block 366). Sequence {Yk} is then transformed to the time domain with a K-point IDFT/IFFT to obtain a sequence of K time-domain samples, {yn} (block 368). The last C output samples in sequence {yn} are copied to the start of the sequence to form a transmission symbol that contains K+C output samples (block 370).


Process 300 may also be used to generate transmission symbols for IFDMA and EFDMA. The N frequency-domain values in sequence {Dk} are mapped to the N assigned subbands, which may be for an interlace for IFDMA or multiple groups of subbands for EFDMA. Transmission symbols for LFDMA, IFDMA and EFDMA may also be generated in other manners.


S subband sets may be defined for LFDMA as shown in FIG. 2A, and neighboring sectors may use the same S subband sets. For this LFDMA scheme, a user u1 that is assigned subband set s in a sector observes interference from another user u2 that is assigned the same subband set s in a neighbor sector. Furthermore, user u1 observes interference from user u2 on all N subbands in set s.


In an aspect, S subband sets are defined for each sector, and different subband sets are defined for neighboring sectors. The subband sets may be defined such that a subband set for a given sector may overlap partially but not completely with a subband set for a neighbor sector. Hence, no subband set for a given sector contains all of the subbands in any subband set for a neighbor sector. For this LFDMA scheme, a user u1 that is assigned subband set s in a sector may observe interference from another user u2 in a neighbor sector on some but not all of the subbands in set s. This LFDMA scheme provides interference diversity since user u1 does not observe interference from a single user in another sector across all of the subbands assigned to user u1.



FIG. 4 shows an exemplary LFDMA subband structure 400 that can provide interference diversity. For simplicity, FIG. 4 shows only subband set 1 for each of R sectors, where R may be any integer value. For each sector i, where iε{1, . . . R}, subband set 1 contains subbands Qi+1 through Qi+N, subband set 2 contains subbands Qi+N+1 through Qi+2N, and so on, and subband set S may contain subbands 1 through Qi and subbands Qi+(S−1)·N+1 through K, where Qi may be any integer value between 0 and N−1. For each sector i, the S subband sets are shifted versions of the S subband groups shown in FIG. 2A. The last subband set may include subbands at one or both band edges.


The R sectors may be assigned R different offsets so that Q1≠Q2≠ . . . ≠QN. Each subband set for a given sector may then include some but not all of the subbands in any subband set for a neighbor sector. As an example, for R=2, the offsets for the two sectors may be defined as Q1=0 and Q2=N/2. The subband sets for one sector are then offset by N/2 subbands from the subband sets for the other sector, and any two subband sets for the two sectors overlap by at most N/2 subbands. As another example, for R=4, the offsets for the four sectors may be defined as Q1=0, Q2=N/4, Q3=N/2 and Q4=3N/4. Any two subband sets for any two sectors would then overlap by at most 3N/4 subbands. For any given value of R, the offset for each sector i, for i=1, . . . R, may be defined as Qi=└(i−1)·N/R┘, where “└α┘” is a floor operator that gives the largest integer value that is equal to or less than α. In general, the offsets for the R sectors may be any values and do not need to be a power of two or evenly spaced.


For subband structure 400, a user u1 assigned with subband set 1 in sector 1 would overlap partially with users u2a through uRa assigned with subband set 1 in sectors 2 through R, respectively. User u1 would then observe interference on the subbands that user u1 shares with each of users u2a through uRa. User u1 would also overlap partially with user u2b assigned with subbands 1 through Q2 in sector 2, user u3b assigned with subbands 1 through Q3 in sector 3, and so on, and user uRb assigned with subbands 1 through QR in sector R. User u1 would also observe interference from users u2b through uRb on these subbands. User u1 may thus observe interference from two users in each neighbor sector.


Subband structure 400 may also be used to support quasi-orthogonal multiplexing for a single sector. Multiple channel sets may be defined for the sector. Each channel set i may include S subband sets that are formed with a different offset Qi. Subband set ν for a given channel set would then overlap partially with subband set ν for each of the other channel set(s). The S subband sets in channel set 1 may be assigned to users first, then the S subband sets in channel set 2 may be assigned to users if and as necessary, and so on. With quasi-orthogonal multiplexing, multiple users in the same sector may share a given subband. The transmissions for these overlapping users would interfere with one another and may be separated using receiver spatial processing techniques. With subband structure 400, a user in a given channel set observes interference from more users in the other channel set(s), which provides interference diversity.


A transmission symbol for a subband set with offset Qi may be generated using process 300 in FIG. 3A, process 350 in FIG. 3B, or some other construction process. For process 300, the N frequency-domain values in sequence {Dk} may be mapped directly to the N assigned subbands. For process 350, the N frequency-domain values in sequence {Xk} for the N assigned subbands are retained, and the remaining subbands are filled with zeros to obtain sequence {Yk}. Process 300 and process 350 provide the same output sequence {yn} when the start offset U for the assigned subbands is an integer multiple of N.


When U is not an integer multiple of N, which is the case if Qi is a non-zero value, the output sequence {yn} provided by process 350 is comparable but not identical to the output sequence {yn} provided by process 300. As shown in FIG. 3B, sequence {Xk} is periodic in the frequency domain with a periodicity of N. When U is an integer multiple of N, sequence {Yk} contains the N frequency-domain values {D1, . . . , DN} in the same order as sequence {Dk}. However, when U is not an integer multiple of N, sequence {Yk} contains a different ordering of the N frequency-domain values in sequence {Dk}. For example, if Qi=N/2 and U=N/2 for subband set 1, then sequence {Yk} contains {DN/2+1, . . . , DN, D1, . . . DN/2}. A receiver would process a received transmission symbol to obtain estimates of {DN/2+1, . . . , DN, D1, . . . DN/2} and would reorder these estimates to obtain {D1, . . . , DN}. The receiver would then perform an N-point IDFT/IFFT on the estimates of {D1, . . . , DN} to obtain estimates of the modulation symbols {d1, . . . , dN}.



FIG. 5A shows a process 500 performed by a transmitter (e.g., a base station or a terminal) to transmit data with subband structure 400 in FIG. 4. Initially, a subband assignment for the terminal is determined (block 512). This subband assignment is for a first set of N adjacent subbands that is offset by less than N subbands from a second set of N adjacent subbands assigned to another terminal. For example, the first and second subband sets may be offset by N/2 subbands from each other. The two terminals may be in the same or different sectors. A transmission symbol carrying modulation symbols sent in the time domain on the first set of subbands is generated, e.g., based on process 300 in FIG. 3A or process 350 in FIG. 3B (block 514).



FIG. 5B shows an apparatus 550 for transmitting data with subband structure 400 in FIG. 4. Apparatus 550 includes means for determining a subband assignment for a terminal, which is for a first set of N adjacent subbands that is offset by less than N subbands from a second set of N adjacent subbands assigned to another terminal (block 552), and means for generating a transmission symbol carrying modulation symbols sent in the time domain on the first set of subbands (block 554).


A transmission symbol may be generated for a single subband set, e.g., a subband group or an interlace, as described above. The transmission symbol carries modulation symbols in the time domain and has a low PAPR that is comparable to the PAPR of a single-carrier system. This is in contrast to OFDM, which transmits modulation symbols in the frequency domain and has a high PAPR.


In another aspect, a multi-carrier transmission symbol is generated for multiple subband sets, e.g., multiple subband groups or multiple interlaces, using multi-carrier SC-FDMA. Multi-carrier SC-FDMA may provide frequency diversity, interference diversity, and possibly other benefits.



FIG. 6 shows an embodiment of a multi-carrier SC-FDMA modulator 600 that can generate a multi-carrier transmission symbol for multiple (T) subband sets. Within modulator 600, T SC-FDMA waveform generators 610a through 610t receive T sets of modulation symbols for T subband sets. Each SC-FDMA waveform generator 610 performs modulation (e.g., for LFDMA or IFDMA) on its set of modulation symbols for its subband set and generates a corresponding SC-FDMA waveform. For example, each SC-FDMA waveform generator 610 may perform process 300 in FIG. 3A or process 350 in FIG. 3B to generate an output sequence {yn}, which is provided as the SC-FDMA waveform. SC-FDMA waveform generators 610a through 610t independently generate T SC-FDMA waveforms for T subband sets.


In an embodiment, the T SC-FDMA waveforms are combined (e.g., added) to generate a composite waveform, and a cyclic prefix is appended to the composite waveform to generate a multi-carrier transmission symbol. This multi-carrier transmission symbol would have a higher PAPR than a transmission symbol generated for a single subband set.


In another embodiment, the T SC-FDMA waveforms are pre-processed prior to being combined to achieve a lower PAPR. As shown in FIG. 6, T pre-processors 612a through 612t receive the T SC-FDMA waveforms from T generators 610a through 610t, respectively. Each pre-processor 612 performs pre-processing on its SC-FDMA waveform and provides a pre-processed SC-FDMA waveform. A combiner 614 receives and combines (e.g., adds) the T pre-processed SC-FDMA waveforms from pre-processors 612a through 612t and provides a composite waveform. A cyclic prefix generator 616 appends a cyclic prefix to the composite waveform and provides a multi-carrier transmission symbol.


The pre-processing on the SC-FDMA waveforms may be performed in various manners. The pre-processing may be the same or different for LFDMA, IFDMA and EFDMA.



FIG. 7 shows an embodiment in which the SC-FDMA waveforms are cyclically delayed prior to combining For this embodiment, each pre-processor 612 cyclically delays or circularly shifts its SC-FDMA waveform by a predetermined amount to generate a pre-processed SC-FDMA waveform. For the example shown in FIG. 7, T=2, and two SC-FDMA waveforms are combined. Pre-processor 612a provides a cyclic delay of zero samples and simply passes its input SC-FDMA waveform as the pre-processed SC-FDMA waveform. Pre-processor 612t provides a cyclic delay of S/2 samples and outputs the cyclically delayed SC-FDMA waveform as the pre-processed SC-FDMA waveform. The two cyclically delayed SC-FDMA waveforms are added and appended with a cyclic prefix to generate the multi-carrier transmission symbol.


T pre-processors 612a through 612t may provide different cyclic delays for the T SC-FDMA waveforms. The cyclic delay for each SC-FDMA waveform may also be achieved in the frequency domain by applying a phase ramp across the corresponding sequence of frequency-domain values, {Yk}. The cyclic delay shifts the energy peaks in the SC-FDMA waveforms prior to combining these waveforms. The cyclic delay is particularly effective at reducing PAPR for a multi-carrier SC-FDMA waveform generated for multiple subband groups for LFDMA. Furthermore, the cyclic delay does not distort or alter the characteristics of the input SC-FDMA waveforms, which may be desirable.


In another embodiment, pre-processors 612a through 612t implement a set of filters. The filters may be lowpass filters, all-pass filters, and/or some other types of filters. The filters may be fixed filters designed to provide a lower PAPR on average for multi-carrier transmission symbols. These filters may also be selected based on the input SC-FDMA waveforms from generators 610a through 610t. For example, multiple sets of filters may be defined, and the set of filters that provides the lowest PAPR may be selected for use. The selected set of filters may be signaled to the receiver, which may then apply a complementary set of filters on the received transmission symbol. Alternatively, the receiver may not be informed of the selected set of filters and may attempt to decode the received transmission symbol with each of the possible sets of filters. If pilot and data symbols are sent using the same set of filters, then the receiver may use the pilot symbols to estimate the effective channel response, which includes the wireless channel response and the selected set of filters. The receiver may then process the received transmission symbol with the effective channel response estimate. The receiver may not need to determine the set of filters used to send the pilot and data symbols.



FIG. 8A shows a process 800 performed by a transmitter to generate a multi-carrier transmission symbol. Multiple waveforms carrying modulation symbols in the time domain on multiple sets of subbands are generated (block 812). The multiple sets may include adjacent subbands for LFDMA, uniformly distributed subbands for IFDMA, or multiple groups of subbands for EFDMA. The multiple waveforms are pre-processed to obtain multiple pre-processed waveforms (block 814). The pre-processing may entail cyclically delaying the multiple waveforms by different amounts, e.g., by 0 and K/2N samples for two waveforms. Alternatively, the pre-processing may entail filtering the multiple waveforms with a set of filter(s), which may be selected to achieve a low PAPR for the resultant transmission symbol. The multiple pre-processed waveforms are combined (e.g., added) to obtain a composite waveform (block 816). A cyclic prefix is then appended to the composite waveform to generate the multi-carrier transmission symbol (block 818).



FIG. 8B shows an apparatus 850 for generating a multi-carrier transmission symbol. Apparatus 850 includes means for generating multiple waveforms carrying modulation symbols in the time domain on multiple sets of subbands (block 852), means for pre-processing (e.g., cyclically delaying or filtering) the multiple waveforms to obtain multiple pre-processed waveforms (block 854), means for combining (e.g., adding) the multiple pre-processed waveforms to obtain a composite waveform (block 856), and means for appending a cyclic prefix to the composite waveform to generate the multi-carrier transmission symbol (block 858).



FIG. 9A shows a process 900 performed by a receiver. A multi-carrier transmission symbol comprised of multiple waveforms carrying multiple sets of modulation symbols in the time domain on multiple sets of subbands is initially received (block 912). The cyclic prefix is removed from the received transmission symbol (block 914). The remaining received transmission symbol is transformed to the frequency domain (e.g., with a K-point DFT/FFT) to obtain K frequency-domain values (block 916). Multiple sets of frequency-domain values for the multiple sets of subbands are obtained from among the K frequency-domain values (block 918). Each set of frequency-domain values is transformed to the time domain (e.g., with an N-point IDFT/IFFT) to obtain a respective set of modulation symbols sent in the multi-carrier transmission symbol (block 920).


If the multiple waveforms are cyclically delayed by different amounts prior to combining at the transmitter, then the receiver does not need to perform any special processing to remove the cyclic delays. If the multiple waveforms are filtered with a set of filters at the transmitter, then the receiver may perform equalization for this set of filters. The receiver may also perform data detection with a channel estimate obtained based on pilot symbols sent using the same set of filters.



FIG. 9B shows an apparatus 950 for receiving a multi-carrier transmission symbol. Apparatus 950 includes means for receiving a multi-carrier transmission symbol comprised of multiple waveforms carrying multiple sets of modulation symbols in the time domain on multiple sets of subbands (block 952), means for removing the cyclic prefix from the received transmission symbol (block 954), means for transforming the remaining received transmission symbol to the frequency domain to obtain K frequency-domain values (block 956), means for obtaining multiple sets of frequency-domain values for the multiple sets of subbands from among the K frequency-domain values (block 958), and means for transforming each set of frequency-domain values to the time domain to obtain a respective set of modulation symbols sent in the multi-carrier transmission symbol (block 960).



FIG. 10 shows a block diagram of a transmitter 1010 and a receiver 1050. For the forward link, transmitter 1010 is part of a base station and receiver 1050 is part of a terminal. For the reverse link, transmitter 1010 is part of a terminal and receiver 1050 is part of a base station.


At transmitter 1010, a transmit (TX) data and pilot processor 1020 encodes, interleaves, and symbol maps data (e.g., traffic data and signaling) and generates data symbols. Processor 1020 also generates pilot symbols and multiplexes the data symbols and pilot symbols. A data symbol is a modulation symbol for data, a pilot symbol is a modulation symbol for pilot, a modulation symbol is a complex value for a point in a signal constellation (e.g., for PSK or QAM), and a symbol is a complex value. An SC-FDMA modulator 1030 performs modulation on the multiplexed data and pilot symbols and generates transmission symbols. Modulator 1030 may generate single-carrier transmission symbols, e.g., as shown in FIG. 3A or 3B. Modulator 1030 may also implement multi-carrier SC-FDMA modulator 600 in FIG. 6 and generate multi-carrier transmission symbols, e.g., as shown in FIG. 7. A transmitter unit (TMTR) 1032 processes (e.g., converts to analog, amplifies, filters, and frequency upconverts) the transmission symbols and generates a radio frequency (RF) modulated signal, which is transmitted via an antenna 1034.


At receiver 1050, an antenna 1052 receives the transmitted signal and provides a received signal. A receiver unit (RCVR) 1054 conditions (e.g., filters, amplifies, frequency downconverts, and digitizes) the received signal and provides input samples. An SC-FDMA demodulator (Demod) 1060 performs demodulation on the input samples and provides received data values and received pilot values for subbands used for data and pilot transmission. A channel estimator/processor 1080 derives a channel estimate based on the received pilot values. Demodulator 1060 also performs data detection (or equalization) on the received data values with the channel estimate and provides data symbol estimates. A receive (RX) data processor 1070 symbol demaps, deinterleaves, and decodes the data symbol estimates and provides decoded data. In general, the processing by demodulator 1060 and RX data processor 1070 at receiver 1050 is complementary to the processing by modulator 1030 and TX data and pilot processor 1020, respectively, at transmitter 1010.


Controllers/processors 1040 and 1090 direct the operation of various processing units at transmitter 1010 and receiver 1050, respectively. Memories 1042 and 1092 store program codes and data for transmitter 1010 and receiver 1050, respectively.


The techniques described herein may be implemented by various means. For example, these techniques may be implemented in hardware, firmware, software, or a combination thereof. For a hardware implementation, the processing units at a transmitter may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, or a combination thereof. The processing units at a receiver may also be implemented with one or more ASICs, DSPs, processors, and so on.


For a firmware and/or software implementation, the techniques may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The software codes may be stored in a memory (e.g., memory 1042 or 1092 in FIG. 10) and executed by a processor (e.g., processor 1040 or 1090). The memory may be implemented within the processor or external to the processor.


The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims
  • 1. An apparatus comprising: at least one processor configured: to generate multiple single-carrier frequency division multiple access waveforms carrying modulation symbols in time domain on multiple sets of subbands,to pre-process the multiple single-carrier frequency division multiple access waveforms by cyclically delaying the multiple single-carrier frequency division multiple access waveforms by different amounts to obtain multiple pre-processed single-carrier frequency division multiple access waveforms, andto generate a transmission symbol with the multiple pre-processed single-carrier frequency division multiple access waveforms; anda memory coupled to the at least one processor.
  • 2. The apparatus of claim 1, wherein the at least one processor is configured to filter the multiple single-carrier frequency division multiple access waveforms with a set of at least one filter.
  • 3. The apparatus of claim 2, wherein the at least one processor is configured to select the set of at least one filter from among multiple sets of at least one filter.
  • 4. The apparatus of claim 2, wherein the at least one processor is configured to select the set of at least one filter to achieve a low peak-to-average power ratio for the transmission symbol.
  • 5. The apparatus of claim 1, wherein the at least one processor is configured to transform multiple sets of modulation symbols to frequency domain to obtain multiple sets of frequency domain values, to map the multiple sets of frequency domain values to the multiple sets of subbands to generate multiple sequences, and to transform the multiple sequences to time domain to generate the multiple single-carrier frequency division multiple access waveforms.
  • 6. The apparatus of claim 1, wherein the at least one processor is configured to combine the multiple pre-processed waveforms to obtain a composite waveform, and to append a cyclic prefix to the composite waveform to generate the transmission symbol.
  • 7. The apparatus of claim 1, wherein each of the multiple sets of subbands includes multiple adjacent subbands.
  • 8. The apparatus of claim 1, wherein each of the multiple sets of subbands includes multiple subbands distributed across a plurality of subbands.
  • 9. The apparatus of claim 8, wherein each of the multiple sets of subbands includes multiple groups of subbands.
  • 10. The apparatus of claim 1, wherein the at least one processor is configured to generate two single-carrier frequency division multiple access waveforms carrying modulation symbols on two sets of subbands.
  • 11. The apparatus of claim 10, wherein the two single-carrier frequency division multiple access waveforms include first and second single-carrier frequency division multiple access waveforms, and wherein the at least one processor is configured to cyclically delay the first single-carrier frequency division multiple access waveform by zero sample and to cyclically delay the second single-carrier frequency division multiple access waveform by K/(2N) samples, where K is the total number of subbands and N is the number of subbands in each of the two sets.
  • 12. A method comprising: generating multiple single-carrier frequency division multiple access waveforms carrying modulation symbols in time domain on multiple sets of subbands;pre-processing the multiple single-carrier frequency division multiple access waveforms to obtain multiple pre-processed single-carrier frequency division multiple access waveforms, wherein the pre-processing comprises cyclically delaying the multiple single-carrier frequency division multiple access waveforms by different amounts; andgenerating a transmission symbol with the multiple pre-processed single-carrier frequency division multiple access waveforms.
  • 13. The method of claim 12, wherein the generating the multiple single-carrier frequency division multiple access waveforms comprises: transforming multiple sets of modulation symbols to frequency domain to obtain multiple sets of frequency domain values,mapping the multiple sets of frequency domain values to the multiple sets of subbands to generate multiple sequences, andtransforming the multiple sequences to time domain to generate the multiple single-carrier frequency division multiple access waveforms.
  • 14. The method of claim 12, wherein the generating the transmission symbol comprises combining the multiple pre-processed waveforms to obtain a composite waveform, and appending a cyclic prefix to the composite waveform to generate the transmission symbol.
  • 15. An apparatus comprising: means for generating multiple single-carrier frequency division multiple access waveforms carrying modulation symbols in time domain on multiple sets of subbands;means for pre-processing the multiple single-carrier frequency division multiple access waveforms to obtain multiple pre-processed single-carrier frequency division multiple access waveforms, wherein the means for pre-processing comprises means for cyclically delaying the multiple waveforms by different amounts; andmeans for generating a transmission symbol with the multiple pre-processed single-carrier frequency division multiple access waveforms.
  • 16. The apparatus of claim 15, wherein the means for generating the multiple single-carrier frequency division multiple access waveforms comprises: means for transforming multiple sets of modulation symbols to frequency domain to obtain multiple sets of frequency domain values,means for mapping the multiple sets of frequency domain values to the multiple sets of subbands to generate multiple sequences, andmeans for transforming the multiple sequences to time domain to generate the multiple single-carrier frequency division multiple access waveforms.
  • 17. The apparatus of claim 15, wherein the means for generating the transmission symbol comprises: means for combining the multiple pre-processed waveforms to obtain a composite waveform, andmeans for appending a cyclic prefix to the composite waveform to generate the transmission symbol.
  • 18. An apparatus comprising: at least one processor configured to receive a transmission symbol comprised of multiple single-carrier frequency division multiple access waveforms carrying multiple sets of modulation symbols on multiple sets of subbands, wherein the multiple single-carrier frequency division multiple access waveforms are pre-processed by cyclically delaying the multiple single-carrier frequency division multiple access waveforms by different amounts to obtain preprocessed multiple single-carrier frequency division multiple access waveforms which are combined to form the transmission symbol, to transform the received transmission symbol to frequency domain to obtain multiple sets of frequency-domain values for the multiple sets of subbands, and to transform the multiple sets of frequency-domain values to time domain to obtain estimates for the multiple sets of modulation symbols; anda memory coupled to the at least one processor.
  • 19. The apparatus of claim 18, wherein the at least one processor is configured to filter the multiple sets of frequency-domain values with a set of at least one filter.
  • 20. An apparatus comprising: means for receiving a transmission symbol comprised of multiple single-carrier frequency division multiple access waveforms carrying multiple sets of modulation symbols on multiple sets of subbands, wherein the multiple single-carrier frequency division multiple access waveforms are pre-processed by cyclically delaying the multiple single-carrier frequency division multiple access waveforms by different amounts to obtain preprocessed multiple single-carrier frequency division multiple access waveforms which are combined to form the transmission symbol;means for transforming the received transmission symbol to frequency domain to obtain multiple sets of frequency-domain values for the multiple sets of subbands; andmeans for transforming the multiple sets of frequency-domain values to time domain to obtain estimates for the multiple sets of modulation symbols.
RELATED APPLICATION

The present Application for Patent is a Divisional of patent application Ser. No. 11/325,980 entitled “FREQUENCY DIVISION MULTIPLE ACCESS SCHEMES FOR WIRELESS COMMUNICATION” filed Jan. 4, 2006, pending, which claims priority to Provisional Application No. 60/738,129 entitled “FREQUENCY DIVISION MULTIPLE ACCESS SCHEMES FOR WIRELESS COMMUNICATION” filed Nov. 18, 2005, both of which are assigned to the assignee hereof and hereby expressly incorporated by reference herein.

US Referenced Citations (670)
Number Name Date Kind
4393276 Steele Jul 1983 A
4554668 Deman et al. Nov 1985 A
4747137 Matsunaga May 1988 A
4783779 Takahata et al. Nov 1988 A
4783780 Alexis Nov 1988 A
4975952 Mabey et al. Dec 1990 A
5008900 Critchlow et al. Apr 1991 A
5115248 Roederer May 1992 A
5268694 Jan et al. Dec 1993 A
5282222 Fattouche et al. Jan 1994 A
5363408 Paik et al. Nov 1994 A
5371761 Daffara et al. Dec 1994 A
5384810 Amrany Jan 1995 A
5406551 Saito et al. Apr 1995 A
5410538 Roche et al. Apr 1995 A
5455839 Eyuboglu Oct 1995 A
5465253 Rahnema Nov 1995 A
5491727 Petit Feb 1996 A
5513379 Benveniste et al. Apr 1996 A
5539748 Raith Jul 1996 A
5548582 Brajal et al. Aug 1996 A
5583869 Grube et al. Dec 1996 A
5594738 Crisler et al. Jan 1997 A
5604744 Andersson et al. Feb 1997 A
5612978 Blanchard et al. Mar 1997 A
5625876 Gilhousen et al. Apr 1997 A
5684491 Newman et al. Nov 1997 A
5726978 Frodigh et al. Mar 1998 A
5732113 Schmidl et al. Mar 1998 A
5745487 Hamaki Apr 1998 A
5768276 Diachina et al. Jun 1998 A
5790537 Yoon et al. Aug 1998 A
5812938 Gilhousen et al. Sep 1998 A
5815488 Williams et al. Sep 1998 A
5822368 Wang Oct 1998 A
5838268 Frenkel Nov 1998 A
5867478 Baum et al. Feb 1999 A
5870393 Yano et al. Feb 1999 A
5887023 Mabuchi Mar 1999 A
5907585 Suzuki et al. May 1999 A
5920571 Houck et al. Jul 1999 A
5926470 Tiedemann, Jr. Jul 1999 A
5933421 Alamouti et al. Aug 1999 A
5949814 Odenwalder et al. Sep 1999 A
5953325 Willars Sep 1999 A
5955992 Shattil Sep 1999 A
5956642 Larsson et al. Sep 1999 A
5995992 Eckard Nov 1999 A
5999826 Whinnett Dec 1999 A
6002942 Park Dec 1999 A
6016123 Barton et al. Jan 2000 A
6038263 Kotzin et al. Mar 2000 A
6038450 Brink et al. Mar 2000 A
6052364 Chalmers et al. Apr 2000 A
6061337 Light et al. May 2000 A
6067315 Sandin May 2000 A
6075350 Peng Jun 2000 A
6075797 Thomas Jun 2000 A
6076114 Wesley Jun 2000 A
6088345 Sakoda et al. Jul 2000 A
6108323 Gray Aug 2000 A
6108550 Wiorek et al. Aug 2000 A
6112094 Dent Aug 2000 A
6128776 Kang Oct 2000 A
6138037 Jaamies Oct 2000 A
6141317 Marchok et al. Oct 2000 A
6154484 Lee et al. Nov 2000 A
6169910 Tamil et al. Jan 2001 B1
6172993 Kim et al. Jan 2001 B1
6175550 Van Nee Jan 2001 B1
6175650 Sindhu et al. Jan 2001 B1
6176550 Lamart et al. Jan 2001 B1
6198775 Khayrallah et al. Mar 2001 B1
6215983 Dogan et al. Apr 2001 B1
6226280 Roark et al. May 2001 B1
6232918 Wax et al. May 2001 B1
6240129 Reusens et al. May 2001 B1
6249683 Lundby et al. Jun 2001 B1
6256478 Allen et al. Jul 2001 B1
6271946 Chang et al. Aug 2001 B1
6272122 Wee Aug 2001 B1
6310704 Dogan et al. Oct 2001 B1
6317435 Tiedemann, Jr. et al. Nov 2001 B1
6335922 Tiedemann, Jr. et al. Jan 2002 B1
6337659 Kim Jan 2002 B1
6337983 Bonta et al. Jan 2002 B1
6353637 Mansour et al. Mar 2002 B1
6363060 Sarkar Mar 2002 B1
6374115 Barnes et al. Apr 2002 B1
6377539 Kang et al. Apr 2002 B1
6377809 Rezaiifar et al. Apr 2002 B1
6388998 Kasturia May 2002 B1
6393008 Cheng et al. May 2002 B1
6393012 Pankaj May 2002 B1
6401062 Murashima Jun 2002 B1
6438369 Huang et al. Aug 2002 B1
6449246 Barton et al. Sep 2002 B1
6466800 Sydon et al. Oct 2002 B1
6473467 Wallace et al. Oct 2002 B1
6477317 Itokawa Nov 2002 B1
6478422 Hansen Nov 2002 B1
6483820 Davidson et al. Nov 2002 B1
6487243 Hwang et al. Nov 2002 B1
6496790 Kathavate et al. Dec 2002 B1
6501810 Karim et al. Dec 2002 B1
6507601 Parsa et al. Jan 2003 B2
6519462 Lu et al. Feb 2003 B1
6529525 Pecen et al. Mar 2003 B1
6535666 Dogan et al. Mar 2003 B1
6539008 Ahn et al. Mar 2003 B1
6539213 Richards et al. Mar 2003 B1
6542485 Mujtaba Apr 2003 B1
6542743 Soliman Apr 2003 B1
6563806 Yano et al. May 2003 B1
6563881 Sakoda et al. May 2003 B1
6577739 Hurtig et al. Jun 2003 B1
6584140 Lee Jun 2003 B1
6590881 Wallace et al. Jul 2003 B1
6597746 Amrany et al. Jul 2003 B1
6601206 Marvasti Jul 2003 B1
6614857 Buehrer et al. Sep 2003 B1
6625172 Odenwalder et al. Sep 2003 B2
6636568 Kadous Oct 2003 B2
6654339 Bohnke et al. Nov 2003 B1
6654431 Barton et al. Nov 2003 B1
6657949 Jones, IV et al. Dec 2003 B1
6658258 Chen et al. Dec 2003 B1
6674787 Dick et al. Jan 2004 B1
6674810 Cheng Jan 2004 B1
6675012 Gray Jan 2004 B2
6678318 Lai Jan 2004 B1
6690951 Cuffaro et al. Feb 2004 B1
6693952 Chuah et al. Feb 2004 B1
6701165 Ho et al. Mar 2004 B1
6704571 Moon Mar 2004 B1
6711400 Aura Mar 2004 B1
6717908 Vijayan et al. Apr 2004 B2
6721568 Gustavsson et al. Apr 2004 B1
6724719 Tong et al. Apr 2004 B1
6731602 Watanabe et al. May 2004 B1
6735244 Hasegawa et al. May 2004 B1
6744743 Walton et al. Jun 2004 B2
6748220 Chow et al. Jun 2004 B1
6751444 Meiyappan Jun 2004 B1
6751456 Bilgic Jun 2004 B2
6754511 Halford et al. Jun 2004 B1
6763009 Bedekar et al. Jul 2004 B1
6765969 Vook et al. Jul 2004 B1
6776165 Jin Aug 2004 B2
6776765 Soukup et al. Aug 2004 B2
6778513 Kasapi et al. Aug 2004 B2
6785341 Walton et al. Aug 2004 B2
6798736 Black et al. Sep 2004 B1
6799043 Tiedemann, Jr. et al. Sep 2004 B2
6802035 Catreux et al. Oct 2004 B2
6804307 Popovic Oct 2004 B1
6813284 Vayanos et al. Nov 2004 B2
6821535 Nurmi et al. Nov 2004 B2
6828293 Hazenkamp et al. Dec 2004 B1
6829293 Jones et al. Dec 2004 B2
6831943 Dabak et al. Dec 2004 B1
6842487 Larsson Jan 2005 B1
6850481 Wu et al. Feb 2005 B2
6850509 Lee et al. Feb 2005 B2
6862271 Medvedev et al. Mar 2005 B2
6870808 Liu et al. Mar 2005 B1
6870826 Ishizu Mar 2005 B1
6904097 Agami et al. Jun 2005 B2
6904283 Li et al. Jun 2005 B2
6904550 Sibecas et al. Jun 2005 B2
6907020 Periyalwar et al. Jun 2005 B2
6907269 Yamaguchi et al. Jun 2005 B2
6909707 Rotstein et al. Jun 2005 B2
6917602 Toskala et al. Jul 2005 B2
6917821 Kadous et al. Jul 2005 B2
6927728 Vook et al. Aug 2005 B2
6928047 Xia Aug 2005 B1
6934266 Dulin et al. Aug 2005 B2
6934275 Love et al. Aug 2005 B1
6934340 Dollard Aug 2005 B1
6940827 Li et al. Sep 2005 B2
6940842 Proctor, Jr. Sep 2005 B2
6940845 Benveniste Sep 2005 B2
6954448 Farley et al. Oct 2005 B2
6954481 Laroia et al. Oct 2005 B1
6954622 Nelson et al. Oct 2005 B2
6961364 Laroia et al. Nov 2005 B1
6963543 Diep et al. Nov 2005 B2
6970682 Crilly, Jr. et al. Nov 2005 B2
6975868 Joshi et al. Dec 2005 B2
6980540 Laroia et al. Dec 2005 B1
6985434 Wu et al. Jan 2006 B2
6985453 Lundby et al. Jan 2006 B2
6985466 Yun et al. Jan 2006 B1
6985498 Laroia et al. Jan 2006 B2
6987746 Song Jan 2006 B1
6993342 Kuchibhotla et al. Jan 2006 B2
7002900 Walton et al. Feb 2006 B2
7006529 Alastalo et al. Feb 2006 B2
7006557 Subrahmanya et al. Feb 2006 B2
7006848 Ling et al. Feb 2006 B2
7009500 Rao et al. Mar 2006 B2
7010048 Shattil Mar 2006 B1
7013143 Love et al. Mar 2006 B2
7016318 Pankaj et al. Mar 2006 B2
7016319 Baum et al. Mar 2006 B2
7016425 Kraiem Mar 2006 B1
7020110 Walton et al. Mar 2006 B2
7023880 El-Maleh et al. Apr 2006 B2
7039356 Nguyen May 2006 B2
7039370 Laroia et al. May 2006 B2
7042856 Walton et al. May 2006 B2
7042857 Krishnan et al. May 2006 B2
7047006 Classon et al. May 2006 B2
7050402 Schmidl et al. May 2006 B2
7050405 Attar et al. May 2006 B2
7054301 Sousa et al. May 2006 B1
7061898 Hashem et al. Jun 2006 B2
7069009 Li et al. Jun 2006 B2
7072315 Liu et al. Jul 2006 B1
7079867 Chun et al. Jul 2006 B2
7085574 Gaal et al. Aug 2006 B2
7095708 Alamouti et al. Aug 2006 B1
7095709 Walton et al. Aug 2006 B2
7099299 Liang et al. Aug 2006 B2
7099630 Brunner et al. Aug 2006 B2
7103384 Chun Sep 2006 B2
7106319 Ishiyama Sep 2006 B2
7113808 Hwang et al. Sep 2006 B2
7120134 Tiedemann, Jr. et al. Oct 2006 B2
7120395 Tong et al. Oct 2006 B2
7126928 Tiedemann, Jr. et al. Oct 2006 B2
7131086 Yamasaki et al. Oct 2006 B2
7133460 Bae et al. Nov 2006 B2
7139328 Thomas et al. Nov 2006 B2
7142864 Laroia et al. Nov 2006 B2
7145940 Gore et al. Dec 2006 B2
7145959 Harel et al. Dec 2006 B2
7149199 Sung et al. Dec 2006 B2
7149238 Agee et al. Dec 2006 B2
7151761 Palenius Dec 2006 B1
7151936 Wager et al. Dec 2006 B2
7154936 Bjerke et al. Dec 2006 B2
7155236 Chen et al. Dec 2006 B2
7157351 Cheng et al. Jan 2007 B2
7161971 Tiedemann, Jr. et al. Jan 2007 B2
7164649 Walton et al. Jan 2007 B2
7164696 Sano et al. Jan 2007 B2
7167916 Willen et al. Jan 2007 B2
7170937 Zhou Jan 2007 B2
7177297 Agrawal et al. Feb 2007 B2
7177351 Kadous Feb 2007 B2
7180627 Moylan et al. Feb 2007 B2
7181170 Love et al. Feb 2007 B2
7184426 Padovani et al. Feb 2007 B2
7184713 Kadous et al. Feb 2007 B2
7188300 Eriksson et al. Mar 2007 B2
7197282 Dent et al. Mar 2007 B2
7200177 Miyoshi Apr 2007 B2
7209712 Holtzman Apr 2007 B2
7215979 Nakagawa et al. May 2007 B2
7230941 Odenwalder et al. Jun 2007 B2
7230942 Laroia et al. Jun 2007 B2
7233634 Hassell Sweatman et al. Jun 2007 B1
7236747 Meacham et al. Jun 2007 B1
7242722 Krauss et al. Jul 2007 B2
7243150 Sher et al. Jul 2007 B2
7248559 Ma et al. Jul 2007 B2
7248841 Agee et al. Jul 2007 B2
7254158 Agrawal Aug 2007 B2
7257167 Lau Aug 2007 B2
7257406 Ji Aug 2007 B2
7257423 Iochi Aug 2007 B2
7260153 Nissani (Nissensohn) Aug 2007 B2
7280467 Smee et al. Oct 2007 B2
7289570 Schmidl et al. Oct 2007 B2
7289585 Sandhu et al. Oct 2007 B2
7290195 Guo et al. Oct 2007 B2
7292651 Li Nov 2007 B2
7292863 Chen et al. Nov 2007 B2
7295509 Laroia et al. Nov 2007 B2
7313086 Aizawa Dec 2007 B2
7313126 Yun et al. Dec 2007 B2
7313174 Alard et al. Dec 2007 B2
7313407 Shapira Dec 2007 B2
7327812 Auer Feb 2008 B2
7330701 Mukkavilli et al. Feb 2008 B2
7336727 Mukkavilli et al. Feb 2008 B2
7349371 Schein et al. Mar 2008 B2
7349667 Magee et al. Mar 2008 B2
7356000 Oprescu-Surcobe et al. Apr 2008 B2
7356005 Derryberry et al. Apr 2008 B2
7356073 Heikkila Apr 2008 B2
7359327 Oshiba Apr 2008 B2
7363055 Castrogiovanni et al. Apr 2008 B2
7366223 Chen et al. Apr 2008 B1
7366253 Kim et al. Apr 2008 B2
7366520 Haustein et al. Apr 2008 B2
7369531 Cho et al. May 2008 B2
7372911 Lindskog et al. May 2008 B1
7372912 Seo et al. May 2008 B2
7379489 Zuniga et al. May 2008 B2
7382764 Uehara Jun 2008 B2
7392014 Baker et al. Jun 2008 B2
7394865 Borran et al. Jul 2008 B2
7403745 Dominique et al. Jul 2008 B2
7403748 Keskitalo et al. Jul 2008 B1
7406119 Yamano et al. Jul 2008 B2
7406336 Astely et al. Jul 2008 B2
7411898 Erlich et al. Aug 2008 B2
7412212 Hottinen Aug 2008 B2
7418043 Shattil Aug 2008 B2
7418246 Kim et al. Aug 2008 B2
7423991 Cho et al. Sep 2008 B2
7426426 Van Baren Sep 2008 B2
7428426 Kiran et al. Sep 2008 B2
7433661 Kogiantis et al. Oct 2008 B2
7437164 Agrawal et al. Oct 2008 B2
7443835 Lakshmi Narayanan et al. Oct 2008 B2
7447270 Hottinen Nov 2008 B1
7450548 Haustein et al. Nov 2008 B2
7460466 Lee et al. Dec 2008 B2
7463698 Fujii et al. Dec 2008 B2
7468943 Gu et al. Dec 2008 B2
7469011 Lin et al. Dec 2008 B2
7471963 Kim et al. Dec 2008 B2
7483408 Bevan et al. Jan 2009 B2
7483719 Kim et al. Jan 2009 B2
7486735 Dubuc et al. Feb 2009 B2
7492788 Zhang et al. Feb 2009 B2
7499393 Ozluturk Mar 2009 B2
7508748 Kadous Mar 2009 B2
7508842 Baum et al. Mar 2009 B2
7512096 Kuzminskiy et al. Mar 2009 B2
7545867 Lou et al. Jun 2009 B1
7548506 Ma et al. Jun 2009 B2
7551546 Ma et al. Jun 2009 B2
7551564 Mattina Jun 2009 B2
7558293 Choi et al. Jul 2009 B2
7567621 Sampath et al. Jul 2009 B2
7573900 Kim et al. Aug 2009 B2
7599327 Zhuang Oct 2009 B2
7616955 Kim Nov 2009 B2
7623442 Laroia et al. Nov 2009 B2
7627051 Shen et al. Dec 2009 B2
7664061 Hottinen Feb 2010 B2
7676007 Choi et al. Mar 2010 B1
7684507 Levy Mar 2010 B2
7724777 Sutivong et al. May 2010 B2
7768979 Sutivong et al. Aug 2010 B2
7899497 Kish et al. Mar 2011 B2
7916624 Laroia et al. Mar 2011 B2
7924699 Laroia et al. Apr 2011 B2
7990843 Laroia et al. Aug 2011 B2
7990844 Laroia et al. Aug 2011 B2
8014271 Laroia et al. Sep 2011 B2
8045512 Khandekar et al. Oct 2011 B2
8095141 Teague Jan 2012 B2
8098568 Laroia et al. Jan 2012 B2
8098569 Laroia et al. Jan 2012 B2
8446892 Ji et al. May 2013 B2
8462859 Sampath et al. Jun 2013 B2
8477684 Khandekar et al. Jul 2013 B2
8565194 Gorokhov et al. Oct 2013 B2
20010021180 Lee et al. Sep 2001 A1
20010024427 Suzuki Sep 2001 A1
20010030948 Tiedemann, Jr. Oct 2001 A1
20010053140 Choi et al. Dec 2001 A1
20010055294 Motoyoshi Dec 2001 A1
20020015405 Sepponen et al. Feb 2002 A1
20020018157 Zhang et al. Feb 2002 A1
20020044524 Laroia et al. Apr 2002 A1
20020061742 Lapaille et al. May 2002 A1
20020077152 Johnson et al. Jun 2002 A1
20020085521 Tripathi et al. Jul 2002 A1
20020090004 Rinchiuso Jul 2002 A1
20020090024 Tan Jul 2002 A1
20020122400 Vayanos et al. Sep 2002 A1
20020128035 Jokinen et al. Sep 2002 A1
20020159422 Li et al. Oct 2002 A1
20020160781 Bark et al. Oct 2002 A1
20020168946 Aizawa et al. Nov 2002 A1
20020172293 Kuchi et al. Nov 2002 A1
20020176398 Nidda Nov 2002 A1
20020193146 Wallace et al. Dec 2002 A1
20030002464 Rezaiifar et al. Jan 2003 A1
20030035491 Walton et al. Feb 2003 A1
20030040283 Kawai et al. Feb 2003 A1
20030043732 Walton et al. Mar 2003 A1
20030043764 Kim et al. Mar 2003 A1
20030063579 Lee Apr 2003 A1
20030068983 Kim et al. Apr 2003 A1
20030072280 McFarland et al. Apr 2003 A1
20030072395 Jia et al. Apr 2003 A1
20030073409 Nobukiyo et al. Apr 2003 A1
20030073464 Giannakis et al. Apr 2003 A1
20030076890 Hochwald et al. Apr 2003 A1
20030086393 Vasudevan et al. May 2003 A1
20030096579 Ito et al. May 2003 A1
20030103520 Chen et al. Jun 2003 A1
20030112745 Zhuang et al. Jun 2003 A1
20030123414 Tong et al. Jul 2003 A1
20030125040 Walton et al. Jul 2003 A1
20030142648 Semper Jul 2003 A1
20030147371 Choi et al. Aug 2003 A1
20030157900 Gaal et al. Aug 2003 A1
20030181170 Sim Sep 2003 A1
20030185310 Ketchum et al. Oct 2003 A1
20030190897 Lei et al. Oct 2003 A1
20030193915 Lee et al. Oct 2003 A1
20030202491 Tiedemann, Jr. et al. Oct 2003 A1
20030228850 Hwang Dec 2003 A1
20030235255 Ketchum et al. Dec 2003 A1
20040002364 Trikkonen et al. Jan 2004 A1
20040015692 Green et al. Jan 2004 A1
20040017785 Zelst Jan 2004 A1
20040048609 Kosaka Mar 2004 A1
20040058687 Kim et al. Mar 2004 A1
20040066761 Giannakis et al. Apr 2004 A1
20040072565 Nobukiyo et al. Apr 2004 A1
20040076185 Kim et al. Apr 2004 A1
20040077379 Smith et al. Apr 2004 A1
20040081195 El-Maleh et al. Apr 2004 A1
20040087325 Cheng et al. May 2004 A1
20040097215 Abe et al. May 2004 A1
20040098505 Clemmensen May 2004 A1
20040105489 Kim et al. Jun 2004 A1
20040114618 Tong et al. Jun 2004 A1
20040120411 Walton et al. Jun 2004 A1
20040125792 Bradbury et al. Jul 2004 A1
20040131007 Smee et al. Jul 2004 A1
20040136344 Kim et al. Jul 2004 A1
20040136349 Walton et al. Jul 2004 A1
20040156328 Walton et al. Aug 2004 A1
20040160914 Sarkar Aug 2004 A1
20040160933 Odenwalder et al. Aug 2004 A1
20040166867 Hawe Aug 2004 A1
20040166887 Laroia et al. Aug 2004 A1
20040170152 Nagao et al. Sep 2004 A1
20040170157 Kim et al. Sep 2004 A1
20040171384 Holma et al. Sep 2004 A1
20040179627 Ketchum et al. Sep 2004 A1
20040185792 Alexiou et al. Sep 2004 A1
20040202257 Mehta et al. Oct 2004 A1
20040208138 Hayashi et al. Oct 2004 A1
20040219819 Di Mascio Nov 2004 A1
20040219919 Whinnett et al. Nov 2004 A1
20040224711 Panchal et al. Nov 2004 A1
20040228313 Cheng et al. Nov 2004 A1
20040240419 Abrishamkar et al. Dec 2004 A1
20040240572 Brutel et al. Dec 2004 A1
20040248604 Vaidyanathan Dec 2004 A1
20040252529 Huber et al. Dec 2004 A1
20040252629 Hasegawa et al. Dec 2004 A1
20040252655 Lim et al. Dec 2004 A1
20040252662 Cho Dec 2004 A1
20040257979 Ro et al. Dec 2004 A1
20040264507 Cho et al. Dec 2004 A1
20050002412 Sagfors et al. Jan 2005 A1
20050002440 Alamouti et al. Jan 2005 A1
20050002468 Walton et al. Jan 2005 A1
20050003782 Wintzell Jan 2005 A1
20050008091 Boutros et al. Jan 2005 A1
20050009486 Al-Dhahir et al. Jan 2005 A1
20050013263 Kim et al. Jan 2005 A1
20050030886 Wu et al. Feb 2005 A1
20050034079 Gunasekar et al. Feb 2005 A1
20050041611 Sandhu Feb 2005 A1
20050041618 Wei et al. Feb 2005 A1
20050041775 Batzinger et al. Feb 2005 A1
20050044206 Johansson et al. Feb 2005 A1
20050047517 Georgios et al. Mar 2005 A1
20050052991 Kadous Mar 2005 A1
20050053081 Andersson et al. Mar 2005 A1
20050063298 Ling et al. Mar 2005 A1
20050068921 Liu Mar 2005 A1
20050073976 Fujii Apr 2005 A1
20050084000 Krauss et al. Apr 2005 A1
20050085236 Gerlach et al. Apr 2005 A1
20050111397 Attar et al. May 2005 A1
20050122898 Jang et al. Jun 2005 A1
20050135324 Kim et al. Jun 2005 A1
20050135498 Yee Jun 2005 A1
20050141624 Lakshmipathi et al. Jun 2005 A1
20050147024 Jung et al. Jul 2005 A1
20050157807 Shim et al. Jul 2005 A1
20050159162 Park Jul 2005 A1
20050164709 Balasubramanian et al. Jul 2005 A1
20050165949 Teague Jul 2005 A1
20050174981 Heath et al. Aug 2005 A1
20050175070 Grob et al. Aug 2005 A1
20050180311 Wang et al. Aug 2005 A1
20050180313 Kim et al. Aug 2005 A1
20050192011 Hong et al. Sep 2005 A1
20050195733 Walton et al. Sep 2005 A1
20050195852 Vayanos et al. Sep 2005 A1
20050195886 Lampinen et al. Sep 2005 A1
20050201296 Vannithamby et al. Sep 2005 A1
20050204247 Guo et al. Sep 2005 A1
20050207367 Onggosanusi et al. Sep 2005 A1
20050239465 Lee et al. Oct 2005 A1
20050243791 Park et al. Nov 2005 A1
20050246548 Laitinen Nov 2005 A1
20050249266 Brown et al. Nov 2005 A1
20050254467 Li et al. Nov 2005 A1
20050254477 Lee et al. Nov 2005 A1
20050254556 Fujii et al. Nov 2005 A1
20050259005 Chiang et al. Nov 2005 A1
20050259723 Blanchard Nov 2005 A1
20050259757 Wu et al. Nov 2005 A1
20050265293 Ro et al. Dec 2005 A1
20050265470 Kishigami et al. Dec 2005 A1
20050276347 Mujtaba et al. Dec 2005 A1
20050276348 Vandenameele Dec 2005 A1
20050277423 Sandhu et al. Dec 2005 A1
20050281290 Khandekar et al. Dec 2005 A1
20050282500 Wang et al. Dec 2005 A1
20050286408 Jin et al. Dec 2005 A1
20050289256 Cudak et al. Dec 2005 A1
20060002451 Fukuta et al. Jan 2006 A1
20060013285 Kobayashi et al. Jan 2006 A1
20060018336 Sutivong et al. Jan 2006 A1
20060018347 Agrawal Jan 2006 A1
20060018397 Sampath et al. Jan 2006 A1
20060026344 Sun Hsu et al. Feb 2006 A1
20060029289 Yamaguchi et al. Feb 2006 A1
20060034173 Teague et al. Feb 2006 A1
20060039332 Kotzin Feb 2006 A1
20060039344 Khan Feb 2006 A1
20060039500 Yun et al. Feb 2006 A1
20060040655 Kim Feb 2006 A1
20060050770 Wallace et al. Mar 2006 A1
20060056340 Hottinen et al. Mar 2006 A1
20060057958 Ngo et al. Mar 2006 A1
20060067421 Walton et al. Mar 2006 A1
20060078075 Stamoulis et al. Apr 2006 A1
20060083159 Laroia et al. Apr 2006 A1
20060083183 Teague et al. Apr 2006 A1
20060092054 Li et al. May 2006 A1
20060104333 Rainbolt et al. May 2006 A1
20060104381 Menon et al. May 2006 A1
20060111054 Pan et al. May 2006 A1
20060111148 Mukkavilli et al. May 2006 A1
20060114858 Walton et al. Jun 2006 A1
20060120469 Maltsev et al. Jun 2006 A1
20060120471 Learned et al. Jun 2006 A1
20060126491 Ro et al. Jun 2006 A1
20060133269 Prakash et al. Jun 2006 A1
20060133455 Agrawal et al. Jun 2006 A1
20060133521 Sampath et al. Jun 2006 A1
20060140289 Mandyam et al. Jun 2006 A1
20060153239 Julian et al. Jul 2006 A1
20060155534 Lin et al. Jul 2006 A1
20060156199 Palanki et al. Jul 2006 A1
20060172704 Nishio et al. Aug 2006 A1
20060189321 Oh et al. Aug 2006 A1
20060193294 Jorswieck et al. Aug 2006 A1
20060203708 Sampath et al. Sep 2006 A1
20060203794 Sampath et al. Sep 2006 A1
20060203891 Sampath et al. Sep 2006 A1
20060203932 Palanki et al. Sep 2006 A1
20060209670 Gorokhov et al. Sep 2006 A1
20060209732 Gorokhov et al. Sep 2006 A1
20060209754 Ji et al. Sep 2006 A1
20060209764 Kim et al. Sep 2006 A1
20060209973 Gorokhov et al. Sep 2006 A1
20060215777 Krishnamoorthi Sep 2006 A1
20060218459 Hedberg Sep 2006 A1
20060223449 Sampath et al. Oct 2006 A1
20060233124 Palanki Oct 2006 A1
20060233131 Gore et al. Oct 2006 A1
20060262754 Andersson et al. Nov 2006 A1
20060270427 Shida et al. Nov 2006 A1
20060274836 Sampath et al. Dec 2006 A1
20060285485 Agrawal et al. Dec 2006 A1
20060285515 Julian et al. Dec 2006 A1
20060286974 Gore et al. Dec 2006 A1
20060286982 Prakash et al. Dec 2006 A1
20060286995 Onggosanusi et al. Dec 2006 A1
20060291371 Sutivong et al. Dec 2006 A1
20060292989 Gerlach et al. Dec 2006 A1
20070004430 Hyun et al. Jan 2007 A1
20070005749 Sampath Jan 2007 A1
20070009011 Coulson Jan 2007 A1
20070019596 Barriac et al. Jan 2007 A1
20070025345 Bachl et al. Feb 2007 A1
20070041404 Palanki et al. Feb 2007 A1
20070041457 Kadous et al. Feb 2007 A1
20070047485 Gorokhov et al. Mar 2007 A1
20070047495 Ji et al. Mar 2007 A1
20070049218 Gorokhov et al. Mar 2007 A1
20070053282 Tong et al. Mar 2007 A1
20070053383 Choi et al. Mar 2007 A1
20070060178 Gorokhov et al. Mar 2007 A1
20070064669 Classon et al. Mar 2007 A1
20070071147 Sampath et al. Mar 2007 A1
20070097853 Khandekar et al. May 2007 A1
20070097889 Wang et al. May 2007 A1
20070097897 Teague et al. May 2007 A1
20070097908 Khandekar et al. May 2007 A1
20070097909 Khandekar et al. May 2007 A1
20070097910 Ji et al. May 2007 A1
20070097922 Parekh et al. May 2007 A1
20070097927 Gorokhov et al. May 2007 A1
20070097942 Gorokhov et al. May 2007 A1
20070097981 Papasakellariou May 2007 A1
20070098050 Khandekar et al. May 2007 A1
20070098120 Wang May 2007 A1
20070110172 Faulkner et al. May 2007 A1
20070115795 Gore et al. May 2007 A1
20070149194 Das et al. Jun 2007 A1
20070149228 Das Jun 2007 A1
20070159969 Das et al. Jul 2007 A1
20070160115 Palanki et al. Jul 2007 A1
20070165738 Barriac et al. Jul 2007 A1
20070177631 Popovic et al. Aug 2007 A1
20070177681 Choi et al. Aug 2007 A1
20070183303 Pi et al. Aug 2007 A1
20070183386 Muharemovic et al. Aug 2007 A1
20070207812 Borran et al. Sep 2007 A1
20070211616 Khandekar et al. Sep 2007 A1
20070211667 Agrawal et al. Sep 2007 A1
20070230324 Li et al. Oct 2007 A1
20070242653 Yang et al. Oct 2007 A1
20070263743 Lee et al. Nov 2007 A1
20070280336 Zhang et al. Dec 2007 A1
20070281702 Lim et al. Dec 2007 A1
20080039129 Li et al. Feb 2008 A1
20080063099 Laroia et al. Mar 2008 A1
20080095223 Tong et al. Apr 2008 A1
20080095262 Ho et al. Apr 2008 A1
20080151829 Khandekar et al. Jun 2008 A1
20080181139 Rangarajan et al. Jul 2008 A1
20080214222 Atarashi et al. Sep 2008 A1
20080253279 Ma et al. Oct 2008 A1
20080267157 Lee et al. Oct 2008 A1
20080299983 Kwak et al. Dec 2008 A1
20090003466 Taherzadehboroujeni et al. Jan 2009 A1
20090010351 Laroia et al. Jan 2009 A1
20090022098 Novak et al. Jan 2009 A1
20090041150 Tsai et al. Feb 2009 A1
20090110103 Maltsev et al. Apr 2009 A1
20090180459 Orlik et al. Jul 2009 A1
20090197646 Tamura et al. Aug 2009 A1
20090201826 Gorokhov et al. Aug 2009 A1
20090201872 Gorokhov et al. Aug 2009 A1
20090213750 Gorokhov et al. Aug 2009 A1
20090213950 Gorokhov et al. Aug 2009 A1
20090262641 Laroia et al. Oct 2009 A1
20090262699 Wengerter et al. Oct 2009 A1
20090285163 Zhang et al. Nov 2009 A1
20090287977 Chang et al. Nov 2009 A1
20100002570 Walton et al. Jan 2010 A9
20100135242 Nam et al. Jun 2010 A1
20100220800 Erell et al. Sep 2010 A1
20100232384 Farajidana et al. Sep 2010 A1
20100238902 Ji et al. Sep 2010 A1
20100254263 Chen et al. Oct 2010 A1
20110235733 Laroia et al. Sep 2011 A1
20110235745 Laroia et al. Sep 2011 A1
20110235746 Laroia et al. Sep 2011 A1
20110235747 Laroia et al. Sep 2011 A1
20110306291 Ma et al. Dec 2011 A1
20120002623 Khandekar et al. Jan 2012 A1
20120063441 Palanki Mar 2012 A1
20120120925 Kadous et al. May 2012 A1
20120140798 Kadous et al. Jun 2012 A1
20120140838 Kadous et al. Jun 2012 A1
20130016678 Laroia et al. Jan 2013 A1
20130208681 Gore et al. Aug 2013 A1
Foreign Referenced Citations (398)
Number Date Country
2005319084 Apr 2010 AU
2348137 Nov 2001 CA
2477536 Sep 2003 CA
2540688 May 2005 CA
2577369 Mar 2006 CA
19931400 Dec 1994 CL
8461997 Jan 1998 CL
009531997 Jan 1998 CL
27102004 Aug 2005 CL
22892004 Sep 2005 CL
30862004 Oct 2005 CL
29932005 May 2006 CL
15202006 Dec 2006 CL
22032006 Feb 2007 CL
15212006 Mar 2007 CL
14922006 Apr 2007 CL
14892006 May 2007 CL
14902006 May 2007 CL
29032006 May 2007 CL
29062006 May 2007 CL
29042006 Jun 2007 CL
29022006 Jul 2007 CL
29082006 Oct 2007 CL
46151 Dec 2009 CL
29012006 Jan 2010 CL
29072006 Jan 2010 CL
1252919 May 2000 CN
1267437 Sep 2000 CN
1284795 Feb 2001 CN
1296682 May 2001 CN
1344451 Apr 2002 CN
1346221 Apr 2002 CN
1383631 Dec 2002 CN
1386344 Dec 2002 CN
1402916 Mar 2003 CN
1424835 Jun 2003 CN
1132474 Dec 2003 CN
1467938 Jan 2004 CN
1487755 Apr 2004 CN
1520220 Aug 2004 CN
1525678 Sep 2004 CN
1636346 Jul 2005 CN
1642051 Jul 2005 CN
1647436 Jul 2005 CN
19800953 Jul 1999 DE
19957288 May 2001 DE
10240138 Aug 2003 DE
10254384 Jun 2004 DE
0488976 Jun 1992 EP
0568291 Nov 1993 EP
0786889 Jul 1997 EP
0805576 Nov 1997 EP
0807989 Nov 1997 EP
0844796 May 1998 EP
0981222 Feb 2000 EP
1001570 May 2000 EP
1047209 Oct 2000 EP
1061687 Dec 2000 EP
1091516 Apr 2001 EP
1093241 Apr 2001 EP
1148673 Oct 2001 EP
1180907 Feb 2002 EP
1187506 Mar 2002 EP
1204217 May 2002 EP
1255369 Nov 2002 EP
1267513 Dec 2002 EP
1286490 Feb 2003 EP
1335504 Aug 2003 EP
1376920 Jan 2004 EP
1392073 Feb 2004 EP
1434365 Jun 2004 EP
1441469 Jul 2004 EP
1445873 Aug 2004 EP
1465449 Oct 2004 EP
1478204 Nov 2004 EP
1507421 Feb 2005 EP
1513356 Mar 2005 EP
1531575 May 2005 EP
1533950 May 2005 EP
1542488 Jun 2005 EP
1601149 Nov 2005 EP
1643669 Apr 2006 EP
1538863 Jun 2006 EP
1898542 Mar 2008 EP
1941693 Jul 2011 EP
2584884 Jan 1987 FR
2279540 Jan 1995 GB
2348776 Oct 2000 GB
2412541 Sep 2005 GB
167573 Feb 2011 IL
201872 May 2012 IL
H04111544 Apr 1992 JP
4301931 Oct 1992 JP
7336323 Dec 1995 JP
8116329 May 1996 JP
08288927 Nov 1996 JP
9008725 Jan 1997 JP
H09501548 Feb 1997 JP
9131342 May 1997 JP
1997182148 Jul 1997 JP
09214404 Aug 1997 JP
9284200 Oct 1997 JP
10117162 May 1998 JP
H10210000 Aug 1998 JP
10322304 Dec 1998 JP
11191756 Jul 1999 JP
11196109 Jul 1999 JP
11508417 Jul 1999 JP
11239155 Aug 1999 JP
11298954 Oct 1999 JP
11331927 Nov 1999 JP
2000102065 Apr 2000 JP
2000184425 Jun 2000 JP
2000511750 Sep 2000 JP
2000332724 Nov 2000 JP
2001016644 Jan 2001 JP
2001045573 Feb 2001 JP
2001057545 Feb 2001 JP
2001156732 Jun 2001 JP
2001238269 Aug 2001 JP
2001245355 Sep 2001 JP
2001249802 Sep 2001 JP
2001285927 Oct 2001 JP
2001521698 Nov 2001 JP
2001526012 Dec 2001 JP
2002026790 Jan 2002 JP
2002515203 May 2002 JP
2002290148 Oct 2002 JP
2002534925 Oct 2002 JP
2002534941 Oct 2002 JP
2003032218 Jan 2003 JP
2003500909 Jan 2003 JP
200369472 Mar 2003 JP
2003101515 Apr 2003 JP
2003169367 Jun 2003 JP
2003174426 Jun 2003 JP
2003199173 Jul 2003 JP
2003520523 Jul 2003 JP
2003249907 Sep 2003 JP
2003292667 Oct 2003 JP
2003318857 Nov 2003 JP
2003347985 Dec 2003 JP
2003348047 Dec 2003 JP
2004007643 Jan 2004 JP
2004023716 Jan 2004 JP
2004048716 Feb 2004 JP
200472457 Mar 2004 JP
2004072157 Mar 2004 JP
2004096142 Mar 2004 JP
2004507950 Mar 2004 JP
2004153676 May 2004 JP
2004158901 Jun 2004 JP
2004162388 Jun 2004 JP
2004194262 Jul 2004 JP
2004201296 Jul 2004 JP
2004215022 Jul 2004 JP
2004221972 Aug 2004 JP
2004266818 Sep 2004 JP
2004529524 Sep 2004 JP
2004297276 Oct 2004 JP
2004297370 Oct 2004 JP
2004297756 Oct 2004 JP
2004534456 Nov 2004 JP
2004535106 Nov 2004 JP
2005006337 Jan 2005 JP
2005020530 Jan 2005 JP
2005502218 Jan 2005 JP
2005506757 Mar 2005 JP
2005130491 May 2005 JP
2005197772 Jul 2005 JP
2005203961 Jul 2005 JP
2005521327 Jul 2005 JP
2005521358 Jul 2005 JP
2006505172 Feb 2006 JP
2006505230 Feb 2006 JP
2006506860 Feb 2006 JP
2006211537 Aug 2006 JP
2006518173 Aug 2006 JP
2007500486 Jan 2007 JP
2007503790 Feb 2007 JP
2007519281 Jul 2007 JP
2007525043 Aug 2007 JP
2007527127 Sep 2007 JP
2008505587 Feb 2008 JP
2008535398 Aug 2008 JP
4188372 Nov 2008 JP
2008546314 Dec 2008 JP
04694628 Jun 2011 JP
0150275 Jun 1998 KR
20000060428 Oct 2000 KR
100291476 Mar 2001 KR
20010056333 Apr 2001 KR
20010087715 Sep 2001 KR
20030007965 Jan 2003 KR
20030035969 May 2003 KR
20040063057 Jul 2004 KR
200471652 Aug 2004 KR
20040103441 Dec 2004 KR
20050061559 Jun 2005 KR
20050063826 Jun 2005 KR
100606099 Jul 2006 KR
95121152 Dec 1997 RU
2141168 Nov 1999 RU
2141706 Nov 1999 RU
2159007 Nov 2000 RU
2162275 Jan 2001 RU
2192094 Oct 2002 RU
2197778 Jan 2003 RU
2201033 Mar 2003 RU
2207723 Jun 2003 RU
2208913 Jul 2003 RU
2210866 Aug 2003 RU
2216101 Nov 2003 RU
2216103 Nov 2003 RU
2216105 Nov 2003 RU
2225080 Feb 2004 RU
2235429 Aug 2004 RU
2235432 Aug 2004 RU
2237379 Sep 2004 RU
2238611 Oct 2004 RU
2242091 Dec 2004 RU
2003125268 Feb 2005 RU
2285388 Mar 2005 RU
2250564 Apr 2005 RU
2257008 Jul 2005 RU
2267224 Dec 2005 RU
2005129079 Feb 2006 RU
2285338 Oct 2006 RU
2285351 Oct 2006 RU
2292655 Jan 2007 RU
2335864 Oct 2008 RU
2349043 Mar 2009 RU
1320883 Jun 1987 SU
508960 Nov 2002 TW
510132 Nov 2002 TW
200302642 Aug 2003 TW
200401572 Jan 2004 TW
I232040 May 2005 TW
248266 Jan 2006 TW
200718128 May 2007 TW
WO9408432 Apr 1994 WO
WO9521494 Aug 1995 WO
WO9613920 May 1996 WO
WO9701256 Jan 1997 WO
WO9737456 Oct 1997 WO
WO9746033 Dec 1997 WO
WO9800946 Jan 1998 WO
WO9814026 Apr 1998 WO
WO9837706 Aug 1998 WO
WO9848581 Oct 1998 WO
WO9853561 Nov 1998 WO
WO9854919 Dec 1998 WO
WO9941871 Aug 1999 WO
WO9944313 Sep 1999 WO
WO9944383 Sep 1999 WO
WO9952250 Oct 1999 WO
WO9953713 Oct 1999 WO
WO9959265 Nov 1999 WO
WO9960729 Nov 1999 WO
WO0002397 Jan 2000 WO
WO0033503 Jun 2000 WO
WO0070897 Nov 2000 WO
WO0101596 Jan 2001 WO
WO0117125 Mar 2001 WO
WO0126269 Apr 2001 WO
WO0139523 May 2001 WO
WO0145300 Jun 2001 WO
WO0148969 Jul 2001 WO
WO0158054 Aug 2001 WO
WO0160106 Aug 2001 WO
WO0169814 Sep 2001 WO
WO0182543 Nov 2001 WO
WO0182544 Nov 2001 WO
WO0189112 Nov 2001 WO
WO0193505 Dec 2001 WO
WO0204936 Jan 2002 WO
WO0207375 Jan 2002 WO
WO0215616 Feb 2002 WO
WO0219746 Mar 2002 WO
WO0231991 Apr 2002 WO
WO0233848 Apr 2002 WO
WO0245456 Jun 2002 WO
WO0249305 Jun 2002 WO
WO0249306 Jun 2002 WO
WO0249385 Jun 2002 WO
WO02060138 Aug 2002 WO
WO02065675 Aug 2002 WO
WO02082689 Oct 2002 WO
WO02082743 Oct 2002 WO
02089434 Nov 2002 WO
WO02093782 Nov 2002 WO
WO02093819 Nov 2002 WO
WO02100027 Dec 2002 WO
WO03001696 Jan 2003 WO
WO03001761 Jan 2003 WO
WO03003617 Jan 2003 WO
WO03019819 Mar 2003 WO
WO03030414 Apr 2003 WO
WO03034644 Apr 2003 WO
WO03043262 May 2003 WO
WO03043369 May 2003 WO
WO03058871 Jul 2003 WO
03069816 Aug 2003 WO
WO03067783 Aug 2003 WO
WO03069832 Aug 2003 WO
WO03073646 Sep 2003 WO
WO03075479 Sep 2003 WO
03088538 Oct 2003 WO
WO03085876 Oct 2003 WO
WO03094384 Nov 2003 WO
WO03103331 Dec 2003 WO
WO04002047 Dec 2003 WO
WO2004004370 Jan 2004 WO
WO2004008671 Jan 2004 WO
WO2004008681 Jan 2004 WO
WO2004015912 Feb 2004 WO
WO2004016007 Feb 2004 WO
WO2004021605 Mar 2004 WO
WO2004023834 Mar 2004 WO
WO2004030238 Apr 2004 WO
WO2004032443 Apr 2004 WO
2004040825 May 2004 WO
WO2004038954 May 2004 WO
WO2004038972 May 2004 WO
WO2004038988 May 2004 WO
WO2004040690 May 2004 WO
WO2004040827 May 2004 WO
WO2004047354 Jun 2004 WO
WO2004049618 Jun 2004 WO
WO2004051872 Jun 2004 WO
WO2004062255 Jul 2004 WO
WO2004064294 Jul 2004 WO
WO2004064295 Jul 2004 WO
WO2004066520 Aug 2004 WO
WO2004068721 Aug 2004 WO
WO2004073276 Aug 2004 WO
WO2004075023 Sep 2004 WO
WO2004075442 Sep 2004 WO
WO2004075448 Sep 2004 WO
WO2004075468 Sep 2004 WO
WO2004075596 Sep 2004 WO
WO2004077850 Sep 2004 WO
WO2004084509 Sep 2004 WO
WO2004086706 Oct 2004 WO
WO2004086711 Oct 2004 WO
WO2004095730 Nov 2004 WO
WO2004095851 Nov 2004 WO
WO2004095854 Nov 2004 WO
WO2004098072 Nov 2004 WO
WO2004098222 Nov 2004 WO
WO2004102815 Nov 2004 WO
WO2004102816 Nov 2004 WO
2004105272 Dec 2004 WO
2004114564 Dec 2004 WO
WO2004114549 Dec 2004 WO
WO2005002253 Jan 2005 WO
2005011163 Feb 2005 WO
2005018270 Feb 2005 WO
WO2005015795 Feb 2005 WO
WO2005015797 Feb 2005 WO
WO2005015810 Feb 2005 WO
WO2005015941 Feb 2005 WO
WO2005020488 Mar 2005 WO
WO2005020490 Mar 2005 WO
WO2005022811 Mar 2005 WO
WO2005025110 Mar 2005 WO
2005032004 Apr 2005 WO
WO2005043855 May 2005 WO
WO2005046080 May 2005 WO
WO2005055484 Jun 2005 WO
WO2005055527 Jun 2005 WO
WO2005060192 Jun 2005 WO
WO2005065062 Jul 2005 WO
WO2005069538 Jul 2005 WO
WO2005074184 Aug 2005 WO
WO2005096538 Oct 2005 WO
WO2005122628 Dec 2005 WO
2006007292 Jan 2006 WO
WO2006019710 Feb 2006 WO
WO2006026344 Mar 2006 WO
WO2006044487 Apr 2006 WO
2006069301 Jun 2006 WO
WO2006069300 Jun 2006 WO
WO2006069397 Jun 2006 WO
WO2006077696 Jul 2006 WO
WO2006096784 Sep 2006 WO
WO2006099349 Sep 2006 WO
WO2006099545 Sep 2006 WO
WO2006099577 Sep 2006 WO
WO2006127544 Nov 2006 WO
WO2006134032 Dec 2006 WO
WO2006138196 Dec 2006 WO
WO2006138573 Dec 2006 WO
WO2006138581 Dec 2006 WO
WO2007024934 Mar 2007 WO
WO2007024935 Mar 2007 WO
WO2007025160 Mar 2007 WO
WO2007051159 May 2007 WO
Non-Patent Literature Citations (116)
Entry
Chiani, et al. “Outage Evaluation for Slow Frequency-Hopping Mobile Radio Systems” IEEE Transactions on Communications, vol. 47, No. 12, Dec. 1999, pp. 1865-1874.
Nokia, “Uplink Considerations for UTRA LTE”, 3GPP TSG RAN WG1#40bis, Beijing, CN, R1-050251, 3GPP, Apr. 4, 2005, pp. 1-9.
NTT DoCoMo, “Downlink Multiple Access Scheme for Evolved UTRA”, 3GPP R1-050249, 3GPP, Apr. 4, 2005, pp. 1-8.
Qualcomm Europe: “Description and link simulations for OFDMA based E-UTRA uplink” 3GPP Draft; R1-051100, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WG1, No. San Diego, USA; 20051004, Oct. 4, 2005, pp. 1-10, XP050100715 [retrieved on Oct. 041, 2005.
S. Nishimura et al., “Downlink Null-Formation Using Receiving Antenna Selection in MIMO/SDMA”, Technical Search Report of Electric Information Communication Academic Conference, Feb. 28, 2002, vol. 101, No. 683, pp. 17-22, RCS 2001-286.
Schnell et al., “Application of IFDMA to Mobile Radio Transmission”, IEEE 1998 International Conference on Universal Personal Communications, vol. 2, Oct. 5-9, 1998, pp. 1267-1272.
Taiwanese Search report—095142631—TIPO—Aug. 1, 2010.
Wang et al., “Improving performance of multi-user OFDM systems using bit-wise interleaver” Electronics Letters IEE Stevenage, GB, vol. 37. No. 19, Sep. 13, 2001, pp. 1173-1174 XP006017222.
Yun et al., “Performance of an LDPC-Coded Frequency-Hopping QFDMA System Based on Resource Allocation in the Uplink” Vehicular Technology—Conference 2004. VTO 2004—Spring, 2004 IEEE 59th Milan, Italy May 17-19, 2004, Piscataway, NJ, USA, vol. 4, May 17, 2004. pp. 1925-1928. XP010766497.
3GPP TS 33.220 V.1.1.0 XX,XX, “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture (Release 6)” Feb. 9, 2004, pp. 1-17, figure 4, XP002996023.
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical Layer Aspects for Evolved UTRA (Release 7), 3GPP TR 25814 v031 (Nov. 2005), pp. 1-57.
Alcatel-Lucent, et al., “Dedicated Reference Signals for Precoding in E-UTRA Downlink” 3GPP Draft; R1-071718, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WG1, No. St. Julian; 20070403, Apr. 3, 2007, XP050105640 [retrieved on Apr. 3, 2007].
Bahai, Saltzberg: “System Architecture,” Multi-Carrier Digital Communications, Kluwer Academic, New York, NY, XP-002199501, 1999, pp. 17-21.
Bengtsson, M. et at, “A Generalization of Weighted Subspace Fitting to Full-Rank Models”, IEEE Transactions on Signal Processing, IEEE Service Center, New York, NY, US, vol. 49, No. 5, pp. 1002-1012, May 1, 2001.
Bingham: “Other Types of MCM,” ADSL, VDSL, and Multicarrier Modulation, John Wiley & Sons, New York, XP-002199502. 2000, pp. 111-113.
Blum, R. et al., “On Optimum MIMO with Antenna Selection,” IEEE International Conference on Communications: Conference Proceedings, vol. 1, Apr. 28, 2002, pp. 386-390.
Catreux, S. et al., “Simulation results for an interference-limited multiple input multiple output cellular system,” Global Telecommunications Conference, 2000. GLOBECOM '00. IEEE. Dec. 1, 2000. vol. 2, pp. 1094-1096, http://ieeexplore.ieee.org/ie15/7153/19260/00891306.pdf″tp=&isnumber=19260&arnumber=8913063&punumber=7153.
Chennakeshu, et al. “Capacity Analysis of a TDMA-Based Slow-Frequency-Hopped Cellular System,” IEEE Transaction on Vehicular Technology, vol. 45., No. 3, Aug. 1, 1996, pp. 531-542, XP000612951.
Choi, et al., “Design of the Optimum Pilot Pattern for Channel Estimation in OFDM Systems,” Global Telecommunications Conference, IEEE Communications Society Globecom, Dallas, Texas (2004), p. 3661-3665.
Chung, S. et al., “Low complexity algorithm for rate and power quantization in extended V-BLAST” VTC Fall 2001. IEEE 54th. Vehicular Technology Conference Proceedings. Atlantic City, NJ, Oct. 7-11, 2001, vol. 1 of 4, pp. 910-914, Conf. 54.
Czylwik: “Comparison Between Adaptive OFDM and Single Carrier Modulation with Frequency Domain Equalization,” IEEE 47th Vehicular Technology Conference, vol. 2, May 4-7, 1997, pp. 865-869.
Dai, Y. et al., “A List Sphere Decoder based turbo receiver for groupwise space time trellis coded (GSTTC) systems,” 2004 IEEE 59th Vehicular Technology Conference, vol. 2, pp. 804-808, May 17, 2004, doi: 10.1109/VETECS.2004.1388940.
Dammann, A. et al., “Beamforming in Combination with Space-Time Diversity for Broadband OFDM Systems”, ICC 2002. 2002 IEEE International Conference on Communications. Apr. 28-May 2, 2002, pp. 165-171, XP010589479.
Das, Arnab, et al. “Adaptive, asynchronous incremental redundancy (A-IR) with fixed transmission time intervals TTI for HSDPA.” IEEE, Personal, Indoor and Mobile Radio Communications, 2002. The 13th IEEE International Symposium on, pp. 1083-1087.
Das et al., “On the Reverse Link Interference Structure for Next Generation Cellular Systems,” Global Telecommunications Conference, 2004. GLOBECOM '04, IEEE, vol. 5 IEEE Nov. 29-Dec. 3, 2004, pp. 3068-3072.
Dierks, et al., “The TLS Protocol”, Version 1.0, Network Working Group, Request for Comments 2246, pp. 1-80 (Jan. 1999).
Digital cellular telecommunications system (Phase 2+); Mobile radio interface layer 3 specification (GSM 04.08 version 7.7.1 Release 1998); ETSI EN 300 940 V7.7.1 (Oct. 2000), pp. 1,2,91-93.
Dinis, R. et al.: “A Multiple Access Scheme for the Uplink of Broadband Wireless Systems,” Global Telecommunications Conference, 2004. GLOBECOM ″04. IEEE Dallas, TX, USA Nov. 29-Dec. 3, 2004, vol. 6, pp. 3808-3812, XP010758449 Piscataway , NJ, USA, IEEE.
Don Torrieri, “Cellular Frequency-Hopping CDMA Systems,” IEEE Vehicular Technology Conference, May 16, 1999, pp. 919-925, vol. 2.
El Gamal, H. et al., “Universal Space-Time Coding,” IEEE Transactions on Information Theory, vol. 49, Issue 5, pp. 1097-1119, XP011074756, ISSN: 0018-9448, May 2003.
European Search Report—EP10184156—Search Authority—Munich—Jun. 14, 2012.
Favre et al: “Self-Adaptive Transmission Procedure” IBM Technical Disclosure Bulletin, IBM Corporation, Sep. 1976, vol. 19, No. 4, pp. 1283-1284, New York, New York.
Fuchs, et al., “A Novel Tree-Based Scheduling Algorithm for the Downlink of Multi-User MIMO Systems with ZF Beamforming,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, pp. 1121-1124, Mar. 18-23, 2005.
Groe, J., et al., “CDMA Mobile Radio Design,” Sep. 26, 2001, Artech House, Inc. Norwood, MA, pp. 257-259.
Guo, K. et al., “Providing end-to-end QoS for multimedia applications in 3G wireless networks,” Proceedings vol. 5242, SPIE ITCom 2003 Conf. Internet Multimedia Management Systems IV, Nov. 26, 2003, pp. 1-14, DOI: 10.1117/12.514061.
Hermann Rohling et al., : “Performance Comparison of Different Multiple Access Schemes for the Downlink of an OFDM Communication System”, Vehicular Technology Conference, 1997, 47th IEEE, vol. 3, May 3-7, 1997, pp. 1365-1369.
Hill, et al., “Cyclic Shifting and Time Inversion of Partial Transmit Sequences to Reduce the Peak-to-Average Power Ratio in OFDM,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 2, Sep. 18, 2000, Piscataway, NJ, pp. 1256-1259.
Hochwald, B. et al., “Achieving near-capacity on a multiple-antenna channel,” IEEE Transactions on Communications, IEEE Service Center, Piscataway, New Jersey, vol. 51, No. 3, pp. 389-399 (2003).
Hui Won Je et al, “A Novel Multiple Access Scheme for Uplink Cellular Systems,” Vehicular Technology Conference, 2004, VTC2004—fall, 2004 IEEE 60th Los Angeles, CA, US, Sep. 26-29, 2004, Piscataway, NY, pp. 984-988.
International Search Report and Written Opinion—PCT/US06/031147, International Search Authority—European Patent Office, Feb. 2, 2007.
“Introduction to cdma2000 Standards for Spread Spectrum Systems”,TIA/EIA/IS-2000 Standards for CDMA2000 Spread Spectrum Systems 3GPP2 C.S0001-0 Version 1.0, Jul. 1999, 16 pages.
John B. Groe, Lawrence E. Larson, “CDMA Mobile Radio Design” Sep. 26, 2001, Artech House, Norwood, MA02062 580530, XP002397967, pp. 157-159.
J.S. Chow and J.M. Cioffi: “A cost-effective maximum likelihood reciever for multicarrier systems”, Proc. IEEE Int. Conf. on Comm., pp. 948-952, Jun. 1992.
Kaleh: “Channel Equalization for Block Transmission Systems,” IEEE Journal on Selected Areas in Communications, vol. 13, No. 1, Jan. 1995, pp. 110-121.
Kappes, J.M., and Sayegh, S.I., “Programmable Demultiplexer/Demodulator Processor,” COMSAT Laboratories, IEEE, Mar. 11, 1990, pp. 230-234.
Karsten Bruninghaus et al., : “Multi-Carrier Spread Spectrum and It's relationship to Single-Carrier Transmission”, Vehicular technology Conference, 1998, VTC 98, 48th IEEE, vol. 3, May 18-21, 1998, pp. 2329-2332.
Keller, et al.: “Adaptive Multicarrier Modulation: A Convenient Framework for Time-Frequency Processing in Wireless Communications,” Proceedings of the IEEE, vol. 88, No. 5, May 2000, pp. 611-640.
Ken Murakami et al., “Status Toward Standardization at IEEE 802.3ah and items on the construction of GE-PON system ,” Technical Report of the Institute of Electronics, Information and Communication Engineers, Jun. 13, 2003, vol. 103, No. 124, pp. 1-6, IN2003-24.
Kiessling, M. et al., “Short-term and long-term diagonalization of correlated MIMO channels with adaptive modulation” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 2, Sep. 15, 2002, pp. 593-597.
Kim, et al. “Performance of TDMA System With SFH and 2-Bit Differentially Detected GMSK Over Rayleigh Fading Channel,” IEEE Vehicular Technology Conference, Apr. 28, 1996, pp. 789-794.
Kishiyama et al., Investigation of optimum pilot channel structure for VSF-OFCDM broadband wireless access in forward link, VTC 2003—Spring, The 57th IEEE Semiannual Vehicular Technology Conference, Proceedings Jeju, Korea, Apr. 22-25, 2003, pp. 139-144.
Kostic, et al. “Dynamic Frequency Hopping in Wireless Cellular Systems—Simulations of Full-Replacement and Reduced-Overhead Methods,” IEEE Vehicular Technology Conference, May 16, 1999, pp. 914-918.
Kostic, et al. “Fundamentals of Dynamic Frequency Hopping in Cellular Systems,” IEEE Journal on Selected Areas in Communications, vol. 19, No. 11, Nov. 2001, pp. 2254-2266.
Kousa, M. et al., “Adaptive Binary Coding for Diversity Communication Systems” IEEE International Conference on Personal Wireless Communications Proceedings, pp. 80-84, XP000992269, (1997).
Lacroix, et al.: “A Study of OFDM Parameters for High Data Rate Radio LAN's,” 2000 IEEE 51st Vehicular Technology Conference Proceedings, vol. 2, May 15-18, 2000, pp. 1075-1079.
Laroia, R. et al: “An integrated approach based on cross-layer optimization—Designing a mobile broadband wireless access network” IEEE Signal Processing Magazine, IEEE Service Center, Piscataway, NJ, US, vol. 21, No. 5, Sep. 2004, pp. 20-28, XP011118149.
Lau, et al., “On the Design of MIMO Block-Fading Channels with Feedback-Link Capacity Constraint,” IEEE Transactions on Communications, IEEE Service Center, Piscataway, NJ, US, v. 52, No. 1, Jan. 2004, pp. 62-70, XP001189908.
Leon, et al., “Cyclic Delay Diversity for Single Carrier-Cyclic Prefix Systems,” Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, Oct. 28, 2005, Piscataway, NJ, pp. 519-523.
Lettieri et al: “Adaptive frame length control for improving wireless link throughput, range, and energy efficiency”, INFOCOM 98, 17th Annual Joint Conference of the IEEE Computer and Communications Societies, Mar. 29-Apr. 2, 1998, pp. 564-571, vol. 2, IEEE San Francisco, CA, New York, New York.
Lott: “Comparison of Frequency and Time Domain Differential Modulation in an OFDM System for Wireless ATM,” 1999 IEEE 49th Vehicular Technology Conference, vol. 2, Jul. 1999, pp. 877-883.
Maniatis, I. et al., “Pilots for joint channel estimation in multi-user OFDM mobile radio systems,” 2002 IEEE Seventh International Symposium on Spread Spectrum Techniques and Applications, Prague, Czech Republic, Sep. 2, 2002, pp. 44-48, XP010615562.
MBFDD and MBTDD Wideband Mode: Technology Overview, IEEE C802.20-05/68r1, Jan. 6, 2006.
Mignone, et al.: “CD3-OFDM: A New Channel Estimation Method to Improve the Spectrum Efficiency in Digital Terrestrial Television Systems,” International Broadcasting Convention, Sep. 14-18, 1995 Conference Publication No. 413, IEE 1995, pp. 122-128.
Molisch, et al., MIMO systems with antenna selection, IEEE Microwave Magazine, Mar. 2004, pp. 46-56, XP002411128.
Naofal Al-Dhahir: “A Bandwidth-Optimized Reduced-Complexity Equalized Multicarrier Transceiver”, IEEE Transactions on Communications, vol. 45, No. 8, Aug. 1997, pp. 1-17.
Naofal Al-Dhahir: “Optimum Finite-Length Equalization for Multicarrier Transceivers”, IEEE Trans. on Comm., pp. 56-64, Jan. 1996.
Nassar et al., “Introduction of Carrier Interference to Spread Spectrum Multiple Access,” Wireless Communications and Systems, 1999 Emerging Technologies Symposium, IEEE, Apr. 12-13, 1999, pp. 1-5.
Natarajan, et al., “High-Performance MC-CDMA via Carrier Interferometry Codes,” IEEE Transactions on Vehicular Technology, 2001, vol. 50 (issue 6) pp. 1344-1353.
NTT DoCoMo, et al., “Orthogonal Common Pilot Channel and Scrambling Code in Evolved UTRA Downlink,” 3GPP TSG RAN WG1 #42 on LTE (Original R1-050589), R1-050704, London UK, pp. 1-8, Aug. 29-Sep. 2, 2005.
Physical Channels and Multiplexing in Evolved UTRA Downlink TSG-RAN Working Group 1 Meeting, XX, XX, vol. RI-050590, Jun. 20, 2005, pp. 1-24, XP003006923 the whole document.
Prasad, N. et al., “Analysis of Decision Feedback Detection for MIMO Rayleigh Fading Channels and Optimum Allocation of Transmitter Powers and QAM Constellations,” pp. 1-10, 39th Annual Conference on Comm. Control and Comput., Monticello, IL Oct. 2001.
Sandeep Chennakeshu et al., “A comparison of diversity schemes for a mixed-mode slow frequency-hopped cellular system,” Global Telecommunications Conference, 1993, including a Communications Theory Mini-Conference. Technical Program Conference Record, IEEE in Houston. GLOBECOM ″93., IEEE, Nov. 29, 1993, pp. 1749-1753, vol. 3.
Sari, et al., “Transmission Techniques for Digital Terrestrial TV Broadcasting,” IEEE Communications Magazine, Feb. 1995, pp. 100-109.
Schnell, M. et al., “A Promising New Wideband Multiple-Access Scheme for Future Mobile Communications Systems”, European Transactions on Telecommunications, Jul. 1, 1999, vol. 10, No. 4, pp. 417-427, Wiley & Sons, Chichester, GB, XP009069928, ISSN: 1 124-31 8X.
Shattil et al., “Array Control Systems for Multicarrier Protocols Using a Frequency-Shifted Feedback Cavity”, Radio and Wireless Conference EEE, Aug. 1-4, 1999, pp. 215-218.
Siemens, “Evolved UTRA uplink scheduling and frequency reuse” [online], 3GPP TSG-RAN WG1 # 41 R1-050476, Internet <URL:http://www.3gpp.org/ftp/tsg—ran/WG1—RL1/TSGR1—41/Docs/R1-050476.zip>, May 9, 2005.
Sklar, B., “The process of thus correcting the channel-induced distortion is called equalization”, Digital Communications, PTR Prentice Hall, Upper Saddle River, New Jersey, 1998, Formatting and Baseband Transmission, Chap. 2, Section 2.11.2, pp. 54, 104-106.
Sorger U., et al., “Interleaved FDMA—A New Spread-Spectrum Multiple-Access Scheme, XP010284733,” Communications, Conference Record, IEEE, Atlanta, GA, 1998, pp. 1013-1017.
Sumii, Kenji, et al., “A Study on Computational Complexity Reduction of Iterative Decoding for Turbo-coded MIMO-SDM Using Sphere Decoding,” Technical Report of IEICE. RCS, Nov. 9, 2010, vol. 104, No. 675, pp. 43-48.
Telecommunications Industry Association, Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System, TIA/EIA-95, Jul. 1993, 668 pages.
Tellado, “Multicarrier Modulation with Low Par,” Kluwer Academic, Dordrecht, NL, XP-002199500, 2000, pp. 6-11 and 55-60.
Tellambura, “Use of m-sequences for OFDM Peak-to-Average Power Ratio Reduction,” Electronics Letters, vol. 33, No. 15, Jul. 17, 1997, pp. 1300-1301.
TIA-1121.001 “Physical Layer for Ultra Mobile Broadband (UMB) Air Interface Specification,” 3GPP2 C.S0084-001-0, Version 2.0 (Aug. 2007).
TIA-1121.002 “Medium Access Control Layer for Ultra Mobile Broadband (UMB) Air Interface Specification,” 3GPP2 C.S0084-002-0, Version 2.0 (Aug. 2007).
Tomcik, Jim: “QFDD Technology Overview Presentation,” IEEE 802.20 Working Group on Mobile Broadband Wireless Access, [Online] Nov. 15, 2005, pp. 1-73, XP002467626.
Tomcik, T.: “QTDD Performance Report 2,” IEEE C802.20-05/88, IEEE 802.20 Working Group on Mobile Broadband Wireless Access, <http://ieee802.org/20/>, pp. 1-56, XP002386798 (Nov. 15, 2005).
Toufik, I., et al., Channel allocation algorithms for multi-carrier systems, Vehicular Technology Conference 2004, VTC2004—Fall, 2004 IEEE 60th Los Angeles, CA, USA Sep. 26-29, 2004, Piscataway, NJ, USA IEEE, Sep. 26, 2004, pp. 1129-1133, XP010786798.
Translation of Office Action in Chinese Application 2006800295980 corresponding to U.S. Appl. No. 11/260,895, citing CN1346221 and CN1383631 dated Feb. 16, 2011.
Translation of Office Action in Japan application 2008-538193 corresponding to U.S. Appl. No. 11/261,065, citing JP11196109, JP10322304 and JP09008725 dated Mar. 8, 2011.
Translation of Office Action in Korean application 10-2007-7031029 corresponding to U.S. Appl. No. 11/260,931, citing US20030202491 and KR20040063057 dated Jan. 28, 2011.
Translation of Office Action in Canadian application 2625987 corresponding to U.S. Appl. No. 11/261,065, citing CA2557369 dated Apr. 12, 2011.
Translation of Office Action in Chinese application 200680040236.1 corresponding to U.S. Appl. No. 11/261,065, citing US20040048609 and CN1402916 dated Feb. 18, 2011.
Translation of Office Action in Chinese application 200680048265.2 corresponding to U.S. Appl. No. 11/260,931, citing US6904097, WO2004095851, CN1344451 dated Jan. 26, 2011.
Translation of Office Action in Chinese application 200680048832.4 corresponding to U.S. Appl. No. 11/261,158, citing CN1132474 dated Dec. 31, 2010.
Translation of Office Action in Japanese Application 2008-514880 corresponding to U.S. Appl. No. 11/445,377, citing JP2007519281 and JP2006505172 dated Nov. 9, 2010.
Translation of Office Action in Japanese application 2008-528103 corresponding to U.S. Appl. No. 11/260,924, citing JP2005502218, JP2004534456, JP2003348047, JP2003199173, JP2004529524, JP11508417, JP2001238269, JP2005130491 and JP2003500909 dated Feb. 8, 2011.
Translation of Office Action in Japanese Application 2008-529216 corresponding to U.S. Appl. No. 11/261,159, citing GB2348776 , WO2004098222, WO2005065062 and WO2004102815.Dated Jan. 11, 2011.
Translation of Office Action in Japanese application 2008-538181 corresponding to U.S. Appl. No. 11/511,735, citing WO04064295, JP2002515203, JP8288927, JP7336323 and JP200157545 dated Jan. 25, 2011.
Viswanath, P. et al, “Opportunistic Beamforming Using Dumb Antennas” IEEE Transactions on Information Theory, IEEE USA, vol. 48, No. 6, Jun. 2002, pp. 1277-1294, XP002314708 ISSN: 0018-9448 abstract right-hand column, paragraph 1.
Voltz, P. J.,“Characterization of the optimum transmitter correlation matrix for MIMO with antenna subset selection”, IEEE Transactions on Communications, vol. 51, No. 11, pp. 1779-1782, (Nov. 1, 2003).
Widdup, B. et al., “A highly-parallel VLSI architecture for a list sphere detector,” IEEE International Conference, Paris, France, vol. 5, pp. 2720-2725 (2004).
Wiesel, A., et al., “Efficient implementation of sphere demodulation” Signal Processing Advances in Wireless Communications, 2003. SPAWC 200 3. 4th IEEE Workshop on Rome. Italy Jun. 15-18, 2003, Piscataway, NJ, USA, IEEE, US, Jun. 15, 2003, pp. 36-40, XP010713463.
Xiaodong, et al., “M-Sequences for OFDM Peak-to-Average Power Ratio Reduction and Error Correction,” Electronics Letters, vol. 33, Issue 7, Mar. 27, 1997, pp. 554-555.
Yatawatta, S. et al., “Energy Efficient Channel Estimation in MIMO Systems”, 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 18-23, 2005, Philadelphia, vol. 4, pp. 317-320, Mar. 18, 2005.
Zekri, et al., “DMT Signals with Low Peak-to-Average Power Ratio,” Proceedings, IEEE International Symposium on Computers and Communications, 1999, Jul. 6-8, 1999, pp. 362-368.
Anonymous: “3GPP TS 36.211 V8.0.0; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 8)” 3rd Generation Partnership Project; Technical Specification Group Radio Access Network, [Online] 2007, XP002520076 Retrieved from the Internet: URL:http://www.Sgpp.org/ftp/Specs/html-i nfo/36211.htm> [retrieved on Sep. 27, 2007] Section 5.
Jim Tomcik, QFDD and QTDD: Technology Overview, IEEE 802.20 Working Group on Mobile Broadband Wireless Access, Oct. 28, 2005, pp. 48-50, URL, http://www.ieee802.org/20/contribs/c802.20-05-68.zip.
Miorandi D., et al., “Analysis of master-slave protocols for real-time industrial communications over IEEE 802.11 WLANs” Industrial Informatics, 2004. INDIN '04, 2nd IEEE International Conference on Berlin, Germany Jun. 24-26, 2004. Piscataway, NJ, USA IEEE, Jun. 24, 2004, pp. 143-148, XP010782619, ISBN 0789385136, Para 3, point B.
Nokia: “Compact signalling of multi-code allocation for HSDPA”, version 2,3GPP R1-02-0018, Jan. 11, 2002.
Sethi M, et al., “Code Reuse DS-CDMA—A Space Time Approach”, Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2297-2300, May 13-17, 2002.
Bhushan N., “UHDR Overview”, C30-20060522-037, Denver, CO, May 22, 2006, pp. 1-115.
Samsung: “Uplink Transmission and Multiplexing for EUTRA”, 3GPP Draft; R1-050605 UL Multiplexing, Jun. 16, 2005, XP050111420.
Tachikawa (Editor); “W-CDMA Mobile Communication Systems,” John Wiley & Sons Ltd., Japan, Maruzen: pp. 82-213, Jun. 25, 2001.
LG Electronics: “PAPR comparison of uplink MA schemes”, 3GPP TSG RAN WG1 Meeting #41, R1-050475, May 9-13, 2005, pp. 6.
Motorola,“Uplink Numerology and Frame Structure”, 3GPP TAG RAN #41 Meeting R1-050397, May 13, 2005.
Samsung Electonics Co. Ltd.; “Uplink Multiple Access and Multiplexing for Evolved UTRA”, R1-050439, May 3, 2005, pp. 1-22, XP55018616, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg—ran/WG1—R1/TSGR1 / DOCS / [retrieved on Feb. 7, 2012].
Related Publications (1)
Number Date Country
20110064070 A1 Mar 2011 US
Provisional Applications (1)
Number Date Country
60738129 Nov 2005 US
Divisions (1)
Number Date Country
Parent 11325980 Jan 2006 US
Child 12952019 US