1. Field of the Invention
The present invention relates to a power supply. More particularly, the present invention relates to the control circuit of a switching power supply.
2. Description of Related Art
Power supplies are used for converting an unregulated power into a regulated voltage or current.
Even though the switching technology reduces the size of power supplies, the electric and magnetic interference (EMI) generated by a switching device has an impact on the power supply and the peripheral equipments thereof. Therefore, apparatuses for reducing or preventing EMI (e.g. EMI filter, transformer protector, etc) are disposed in power supplies. However, such kinds of apparatus increase power consumption, the cost and the size of power supplies. Recently, frequency modulation or frequency hopping technologies are applied in many conventional technologies to reduce EMI. For example, the conventional technologies “Reduction of Power Supply EMI Emission by Switching Frequency Modulation” (IEEE Transactions on Power Electronics, VOL. 9. No. 1. January 1994) and “Effects of Switching Frequency Modulation on EMI Performance of a Converter Using Spread Spectrum Approach” (Applied Power Electronics Conference and Exposition, 2002, 17-Annual, IEEE, Volume 1, 10-14, March, 2002, Pages: 93-99) etc, and U.S. Pat. No. 6,229,366 “Offline Converter with Integrated Softstart and Frequency Jitter” (May 8, 2001) and U.S. Pat. No. 6,249,876 “Frequency Jittering Control for Varying the Switching Frequency of a Power Supply” (Jun. 19, 2001) etc., have been disclosed.
However, a disadvantage of the conventional technologies is that the output of the power supply will carry an unexpected ripple signal when there is frequency hopping. How the unexpected ripple signal is generated in the presence of frequency hopping will be described below with reference to the formulas.
An output power PO of the power supply is the product of an output voltage VO and an output current IO of the power supply, the equation of which is expressed as:
PO=VO×IO=η×PIN (1)
The relation between the input power PIN of the transformer 30 and the switching current IP can be expressed as:
Where η is the efficiency of the transformer 30, VIN represents an input voltage of the transformer 30, LP represents a primary inductance of the transformer 30, T represents the switching period of the switching signal VSW, and TON represents the on-time of the switching signal VSW.
Thus, equation (1) can be given by:
It can be understood from equation (2) that the switching period T changes in response to the frequency hopping. When the switching period T changes, the output power PO changes accordingly. Therefore, the unexpected ripple signal is generated when the output power PO changes.
Another disadvantage of the conventional technologies is the unexpected range of frequency hopping. Since the range of frequency hopping is related to the setting of the switching frequency, the effect of reducing the EMI is limited in response to different switching frequency setting under different application needs.
Accordingly, the present invention is directed to provide a frequency hopping control circuit for reducing the EMI of power supplies.
According to another aspect of the present invention, a frequency hopping control circuit is provided to prevent unexpected ripple signal at an output of a power supply.
Based on the aforementioned and other objectives, the present invention provides a frequency hopping control circuit for controlling a power supply. The control circuit includes a switching circuit, a first oscillator, a second oscillator, and an attenuator. The switching circuit is coupled to a feedback circuit to generate a switching signal for regulating an output of the power supply. The feedback circuit is coupled to the output of the power supply to generate a feedback signal for controlling the switching signal. The first oscillator is connected to the switching circuit to generate a clock signal for determining the switching frequency of the switching signal. The second oscillator generates an oscillating signal. A voltage-to-current converter of the second oscillator generates a first signal, a second signal, and a third signal in response to the oscillating signal, and transmits the first signal and the second signal to the first oscillator to modulate the frequency of the clock signal. The attenuator is coupled to the feedback circuit to attenuate the feedback signal. The third signal is coupled to the attenuator to control the attenuation rate of the feedback signal.
According to another aspect of the present invention, a frequency hopping control circuit is provided to control a power supply. The control circuit includes a switching circuit, a first oscillator, a second oscillator, and an attenuator. The switching circuit is coupled to a feedback circuit to generate a switching signal for regulating an output of the power supply. The feedback circuit is coupled to the output of the power supply to generate a feedback signal for controlling the switching signal. The first oscillator is coupled to the switching circuit to determine the switching frequency of the switching signal. The second oscillator generates an oscillating signal, and a first signal, a second signal, and a third signal based on the oscillating signal. The first signal and the second signal are transmitted to the first oscillator to modulate the switching frequency of the switching signal. The attenuator is coupled to the feedback circuit to attenuate the feedback signal. The third signal is coupled to the attenuator to control the impedance thereof.
The present invention further provides a controller having frequency hopping for controlling a power supply. The controller includes a switching circuit, a first oscillator, a second oscillator, and an attenuator. The switching circuit is coupled to a feedback circuit to generate a switching signal for regulating an output of the power supply. The feedback circuit is coupled to the output of the power supply to generate a feedback signal for controlling the switching signal. The first oscillator is coupled to the switching circuit to determine the switching frequency of the switching signal. The second oscillator is coupled to the first oscillator to modulate the switching frequency of the switching signal. The attenuator is coupled to the feedback circuit to attenuate the feedback signal. The second oscillator is connected to the attenuator to control the attenuation rate of the feedback signal.
The present invention provides another controller having frequency hopping for controlling a power supply. The controller includes a switching circuit, a first oscillator, and a second oscillator. The switching circuit is coupled to a feedback circuit to generate a switching signal for regulating an output of the power supply. The feedback circuit is coupled to the output of the power supply to generate a feedback signal for controlling the switching signal. The first oscillator is coupled to the switching circuit to determine the switching frequency of the switching signal. The second oscillator generates an oscillating signal, and a second signal in response to the oscillating signal, and transmits the second signal to the first oscillator to modulate the switching frequency of the switching signal.
In the present invention, the spectrum of the switching energy is extended. Therefore, the EMI of the power supply is reduced because the switching frequency of the switching signal is modulated. In addition, since the third signal controls the attenuation rate of the feedback signal (which controls the on-time of the switching signal), the variation thereof is compensated by hopping the switching frequency, and the output power and the output voltage are kept constant to avoid unexpected ripple signal at the output of the power supply, and to keep the frequency hopping operation not affected by the setting of the switching frequency of the power supply.
In order to make the aforementioned and other objects, features and advantages of the present invention comprehensible, a preferred embodiment accompanied with figures is described in detail below.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
An oscillator 100 generates the clock signal PLS and a third signal IW3. The oscillator 100 is connected to a resistor 45 via a terminal RT to determine an oscillating frequency of the clock signal PLS. The third signal IW3 is drawn between the resistor 92 and the resistor 93 to set the attenuation rate of the feedback signal VFB.
The oscillator 100 includes a first oscillator 300 and a second oscillator 200, as shown in
A NAND gate 340 is used for generating the clock signal PLS to determine the switching frequency of the switching signal VSW. An output of the comparator 330 is used for driving a first input of the NAND gate 340. An output of the NAND gate 340 is used for turning on/off the switch 328. Two inputs of a NAND gate 345 are connected to the output of the NAND gate 340 and an output of the comparator 335 respectively. An output of the NAND gate 345 is connected to a second input of the NAND 340. The output of the NAND gate 345 is used for turning on/off the switch 327. Therefore, the ramp signal SAW is generated across the capacitor 320. The first signal IW1 and the second signal IW2 are coupled to a charge current I325 of the charge current source 325 and a discharge current I326 of the discharge current source 326 in parallel respectively to modulate the switching frequency.
In other applications, the switching frequency can be determined by selecting the resistance of the resistor 45. The first signal IW1, the second signal IW2, and the third signal IW3 change when the oscillating signal WAV of the second oscillator 200 changes, and further the switching frequency set by the first oscillator 300 is extended. When modulating the reference voltage VHM or the charge current I325 and the discharge current I326, the switching frequency of the switching signal VSW is hopped correspondingly. Thus the spectrum of the switching energy is extended. The EMI of the power supply is reduced accordingly. Referring to equation (2), the hopping of the switching period T varies the output power of the power supply. The third signal IW3 further controls the attenuation rate of the feedback signal VFB, which controls the on-time TON of the switching signal VSW. As a result, by hopping the switching frequency to compensate the variation thereof, the output power and the output voltage are kept constant.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.