This application relates generally to the field of sprayers for water and other liquids. More specifically, this application relates to a frequency modulated sprayer for water and other liquids.
At least one embodiment relates to a sprayer that is connectable to a water source for receiving water. The sprayer includes a fluid carrier and a vibration source. The fluid carrier has an inlet that is configured to receive water from the water source and an outlet for emitting water. The vibration source is coupled to a portion of the fluid carrier between the inlet and the outlet. When the sprayer is in a first mode of operation, water is emitted from the outlet in a first pattern; and when the sprayer is in a second mode of operation, the vibration source is configured to oscillate the fluid carrier such that water is emitted from the outlet in a second pattern.
At least one embodiment relates to a sprayer that includes a housing, a fluid carrier, a vibration source, and a controller. The fluid carrier is disposed in the housing and the housing includes an inlet that is configured to receive water and an outlet for emitting water. The vibration source is disposed in the housing and is operable in two or more modes of operation. By way of example, the vibration source may be operable in a first mode of operation, in which the water is emitted from the outlet having a first shape, and in a second mode of operation, in which the vibration source moves the fluid carrier such that the water emitted from the outlet has a second shape that is different than the first shape. The controller is configured to switch the vibration source between the first and second modes of operation.
At least one embodiment relates to a sprayer that includes a body, a water supply tube, and a vibration source. The body has an inlet and an outlet. The water supply tube is configured to extend through the inlet into the body and is moveable relative to the body. The vibration source is operable in two or more modes of operation corresponding to two or modes of the sprayer. For example, the vibration source may be operable in a first mode of operation, in which the tube does not move relative to the body and water is dispensed from the outlet having a first shape, and in a second mode of operation, in which the vibration source moves the water supply tube relative to the body to dispense water from the outlet having a second shape that is different than the first shape.
Referring generally to the Figures, disclosed herein are various embodiments of frequency modulated sprayers for water and other liquids for use in faucets (e.g., kitchen faucets, lavatory faucets, laundry faucets), showers (e.g., showerheads, hand-held showers, wall tiles, etc.), side sprays, bidet sprays, whirlpools (e.g., jets), rain panels, toilets (e.g., flush valves, jets/rim holes), washing machines, dishwashing machines, and other suitable kitchen and bath water delivery applications (e.g., plumbing products). The frequency modulated sprayers may be used for other applications, such as, for example, car washers/sprayers, power washers, air blowing devices (e.g., whirlpool, hand/body dryers, etc.), as well as other suitable applications. The frequency modulated sprayers are configured to control the configuration (e.g., shape, flow, etc.) of the emitted fluid (e.g., water, air, liquid, etc.) using an electronically driven vibration source. For example, the vibration source may be configured to change the shape of the fluid stream while the vibration source is active (e.g., operating, activated, etc.), such as from an input shape to an output shape. The input shape and/or the output shape can be, by way of example, linear, curved, wave-form, sinusoidal, helical, spiral, square, step, saw-tooth, or another suitable shape. The input shape and/or the output shape can be a mixture of shapes, such as the shapes identified above or may be a mix of vibrations (e.g., music, audio, etc.). For example, an audio source containing multiple combined and changing waveforms may be utilized as input. The audio source may include music. Further, the output shape does not have to be the same shape as the input signal. For example, a sinusoidal wave input signal may transform the input shape of the fluid source into a helical output shape. The vibration source may be configured to receive a signal (e.g., the input signal), which may be varied (e.g., amplitude, frequency, etc.) to in turn influence/change the shape of the emitted fluid as the signal is varied.
The fluid source 105 may be any suitable source to supply the sprayer 110 with a fluid, such as water. The fluid source 105 may be configured to supply the sprayer 110 with a single source of fluid (e.g., a single source of water) or a plurality of sources of fluid, such as, for example, both hot water and cold water.
The power supply 107 is configured to supply electric power (e.g., electrical energy) to the system 101 (e.g., to the signal generator 120, to the sprayer 110, etc.). The power supply 107 can be a fixed power supply (e.g., part of the power grid, such as a 120 V, 60 Hz AC power, etc.) or a local and/or portable power supply (e.g., a battery). It is noted that any type of power supply may be used with the systems as disclosed herein, as the systems may be tailored to operate on any known type of power supply.
The sprayer 110 is configured having a housing 111 (e.g., a body, a casing, an external structure, etc.) that is configured to house (e.g., contain, hold, etc.) other elements/components of the system 101. As shown in
The fluid carrier 112 is configured to receive fluid (e.g., water) through an inlet 115 (e.g., an opening, an entrance, etc.) and emit (e.g., discharge, spray, etc.) the received fluid from an outlet 116 (e.g., an opening, a nozzle, a sprayhead, etc.). The inlet 115 and the outlet 116 may be part of the fluid carrier 112, part of the housing 111, or part(s) of both. The fluid carrier 112 may be configured as and/or contain a tube, a conduit, or other suitable carrier of fluid. The size (e.g., a length, a cross-section, etc.) of the fluid carrier 112 may be tailored to the specific application of the sprayer 110. The fluid carrier 112 may be flexible in nature (e.g., capable of being moved, manipulated, reconfigured, etc.—such as its shape, location in the sprayer, etc.). A flexible fluid carrier may advantageously provide better response (e.g., more repeatable, broader range of performance, etc.) to manipulation from the vibration source 114. It is noted that the configuration of the fluid carrier 112, such as the size (e.g., larger, smaller), shape (e.g., round, square, custom, etc.), and/or thickness may be tailored to influence the stiffness and/or damping of the fluid carrier and/or system. Thus, these aspects may be tailored to provide unique outputs (e.g., spray patterns), such as during movement (e.g., oscillation) of the fluid carrier 112.
The vibration source 114 is configured to move/vibrate (e.g., oscillate between two or more locations, reciprocate, etc.) the fluid carrier 112 to influence the configuration, such as the shape, of the fluid (e.g., water) emitted from the outlet 116. Accordingly, a portion (e.g., proximate the end having the outlet) of the fluid carrier 112 is operatively coupled to the vibration source 114 to move/vibrate the fluid carrier 112 upon vibration of the vibration source 114. The fluid carrier 112 may be directly coupled to the vibration source 114 or indirectly coupled to the vibration source 114 through another element, such as described in more detail below for the system 301 shown in
The signal generator 120 (e.g., a function generator, a wave generator, etc.) is configured to output a signal, such as a waveform, based on an input, such as electrical power from the power supply 107. The signal generator 120 may be configured to provide a signal that repeats or is non-repeating. The signal may be in the form of a wave having any suitable shape (e.g., sinusoidal, square, etc.). The signal may have a frequency and an amplitude, each of which may be varied (e.g., increased, decreased) by the signal generator 120. Thus, the signal may be a variable signal that is adjustable by a controller, which may be part of the signal generator 120 or a separate element of the system, to change the shape of the variable signal and the shape of the water flow from the outlet 116. It is noted that any suitable signal may be used in the systems of this application, and the flow of fluid emitted may be tailored (e.g., its shape) based on the type of signal generated by the signal generator 120.
The system 101 may optionally include an amplifier 130 (e.g., a signal amplifier) configured to influence the signal from the signal generator 120. For example, the amplifier 130 may be included in the system 101 to increase the power (e.g., amplitude, strength, etc.) of the signal outputted from the signal generator 120. The amplifier 130 may be configured to receive the output signal from the signal generator 120 and in-turn output an expanded signal, such as into the vibration source 114. Thus, the amplifier 130, if provided, may be electrically connected to (e.g., in electric communication with) the signal generator 120 and the vibration source 114. The amplifier 130 may be directly connected to the signal generator 120 and/or the vibration source 114 through electrical lines. The amplifier 130 may be remotely connected to the signal generator 120 and/or the vibration source 114 in a wireless manner. For example, the signal generator 120 may output a radio-frequency (RF) modulated signal (or other suitable wireless signal) that is received remotely by a receiver of the vibration source 114.
As shown in
Unlike the sprayer 110 shown in
The fluid carrier 212 may be configured the same as the fluid carrier 112, except where noted otherwise. The vibration source 214 may be configured the same as the vibration source 114, except where noted otherwise. The amplifier 230 may be configured the same as the amplifier 130, except where noted otherwise. For example, the amplifier 230 is located within the housing 211 of the sprayer 210 rather than external to the housing 111, as with the amplifier 130. The signal generator 220 may be configured the same as the signal generator 120, except where noted otherwise. For example, the signal generator 220 is located within the housing 211 of the sprayer 210 rather than external to the housing 111, as with the signal generator 120. Accordingly, the housing 211 may have a different size and/or shape to accommodate the additional elements that are housed therein.
As shown in
The system 301 may be configured to provide more than two different modes of operation. For example, the sprayer 310 may be configured to provide a third mode of operation, in which the water is emitted from the outlet having a third shape that is different than the first and second shapes discussed above. The third shape may be substantially sinusoidal with a different frequency and/or different amplitude or may be a wholly different shape (e.g., square wave, sawtooth, etc.). For example, an amplified signal (of the signal defining the second mode of operation) may produce a fluid stream having a shape that is different than the second shape.
The vibration source (e.g., the speaker 314) may be configured to move the support 313 in one or more degrees of freedom. As shown in
As shown in
The sprayer 510 is coupled to the spout 505. For example, the sprayer 510 may be detachably coupled to an end of the spout 505 to allow a user to move the sprayer 510 relative to the spout 505 to change the spraying direction of the sprayer 510. As shown in
A controller (e.g., an actuator, a user interface, etc.) may be provided to switch the system/sprayer/vibration source between the different modes of operation (e.g., first mode, second mode, third mode, etc.), such as by a user input into the controller. As shown in
The sprayers disclosed in this application may further include one or more light sources or may be used with a device having one or more light sources. The sprayers may be configured using the one or more light sources so that the frequency at which the fluid source vibrates and forms the output shape (e.g., a helical shape) of the fluid stream is high enough (e.g., above a threshold) not to be identifiable with the naked eye. For example, an output helical shape of a stream of a sprayer may be oscillated at or above a threshold frequency such that the helical shape cannot be identified with the naked eyes. Accordingly, a strobe light may be employed having a frequency that generally matches the input signal frequency. This may enable an observer to see a spiral shape of fluid with only the naked eye.
It is noted that other exemplary embodiments of the sprayers and/or systems may be employed and those examples shown and described herein are not meant to be limiting in nature. The systems employing the frequency modulated sprayers may advantageously utilize electrical signals to control the fluid flow (e.g., the shape of the emitted water stream) without having to employ large mechanical elements/assemblies.
At least one embodiment of this application relates to a sprayer that is connectable to a water source for receiving water. The sprayer includes a fluid carrier and a vibration source. The fluid carrier has an inlet that is configured to receive water from the water source and an outlet for emitting water. The vibration source is coupled to a portion of the fluid carrier between the inlet and the outlet. When the sprayer is in a first mode of operation, water is emitted from the outlet in a first pattern; and when the sprayer is in a second mode of operation, the vibration source is configured to oscillate the fluid carrier such that water is emitted from the outlet in a second pattern.
The sprayer may include a signal generator that is configured to produce a signal that oscillates the vibration source. The signal may be configured to oscillate the vibration source between the first position and the second position, such as to influence the shape of water emitted from the outlet of the sprayer. The signal may be a waveform. For example, the waveform may be one of a sinusoidal wave, a square wave, a step wave, and a sawtooth wave. The signal generator may be configured to produce an audio signal that moves the vibration source. The audio signal may be music. The sprayer may include an amplifier that is configured to receive the signal from the signal generator and is configured to output an amplified signal that is received by the vibration source.
The sprayer may include a housing, which houses another element of the sprayer. For example, the fluid carrier and/or the vibration source may be located within the housing. The signal generator and/or the amplifier may also be located in the housing.
At least one embodiment of this application relates to a sprayer that includes a housing, a fluid carrier, a vibration source, and a controller. The fluid carrier is disposed in the housing and the housing includes an inlet that is configured to receive water and an outlet for emitting water. The vibration source is disposed in the housing and is operable in two or more modes of operation. By way of example, the vibration source may be operable in a first mode of operation, in which the water is emitted from the outlet having a first shape, and in a second mode of operation, in which the vibration source moves the fluid carrier such that the water emitted from the outlet has a second shape that is different than the first shape. The controller is configured to switch the vibration source between the first and second modes of operation.
The sprayer may include a signal generator that produces a signal from input power. The sprayer may include an amplifier that receives the signal from the signal generator and outputs an amplified signal to the vibration source in the second mode of operation to oscillate the fluid carrier. The controller may be configured to control operation of the signal generator and the amplifier. Each of the signal generator, the amplifier, and the controller is located in or on the housing.
The sprayer/vibration source may be operable in additional modes of operation, such as a third mode of operation, in which the water is emitted from the outlet having a third shape that is different than the first and second shapes, and the controller switches the vibration source between the first, second, and third modes of operation by a user input into the controller. The amplified signal may have a shape that is different than the second shape.
At least one embodiment of this application relates to a sprayer that includes a body, a tube, and a vibration source. The body has an inlet that is configured to receive water and an outlet that is configured to dispense the water from the body. The tube is located in the body and is moveable relative to the body; and the tube is fluidly connected to the inlet (e.g., at a first end) and to the outlet (e.g., at a second end). The vibration source is operable two or more modes of operation. For example, the vibration source may be operable in a first mode of operation, in which the tube does not move relative to the body and water is dispensed from the outlet having a first shape, and in a second mode of operation, in which the vibration source moves the tube relative to the body to dispense water from the outlet having a second shape that is different than the first shape
The sprayer may include a signal generator that produces a signal, wherein the vibration source moves the tube in response to the signal from the signal generator. The signal produced by the signal generator may be a variable signal that is adjustable by a controller to change the shape of the variable signal and the second shape.
A faucet may include a sprayer, as disclosed herein, such as, for example, operatively coupled to a spout of the faucet.
A showerhead may include a sprayer, as disclosed herein, such as, for example, as a fixed showerhead or a removable handset showerhead.
The sprayers, as disclosed herein, may be employed in other types of devices.
As utilized herein, the terms “approximately,” “about,” “substantially”, and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the invention as recited in the appended claims.
The terms “coupled,” “connected,” and the like, as used herein, mean the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another.
References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below,” etc.) are merely used to describe the orientation of various elements in the FIGURES. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.
The construction and arrangement of the elements of the systems/frequency modulated sprayers as shown in the exemplary embodiments are illustrative only. Although only a few embodiments of the present disclosure have been described in detail, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied.
Additionally, the word “exemplary” is used to mean serving as an example, instance, or illustration. Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs (and such term is not intended to connote that such embodiments are necessarily extraordinary or superlative examples). Rather, use of the word “exemplary” is intended to present concepts in a concrete manner. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the preferred and other exemplary embodiments without departing from the scope of the appended claims.
Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present invention. For example, any element (e.g., fluid carrier, vibration source, housing, signal generator, amplifier, etc.) disclosed in one embodiment may be incorporated or utilized with any other embodiment disclosed herein. Also, for example, the order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Any means-plus-function clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes and omissions may be made in the design, operating configuration, and arrangement of the preferred and other exemplary embodiments without departing from the scope of the appended claims.
This application claims the benefits of and priority to U.S. Provisional Patent Application No. 62/369,507, filed on Aug. 1, 2016. U.S. Provisional Patent Application No. 62/369,507 is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2381213 | Forman | Aug 1945 | A |
2611645 | Forman | Mar 1948 | A |
3907204 | Przystawik | Sep 1975 | A |
4121835 | Garabedian | Oct 1978 | A |
4265402 | Tsai | May 1981 | A |
4627326 | McFarland | Dec 1986 | A |
4936506 | Ryan | Jun 1990 | A |
4955540 | Fuller et al. | Sep 1990 | A |
5524822 | Simmons | Jun 1996 | A |
6053423 | Jacobsen | Apr 2000 | A |
6095889 | Demarinis | Aug 2000 | A |
6527257 | Schuld | Mar 2003 | B1 |
6717383 | Brunt | Apr 2004 | B1 |
6730051 | Lin | May 2004 | B2 |
6768416 | Petruzzi | Jul 2004 | B2 |
7080916 | Ferrin | Jul 2006 | B1 |
7228874 | Bolderheij | Jun 2007 | B2 |
7302767 | McKnight | Dec 2007 | B2 |
7698754 | Kunkel | Apr 2010 | B2 |
8550928 | Hamelin | Oct 2013 | B2 |
8887666 | Liu | Nov 2014 | B2 |
9242264 | Lee | Jan 2016 | B2 |
9278369 | Lee et al. | Mar 2016 | B2 |
20060108437 | Gluck | May 2006 | A1 |
20060175424 | Tatum | Aug 2006 | A1 |
20090212123 | Crutcher | Aug 2009 | A1 |
20100276508 | Davies | Nov 2010 | A1 |
20150014431 | Whittaker | Jan 2015 | A1 |
20150231661 | Lee | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
2709025 | Jul 2005 | CN |
1878620 | Dec 2006 | CN |
201094941 | Aug 2008 | CN |
203979571 | Dec 2014 | CN |
204201218 | Mar 2015 | CN |
104799733 | Jul 2015 | CN |
Entry |
---|
Brusspup, “Amazing Water & Sound Experiment #2”, Mar. 11, 2013 (https://www.youtube.com/watch?v=uENITui5_jU), (Year: 2013 ). |
Number | Date | Country | |
---|---|---|---|
20180030698 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
62369507 | Aug 2016 | US |