This invention pertains to cytometers and particularly to optical systems of cytometers. More particularly, the invention pertains to the optical acquisition of information about microscopic particles or components in a flow stream of a cytometer.
This invention is related to U.S. patent application Ser. No. 10/225,325, by Bernard Fritz et al., filed Aug. 21, 2002, and entitled “Optical Alignment Detection System”, which is incorporated herein by reference; and the invention is related to U.S. patent application Ser. No. 10/304,773, to Aravind Padmanabhan et al., filed Nov. 26, 2002, and entitled “Portable Scattering and Fluorescence Cytometer”, which is incorporated herein by reference. This invention also is related to U.S. Pat. No. 6,549,275 B1, by Cabuz et al., issued Apr. 15, 2003, and entitled “Optical Detection System for Flow Cytometry”; U.S. Pat. No. 6,597,438 B1, by Cabuz et al., issued Jul. 22, 2003, and entitled “Portable Flow Cytometer”; U.S. Pat. No. 6,382,228 B1, by Cabuz et al., issued May 7, 2002, and entitled “Fluid Driving System for Flow Cytometry”; U.S. Pat. No. 6,700,130 B2, issued Mar. 2, 2004, by Fritz, and entitled “Optical Detection System for Flow Cytometry”; and U.S. Pat. No. 6,240,944 B1, by Ohnstein et al., issued Jun. 5, 2001, and entitled “Addressable Valve Arrays for Proportional Pressure or Flow Control”; all of which are incorporated herein by reference. The term “fluid” may be used herein as a generic term that includes gases and liquids as species. For instance, air, gas, water and oil are fluids.
The invention is an optical system for a cytometer using a multiplexing scheme to detect light of various wavelengths to obtain information relative to the particles that the light is impinging in a flow channel of the cytometer.
Improved performance (i.e., accuracy, selectivity, reliability, and so on) may be achieved by measuring optical scattering properties of a particle at multiple wavelengths. The invention may provide a way to accomplish this measuring approach by using a single detector assembly for all wavelengths. Each wavelength light source may be modulated at a unique frequency sufficiently separated from the other modulated sources to enable its signal to be demultiplexed unambiguously at the output of the detector. Light from all modulated sources scattered by the particle under measurement may be collected on the same detector assembly.
With flow cytometry, improved differentiation and accuracy in counting and distinguishing multiple particle types (e.g., blood cells) may be achieved by performing multi-dimensional measurements, such as particle volume, scattering at various angles, and scattering in various wavelengths. The invention may reveal improvements to this optical interrogation technique (i.e., multi-wave scattering). Scattering at multiple wavelengths may be done at spatially separated locations along the flow channel. This may require careful synchronization in timing as well as multiple detector arrays and spectra filters. This difficulty may be avoided by the use of modulation frequency multiplexing of the various wavelength sources. Each source may be modulated at a unique and sufficiently high frequency to meet system bandwidth requirements. The sources may be folded into one optical input path and focused simultaneously onto the same particle location. The scattered light at the various wavelengths may then be collected onto the same detector array to determine the angular information, and the signals at the different wavelengths may be separated by temporally filtering (e.g., Fourier transform methods) the detector signals.
The core stream with particles 12 may be looked at as flowing into the surface of the figure. Channel 11 may be lengthy. The core stream along with particles 12 may be kept away from the inside surfaces of channel 11 with a sheathing fluid that surrounds the core stream. The location of the cross-section of channel 11 may be where a light source and detector arrangement may be placed. Channel 11 may have transparent windows 13 and 14 to facilitate the light source detector arrangement. A light beam 15 may enter channel 11 through window 13, impinge a particle 12 which may scatter beam 15 into light 16 which may exit channel 11 through window 14. Light 16 may be sensed by a detector 17. Detector 17 may be an annular type having a ring of surface area 18 sensitive to light. The detector 17 may be expanded with another ring of surface area 19 also sensitive to light 16. Light sensitive surfaces 18 and 19 may be isolated form each other by an annular area 21 that is not sensitive to light. Also, detector 17 may be further expanded with a central light-sensitive area 22 that may be isolated from the light-sensitive annular area 19 by an annular area 23 that is not sensitive to light. The detector 17 may be expanded to include as many annular detectors, each subtending its own prescribed angular interval, as needed. The annular detectors or other kinds of detectors of an array of the detector may provide electrical signals representing light impinging the detector at respective angles. That is, one electrical signal may represent detected light of a first angle; another electrical signal may represent detected light of a second angle; and so on.
Various kinds of information may be obtained about the particles 12 from the scattered light. First, a count of the particles 12 may be made with the successive interruption of the light beam 15 to detector 17. Other information about the size, shape, surface, and so on, about particles 12 may be obtained from scattered light that impinges detector 17. The magnitudes of the scattered light and the location of such light on detector 17 may be noted electronically from the signals from the various detector 17 surfaces. Another dimension of information may be obtained from the scattered light if the various wavelengths of the scattered light are known. Light 15 beams of various wavelengths may scatter differently from particles 12. That is, a light beam of one wavelength may scatter differently than a light beam of another wavelength for the same point of impingement of a particle, or even the same particle, in the same location. These differences of scattering may provide additional information about the particle.
To accomplish projecting a light beam 15 having various but identifiable frequencies of light may be achieved with the present invention. Beam 15 may be composed of light from a number (n) of light sources 24, 25 and 26. Light source 24 may emit or emanate a light beam 27 having a wavelength λ1. Light source 25 may emanate a light beam 28 having a wavelength λ2, and light source 26 may emanate a beam 29 having a wavelength λn. Between light source 25 and light source 26 may be numerous similar light sources with light beams having different wavelengths, respectively.
Beam 27 may propagate from source 24 to a component dichroic mirror 31 in a dichroic fold mirror assembly 30. Mirror 31 may reflect at least a portion of beam 27 approximately 90 degrees towards channel 11. Beam 28 may propagate to a dichroic mirror 32 of assembly 30. Mirror 32 may deflect and/or reflect at least a portion of beam 28 approximately 90 degrees towards channel 11. Beam 29 may propagate to a dichroic mirror 33 of assembly 30. Mirror 33 may reflect at least a portion of beam 29 approximately 90 degrees towards channel 11. There may be additional beams and mirrors between beams 28 and 29 and between mirrors 32 and 33, respectively.
As beam 27 propagates toward channel 11, it may, at least in part, go through mirrors 32 and 33 and any additional mirrors between those mirrors. Likewise, as beam 28 propagates toward channel 11, it may, at least in part, go through mirror 33 and any mirrors between mirrors 32 and 33. A resultant beam 15, which may include beams 27, 28 and 29 and any beams reflected or deflected by other mirrors situated between mirrors 32 and 33 of assembly 30. Beam 15 may proceed through aperture 34, optics 35 and window 13 of channel 11.
Since beam 15 may go through window 13 of channel 11, impinge a particle 12 and be scattered as light beams 16 that go through window 14 to the detector 17, there may be an interest to determine which wavelengths each of the light beams 16 has. The answer might not be evident in how to identify the wavelength or source of the reflected light in the electrical signals being output from detector 17.
To identify the wavelength of the detected light 16, scattered or unscattered, may be achieved with modulation of the light from each of the sources. That is, a modulator 36 may modulate the output of the light source 24 with a frequency f1. Also, a modulator 37 may modulate the output of light source 25 with a frequency f2 and modulator 38 may modulate the output of light source 26 with a frequency fn. Between modulators 37 and 38 there may be other modulators that modulate additional light sources of other wavelengths that may be situated between light sources 25 and 26. This approach may be regarded as a frequency multiplexing of the light sources. Modulators 36, 37, 38 and the other modulators may be connected to and controlled by computer/processor 40.
The output of detector 17 may go to a frequency analyzer 39 which may demultiplex the detected light 16 and 15 signals and separate out the light into component signals according to their wavelengths and respective light sources. These signals may be provided to the computer/processor 40 for analysis, counting, identification, recording and/or other actions.
Modulation frequencies may be relatively high in comparison to signal frequencies.
Although the invention has been described with respect to at least one illustrative embodiment, many variations and modifications will become apparent to those skilled in the art upon reading the present specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the prior art to include all such variations and modifications.
Number | Name | Date | Kind |
---|---|---|---|
3822095 | Hirschfeld | Jul 1974 | A |
3976862 | Curbelo | Aug 1976 | A |
4478076 | Bohrer | Oct 1984 | A |
4478077 | Bohrer | Oct 1984 | A |
4501144 | Higashi et al. | Feb 1985 | A |
4651564 | Johnson et al. | Mar 1987 | A |
4661913 | Wu et al. | Apr 1987 | A |
4662742 | Chupp | May 1987 | A |
4683159 | Bohrer et al. | Jul 1987 | A |
4695034 | Shimizu et al. | Sep 1987 | A |
4745279 | Karkar et al. | May 1988 | A |
4765737 | Harris et al. | Aug 1988 | A |
4786165 | Yamamoto et al. | Nov 1988 | A |
4817101 | Wyeth et al. | Mar 1989 | A |
4874949 | Harris et al. | Oct 1989 | A |
4905169 | Buican et al. | Feb 1990 | A |
4911616 | Laumann, Jr. | Mar 1990 | A |
4953978 | Bott et al. | Sep 1990 | A |
4957363 | Takeda et al. | Sep 1990 | A |
5050429 | Nishimoto et al. | Sep 1991 | A |
5078581 | Blum et al. | Jan 1992 | A |
5082242 | Bonne et al. | Jan 1992 | A |
5085562 | van Lintel | Feb 1992 | A |
5096388 | Weinberg | Mar 1992 | A |
5108623 | Cangelosi et al. | Apr 1992 | A |
5129794 | Beatty | Jul 1992 | A |
5171132 | Miyazaki et al. | Dec 1992 | A |
5176358 | Bonne et al. | Jan 1993 | A |
5185641 | Igushi et al. | Feb 1993 | A |
5194909 | Tycko | Mar 1993 | A |
5219278 | van Lintel | Jun 1993 | A |
5224843 | van Lintel | Jul 1993 | A |
5239352 | Bissonnette | Aug 1993 | A |
5244537 | Ohnstein | Sep 1993 | A |
5250810 | Geiger | Oct 1993 | A |
5323999 | Bonne et al. | Jun 1994 | A |
5351121 | Baer et al. | Sep 1994 | A |
5363222 | Ledebuhr | Nov 1994 | A |
5367474 | Auer et al. | Nov 1994 | A |
5441597 | Bonne et al. | Aug 1995 | A |
5452878 | Gravesen et al. | Sep 1995 | A |
5504337 | Lakowicz et al. | Apr 1996 | A |
5528045 | Hoffman et al. | Jun 1996 | A |
5540494 | Purvis, Jr. et al. | Jul 1996 | A |
5570193 | Landa et al. | Oct 1996 | A |
5601080 | Oppenheimer | Feb 1997 | A |
5616501 | Rodriguez | Apr 1997 | A |
5633724 | King et al. | May 1997 | A |
5683159 | Johnson | Nov 1997 | A |
5684575 | Steen | Nov 1997 | A |
5716852 | Yager et al. | Feb 1998 | A |
5726751 | Altendorf et al. | Mar 1998 | A |
5757476 | Nakamoto et al. | May 1998 | A |
5793485 | Gourley | Aug 1998 | A |
5799030 | Brenner | Aug 1998 | A |
5822170 | Cabuz et al. | Oct 1998 | A |
5824269 | Kosaka et al. | Oct 1998 | A |
5836750 | Cabuz | Nov 1998 | A |
5837547 | Schwartz | Nov 1998 | A |
5863502 | Southgate et al. | Jan 1999 | A |
5880474 | Norton et al. | Mar 1999 | A |
5893722 | Hibbs-Brenner et al. | Apr 1999 | A |
5901939 | Cabuz et al. | May 1999 | A |
5922210 | Brody et al. | Jul 1999 | A |
5932100 | Yager et al. | Aug 1999 | A |
5948684 | Weigl et al. | Sep 1999 | A |
5971158 | Yager et al. | Oct 1999 | A |
5972710 | Weigl et al. | Oct 1999 | A |
5974867 | Forster et al. | Nov 1999 | A |
5994089 | Siiman et al. | Nov 1999 | A |
6007775 | Yager | Dec 1999 | A |
6032689 | Tsai et al. | Mar 2000 | A |
6082185 | Saaski | Jul 2000 | A |
6097485 | Lievan | Aug 2000 | A |
6106245 | Cabuz | Aug 2000 | A |
6109889 | Zengerle et al. | Aug 2000 | A |
6139800 | Chandler | Oct 2000 | A |
6154276 | Mariella, Jr. | Nov 2000 | A |
6179586 | Herb et al. | Jan 2001 | B1 |
6184607 | Cabuz et al. | Feb 2001 | B1 |
6215221 | Cabuz et al. | Apr 2001 | B1 |
6237619 | Maillefer et al. | May 2001 | B1 |
6240944 | Ohnstein et al. | Jun 2001 | B1 |
6249341 | Basiji et al. | Jun 2001 | B1 |
6281975 | Munk | Aug 2001 | B1 |
6382228 | Cabuz et al. | May 2002 | B1 |
6549275 | Cabuz et al. | Apr 2003 | B1 |
6597438 | Cabuz et al. | Jul 2003 | B1 |
6700130 | Fritz | Mar 2004 | B2 |
20030002027 | Fritz | Jan 2003 | A1 |
20030030783 | Roche et al. | Feb 2003 | A1 |
20030054558 | Kurabayashi et al. | Mar 2003 | A1 |
20030142291 | Padmanabhan et al. | Jul 2003 | A1 |
20040036874 | Kramer | Feb 2004 | A1 |
20040263851 | Dobbs et al. | Dec 2004 | A1 |
20050041249 | Dobbs et al. | Feb 2005 | A1 |
20050100336 | Mendenhall et al. | May 2005 | A1 |
20070165225 | Trainer | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
1001326 | May 1999 | EP |
1491877 | Dec 2004 | EP |
1237547 | Jun 1971 | GB |
2212261 | Jul 1989 | GB |
WO9527199 | Mar 1995 | WO |
WO9960397 | Apr 1999 | WO |
WO0109598 | Jul 2000 | WO |
2005026673 | Mar 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20060051096 A1 | Mar 2006 | US |