This invention relates generally to integrated circuits and, more particularly, to a frequency multiplier for use in such integrated circuits. Even more particularly, the present invention relates to a frequency multiplier and amplification circuit that is not based on a phase-locked loop.
Phase-locked loop (“PLL”) circuits are well known in the art and are often used for frequency multiplication. As shown in
While the PLL design of
Prior art frequency multiplier circuits must perform a 90 degree phase shift to create a 90 degree phase signal from the reference signal prior to performing the frequency multiplication. This is because in order to double the frequency of a reference signal, a Sine/Cosine signal pair for the frequency of interest must first be generated (hence the 90 degree phase shift). If the sinusoidal reference signal has a frequency θ, the sine of θ can be determined simply from the original signal. However, when the frequency of the reference signal is doubled, the sine of 2*θ is given by: Sin(2θ)=2*Sin(θ)*Cos(θ). Thus, to multiply the reference signal frequency (e.g., to double the reference signal frequency), a 90 degree phase shift signal must first be generated. The reference differential signal cannot be used directly to perform the frequency multiplication. As a result, prior art frequency multiplication circuits are complex and costly, and require additional techniques for reducing power noise and frequency jitter. Thus, a circuit for frequency multiplication without the use of a PLL is desirable.
Therefore, a need exists for a frequency multiplier and amplification circuit that can reduce or eliminate these problems and others associated with prior art frequency multiplier circuits.
The embodiments of the frequency multiplier and amplification circuit of the present invention substantially meet these needs and others. One embodiment of the present invention is a frequency multiplier circuit comprising: a multiplier operably coupled to multiply a first sinusoidal waveform having a first frequency with a second sinusoidal waveform having a second frequency to produce a third sinusoidal waveform, having a frequency representative of a difference between the first frequency and the second frequency, and a fourth sinusoidal waveform having a frequency representative of a sum of the first and second frequencies; and a frequency tuned load operably coupled to substantially attenuate the third sinusoidal waveform and to substantially pass the fourth sinusoidal waveform as an output of the frequency multiplier circuit.
The frequency multiplier circuit of the embodiments of this invention can be a single-ended multiplier circuit or a differential multiplier circuit with corresponding single-ended or differential first and second sinusoidal waveforms.
The frequency-tuned load can further comprise an inductor operably coupled to substantially attenuate the third sinusoidal waveform. Alternatively, the frequency tuned load can comprise an inductor and a capacitor, wherein the inductor is operably coupled to substantially attenuate the third sinusoidal waveform and the capacitor forms a tank frequency tuned to resonate at a frequency approximately equal to the frequency corresponding to the sum of the first and second frequencies. The frequency-tuned load can further form a bandpass filter operably coupled to substantially pass the fourth sinusoidal waveform and to substantially attenuate the third sinusoidal waveform. The frequency-tuned load can also include a tunable varactor. The frequency-tuned load can thus operate to eliminate the difference between the first and second frequencies and pass the sum of the first and second frequencies as the output of the frequency multiplier circuit, effectively removing phase differences between the frequencies being multiplied.
The embodiments of the frequency multiplier circuit of this invention can further include a negative feedback circuit operably coupled to increase the Q of the frequency-tuned load. Further, the first and the second frequencies can be substantially equal or can be different. For example, the second frequency can differ from the first frequency by a frequency offset or by a phase offset resulting from the waveforms' passage through the circuit. Embodiments of the frequency multiplier circuit can further include an output driver circuit comprising a switchable bandpass filtering amplifier. The switchable bandpass filtering amplifier can be a negative feedback inductor bandpass filter amplifier. Embodiments of the present invention can comprise an integrated circuit including a functional circuit block and a clock module, wherein the clock module includes a clock source and a clock multiplier circuit.
In general, the embodiments of the present invention provide a low jitter frequency multiplier without the need for a PLL circuit. Such a frequency doubler has wide applications in communications systems. The embodiments of this invention provide an integrated circuit with the ability to directly use the same differential signal to perform frequency multiplication. The present invention further provides the ability to drive a large load with the addition of a switchable bandpass filtering boosting amplifier at the output of the frequency multiplier circuit.
Unlike the prior art, the embodiments of this invention base their operation on using the same reference signal to perform frequency multiplication, thus eliminating the required 90 degree phase shift of the prior art. The present invention accomplishes this by using the equivalence:
Cos(2θ)=1−2(Sin θ)2 Equation 1
Rearranging Equation 1 yields:
Sin(θ)*Sin(θ)=(1−Cos(2*θ)) /2 Equation 2
Based on Equation 2, the embodiments of this invention use two signals of identical frequency, and a fixed phase offset, to generate a multiplied clock signal (e.g., a doubled frequency signal). For example, the present invention can multiply two five gigahertz signals to yield an output at ten gigahertz. The embodiments of this invention can be implemented using CMOS technology. Using two identical frequency signals with a fixed phase offset in Equation 2 yields:
Sin(θ)*Sin(θ+Δ)=[Cos(Δ)−Cos(2*θ+Δ)]/2 Equation 3
However, for a fixed phase difference Δ, Cos(Δ) is a constant. Therefore, Cos(Δ) can be replaced with a constant value represented by “C”. Thus:
Sin(θ)*Sin(θ+Δ)=[C−Cos(2*θ+Δ)]/2 Equation 4
Therefore, when implemented together with a filter to remove the DC term “C”, the embodiments of the present invention provide a frequency multiplier that can multiply the frequency of an incoming signal using the incoming signal directly with an added, fixed, phase delay. The present invention thus eliminates the prior art requirement of generating a 90 degree phase shifted signal prior to frequency multiplication.
The present invention can be more fully described with reference to
Frequency multiplier circuit 110 is operably coupled to receive a first differential signal 142 (a first sinusoidal waveform) having a first frequency at transistors T1 and T2 and a second differential signal 144 (a second sinusoidal waveform) having a second frequency at transistors T3, T4, T5 and T6. The first differential signal 142 differs from the second differential signal 144 by a fixed phase offset. The fixed phase offset can be arbitrarily set by design of the circuitry providing the first and second differential signals 142 and 144 to the frequency multiplier circuit 110. Frequency multiplier circuit 110 also includes a bias circuit 150 comprising transistors T9, T10 and T11 for biasing transistors T1 and T2. Transistors T9 and T11 comprise a current mirror. Transistor T10 is an optional powerdown transistor. As configured, frequency multiplier circuit 110 is operably coupled to multiply the first differential signal 142 with the second differential signal 144 to produce an output signal comprising a third sinusoidal waveform having a frequency representative of the difference between the first frequency and the second frequency and a fourth sinusoidal waveform having a frequency representative of the sum of the first and second frequencies. The operation of the frequency multiplier circuit 110 as shown in
To multiply the frequency of the first differential signal 142 with the frequency of the second differential signal 144 (i.e., to obtain a frequency multiplication of a pair of same frequency, different phase input signals), the third sinusoidal waveform must be removed. The third sinusoidal waveform is a DC constant term representative of the fixed phase difference between the two input signals (see Equation 4 above). Removing the DC constant term is accomplished by the frequency tuned load 120, which is operably coupled to frequency multiplier 110 to substantially attenuate the third sinusoidal waveform and to substantially pass the fourth sinusoidal waveform as an output of the frequency multiplier 110.
Frequency tuned load 120 includes tunable varactors V1-V4, capacitor C1, and inductor L1 (where L1 represents inductors 122 and 124 in series). Inductor L1 is operably coupled between the positive and negative terminals of frequency multiplier 110 to substantially attenuate the third sinusoidal waveform, the DC constant term. Inductor L1 has a very low resistance and for DC and very low frequencies is effectively a short. The DC gain is therefore very near to zero and the DC constant term is effectively eliminated.
Capacitor C1 is configured across the same positive and negative terminals of the frequency multiplier 110 in parallel with inductor L1. Varactors V1-V4 are similarly connected in parallel with capacitor C1 and inductor L1. Varactors V1-V4 are operably coupled to control the frequency tuned load 120's frequency band of operation. The frequency band of operation is switched via switchable control terminals for varactors V1-V4, which allow the total varactor capacitance to be programmable through register files. Rate select signals 160 and 162 are used to tune varactors V1-V4. Capacitor C1, varactors V1-V4 and other parasitic capacitances form the total capacitance. The total capacitance in parallel with inductor L1 forms a bandpass filter with a center frequency set around the desired output frequency (i.e., the frequency of the fourth sinusoidal waveform).
However, the Q of the resulting frequency multiplier 110 and frequency-tuned load 120 is relatively low. The low Q, coupled with the fact that the output of the frequency multiplier circuit 110 is running at an increased multiple of the input frequency (e.g., two times the input frequency), results in a low amplitude output signal, particularly in a CMOS (Complementary Metal Oxide Semiconductor) implementation. Negative feedback circuit 130 includes PMOS transistors T7 and T8 and feedback signal 151. Feedback signal 151 is from a common mode feedback circuit (not shown) coupled between power supply VDD and inductors 122 and 124. The common mode feedback circuit is the same or similar to that described in
The output of frequency multiplier 110 can be further amplified to enable the driving of a large load. Filter amplifier 140, which is illustrated in
Clock source 330 is operably coupled to produce a first sinusoidal waveform 332 having a first frequency and a second sinusoidal waveform 334 having a second frequency and a second phase. The second frequency can be equal to the first frequency. Clock source 330 can be a clock driver, or a combination of devices operably coupled to produce the first and second sinusoidal waveforms. For example, clock source 330 can be a single PLL coupled with a clock driver or a combination of two or more PLLs. The clock multiplier circuit 340 can comprise an embodiment of the frequency multiplier circuit of the present invention, such as frequency multiplier and amplification circuit 100 of
The embodiments of the frequency multiplication and amplification circuit of the present invention provide a low jitter frequency multiplier without the need for a PLL circuit. Such a frequency multiplier has wide applications in high-speed communications and data storage systems, especially in applications requiring the generation of very high-speed clock signals. The embodiments of this invention provide an integrated circuit with the ability to directly use the differential signal being multiplied to perform frequency multiplication. The present invention further provides the ability to drive a large load with the addition of a switchable bandpass filtering boosting amplifier at the output of the frequency multiplier circuit. The embodiments of the present invention can thus reduce or eliminate the complexity and high cost of prior art frequency multiplication solutions. The various embodiments of the method and apparatus of this invention can be incorporated in a radio or other wireless communication device. As one of average skill in the art will appreciate, other embodiments may be derived from the teaching of the present invention, without deviating from the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3974460 | Hongu et al. | Aug 1976 | A |
4712073 | Van Rumpt et al. | Dec 1987 | A |
5699068 | Cirineo | Dec 1997 | A |
6100731 | Otaka | Aug 2000 | A |
6535037 | Maligeorgos | Mar 2003 | B2 |
6538499 | Lu | Mar 2003 | B1 |
6553216 | Pugel et al. | Apr 2003 | B1 |
6664824 | Laws | Dec 2003 | B2 |